EP0919110B1 - Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature - Google Patents

Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature Download PDF

Info

Publication number
EP0919110B1
EP0919110B1 EP97930399A EP97930399A EP0919110B1 EP 0919110 B1 EP0919110 B1 EP 0919110B1 EP 97930399 A EP97930399 A EP 97930399A EP 97930399 A EP97930399 A EP 97930399A EP 0919110 B1 EP0919110 B1 EP 0919110B1
Authority
EP
European Patent Office
Prior art keywords
resonator
microwave
coupled
highly
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97930399A
Other languages
German (de)
English (en)
Other versions
EP0919110A1 (fr
Inventor
Lambert Feher
Guido Link
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0919110A1 publication Critical patent/EP0919110A1/fr
Application granted granted Critical
Publication of EP0919110B1 publication Critical patent/EP0919110B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6402Aspects relating to the microwave cavity

Definitions

  • the invention relates to a high-mode microwave resonator for high temperature treatment of materials. With him should Ceramics are sintered or materials are dried can. The more homogeneous the field distribution, the better this is achieved inside the resonator or in the microwave oven.
  • DE 43 13 806 describes a device for heating materials described by microwaves.
  • the device exists from a heating chamber through which to process Material is transported.
  • the heating chamber has one Part of the wall that is concavely curved.
  • the coupled Microwave reflects and on the material volume to be heated focused.
  • a comparable device is shown in WO 90/03714.
  • the heating chamber is used to heat the food to try that Food volume to be heated with a more uniform temperature field to provide.
  • JP 4-137391 the heating chamber is around one of the first reflection walls second reflection wall opposite, expanded, with which the process volume is aimed at with an increased uniform field to meet, so that an even To achieve heating of the object.
  • a cylindrical reaction vessel is described in US Pat. No. 5,532,462, the inside of which is stingy with microwave energy.
  • the multimod microwave is coupled into the vessel in such a way that it is absorbed and reflected on the inner wall, in such a way that the absorption and reflection are helical progressively.
  • the inside of the boiler should be so even be heated.
  • FR-A 2 072 618 describes a microwave resonator described, the resonator of a prismatic, with respect its longitudinal axis symmetrical even-numbered cavity is polygonal cross section. The lateral surface segments as well the two faces are flat. The homogeneity of the field is generated by a rotating wing, which functions as a Kind of antenna forms and the even distribution of that from that Wing in the resonator emitted microwave beam promotes.
  • the invention is based, strong inhomogeneous task Exaggerated fields (caustics) in a resonator, which acts as a microwave oven is used to avoid and a coupling Microwave beam through an external geometry in the volume to distribute in order to heat or burn or goods to be sintered in a largely homogeneous field to be able to suspend.
  • a resonator which acts as a microwave oven is used to avoid and a coupling Microwave beam through an external geometry in the volume to distribute in order to heat or burn or goods to be sintered in a largely homogeneous field to be able to suspend.
  • the task is accomplished by a high-fashion microwave resonator solved according to claim 1.
  • the resonator is a prismatic one, in terms of its Longitudinal axis symmetrical cavity with even polygonal Cross-section. All surface segments of the resonator are flat or equivalent, topologically flat. This keeps the Coupled microwave beam in the event of reflections on the resonator wall always divergent and does not become like circular cylindrical and spherical geometries always focused.
  • the beam is divided into two symmetrical halves because the beam axis from the microwave coupling window first to the closest, common Edge of two lateral surface segments falls. With that you reach a first strong fanning out after the first reflection, the when the beam is first reflected on only one flat wall segment is not reached.
  • the MiRa code was developed as a gridless analytical computer procedure with which complex resonator geometries can be examined.
  • the inner walls of the resonator are metallic or with a metallic layer, making it suitable for the microwave are a mirror that reflects better the higher the electrical conductivity of the walls is. Beyond that they persist in the process environment, d. H. for the touching Atmosphere must be chemically inert and must be cooled to with thermal stress, which is predominantly from radiation and more or less subordinate to convection, to withstand.
  • a material like silver or copper or gold or stainless steel or some other suitable one metallic material as wall or interior wall coating used for the resonator (claim 3).
  • the microwave is coupled into the resonator by one of the two flat faces.
  • the coupling opening lies outside the center of the end face (Claim 4), see above that there is a common edge of two abutting shell segments there that is closest to the coupling opening lies. To this edge runs from the coupling opening outgoing beam axis and divides there at the first reflection first in two beam axes, up to the second Reflection are mirror images of each other.
  • the resonator Due to the homogeneous field distribution achieved in the steady state the resonator is now very good as a microwave oven Suitable for sintering ceramic substances. But it can other objects can also be heated or dried or simply tempered (claim 5).
  • a quasi-optical beam with a Gaussian beam is inserted into the resonator Beam profile or a microwave beam that comes close to this profile coupled (claim 6).
  • the coupling into the resonator 1 with a hexagonal cross section quasi-optical microwave beam 2 is used in the two Figures 1a and 1b simplified with the first two Reflections shown.
  • the microwave beam 2 enters the resonator 1 through the coupling opening 3 in the figure 1a lower front 4.
  • the beam axis 5 of the in Resonator 1 entering the first beam part is with a Angle a to the end face 4 inclined with the coupling opening 3. It is oriented so that it is on the closest edge of two abutting, flat polygon surfaces. On these two contiguous polygon surfaces becomes the Beam 2 reflected for the first time and simultaneously in two to each other divided symmetrical parts.
  • the interior of the resonator 1 is due to the always divergent beam path with increasing Reflections filled in more and more evenly.
  • the microwave oven consists of a cylindrical Form 6 with two connecting pieces 7 and 8, of which one 8th attaches to the lateral surface and the temperature measurement as well serves to pump out or flood the interior of the resonator and the second 7 attaches obliquely to one of the two end faces 4. Over the latter, the microwave 2 is inside the resonator coupled. That is why it is also with the coupling window 9 completed at the joint to the beam-guiding waveguide.
  • the inside of the original cylinder 6 is from the front side 4 to End face 4 with the applicator insert which is hexagonal in cross section 10 coaxial.
  • the applicator 10 is shown in FIG rotated so far about the cylinder axis that the incident Beam axis 5 on the closest edge of two intersecting Polygon walls of the applicator insert 10 falls. So that is done then there the first symmetrical division of the incident Microwave beam 2.
  • the MiRa code as a tool for determining and interpreting the optimal resonator geometry is a crucial tool. It is in its essential features and its basic Use explained in Figure 4. The more detailed connections of these codes are in the o. e. Literature comprehensible by the authors H. Feher et al. described. Essentially first a resonator model with polygonal Cross section assumed, modeled and used to calculate the in this field geometry occurring resonator geometry used. The numerical calculation is carried out using the MiRa field calculation, in which the microwave entering the resonator 1 2 is followed optically. The successive filling of fields in Resonator 1 can finally u. a. display suitable for video, so that z. B. as a result the longitudinal and cross-sectional development demonstrated the field distribution inside the resonator can be.
  • the aim is to keep the energy density in the defined working volume as large as possible, while at the same time little variation in the field strength values around the mean value (homogeneous distribution).
  • the working volume for comparison of the conditions, is defined as the coherent volume that has the best field quality with the original cylindrical geometry.
  • the study with the MiRa code to investigate the field homogeneity of various prismatic applicator designs revealed an optimum for the hexagonal structure with edge loading according to FIGS. 1a, b and 2b.
  • FIG. 3 shows the quotient normalized to the maximum (worst case) for the application of edges or walls.
  • the edge loading shows a better homogeneous energy yield except for the pentagonal cross section.
  • the normalized scatter is shown in FIG. With the hexagonal Applicator predicts that with him the least scatter with the highest possible energy density is to be expected. This finding has been confirmed experimentally, and it shows a spacious, completely homogeneous Blackening of the thermal papers placed in the resonator in all measured levels up to the applicator wall. The predictions are confirmed by the experiment, so that the MiRa code is characterized by high reliability. Calculations for higher polygonal cross sections Order converge in the scattering behavior of the resonator field quickly against the cylinder geometry.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (6)

  1. Résonateur à hyperfréquences à mode de fonctionnement élevé pour le traitement à température élevée de matériaux, le résonateur (1) étant une cavité prismatique, symétrique par rapport à son axe longitudinal, à section polygonale paire, et les segments de surface enveloppe ainsi que les deux faces frontales (4) du résonateur (1) étant des surfaces planes,
    caractérisé en ce que
    l'axe (5) du faisceau hyperfréquences (2) injecté à travers l'une des deux faces frontales (4), est dirigé de façon inclinée sur l'arête la plus proche de deux segments de surface enveloppe qui se rejoignent, pour que le faisceau hyperfréquences (2), divergent, injecté dans le résonateur (1), soit ouvert en deux composantes symétriques par réflexion et diffraction, par la première réflexion à proximité du point d'injection (3) et,
    pour les autres réflexions sur les parois intérieures du résonateur, les faisceaux s'ouvrent de plus en plus pour que l'ensemble du volume du résonateur présente une distribution très homogène du champ.
  2. Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 1,
    caractérisé en ce que
    pour obtenir l'homogénéité du champ avec une oscillation minimale, la section du résonateur (1) est hexagonale ou octogonale.
  3. Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 2,
    caractérisé en ce que
    les parois intérieures du résonateur (1) sont revêtues d'une matière métallique à conductivité électrique élevée, telle que de l'argent, du cuivre, de l'or, de l'aluminium ou de l'acier inoxydable, les parois constituant des miroirs pour le faisceau hyperfréquences (2) injecté.
  4. Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 3,
    caractérisé en ce que
    le résonateur (1) est un four de traitement à haute température de matériaux, comme par exemple pour le chauffage, le séchage ou le frittage et/ou le soudage de matières céramiques, ou encore la trempe de semi-conducteurs.
  5. Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 4,
    caractérisé en ce que
    la fenêtre de couplage (3) est réalisée de manière décentrée dans une face frontale (4).
  6. Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 5,
    caractérisé en ce que
    le faisceau hyperfréquences (2) injecté est un faisceau quasi-optique à profil gaussien ou voisin d'un profil gaussien.
EP97930399A 1996-08-17 1997-06-25 Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature Expired - Lifetime EP0919110B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1996133245 DE19633245C1 (de) 1996-08-17 1996-08-17 Hochmodiger Mikrowellenresonator für die Hochtemperaturbehandlung von Werkstoffen
DE19633245 1996-08-17
PCT/EP1997/003328 WO1998008359A1 (fr) 1996-08-17 1997-06-25 Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature

Publications (2)

Publication Number Publication Date
EP0919110A1 EP0919110A1 (fr) 1999-06-02
EP0919110B1 true EP0919110B1 (fr) 2001-09-26

Family

ID=7802925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97930399A Expired - Lifetime EP0919110B1 (fr) 1996-08-17 1997-06-25 Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature

Country Status (4)

Country Link
EP (1) EP0919110B1 (fr)
JP (1) JP3299977B2 (fr)
DE (2) DE19633245C1 (fr)
WO (1) WO1998008359A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700141A1 (de) * 1997-01-04 1998-07-09 Gero Hochtemperaturoefen Gmbh Brennofen für die Hochtemperaturbehandlung von Materialien mit niedrigem dielektrischem Verlustfaktor
DE19752728C2 (de) * 1997-11-28 1999-11-04 Karlsruhe Forschzent Mittels Mikrowellen beheizter Drehrohrofen
DE19802745C2 (de) 1998-01-26 1999-11-25 Karlsruhe Forschzent Mikrowellentechnische Zünd- und Verbrennungsunterstützungs-Einrichtung für einen Kraftstoffmotor
US6320170B1 (en) 1999-09-17 2001-11-20 Cem Corporation Microwave volatiles analyzer with high efficiency cavity
IT1319036B1 (it) * 1999-11-03 2003-09-23 Technology Finance Corp Pro Pr Dispositivo dielettrico di riscaldamento
ATE556038T1 (de) * 2000-10-19 2012-05-15 Kek High Energy Accelerator Kalzinierungsofen, herstellung von kalzinierten körpern und kalzinierter körper
DE10329411B4 (de) * 2003-07-01 2006-01-19 Forschungszentrum Karlsruhe Gmbh Mikrowellenresonator, eine aus einem solchen Mikrowellenresonator modular aufgebaute Prozessstraße, ein Verfahren zum Betreiben und nach diesem Verfahren thermisch prozessierte Gegenstände/Werkstücke mittels Mikrowelle
DE10329412B4 (de) * 2003-07-01 2005-09-22 Forschungszentrum Karlsruhe Gmbh Hochmodiger Mikrowellenresonator zur thermischen Prozessierung
JP2006260915A (ja) * 2005-03-16 2006-09-28 Masaji Miyake 電磁波加熱装置
WO2012043753A1 (fr) 2010-09-30 2012-04-05 株式会社サイダ・Fds Dispositif à micro-ondes et tube d'écoulement pour ce dispositif
JP5681847B2 (ja) * 2010-09-30 2015-03-11 株式会社サイダ・Fds マイクロ波装置
KR101390663B1 (ko) * 2012-06-15 2014-04-30 국립대학법인 울산과학기술대학교 산학협력단 공진기 고차모드 발생장치
DE102017114102A1 (de) 2017-06-26 2018-12-27 Harald Heinz Peter Benoit Vorrichtung und Verfahren zum Erhitzen eines Materials
EP3566722A1 (fr) * 2018-05-08 2019-11-13 Cleanwood Technology S.L. Système de désinfection pour tonneaux en bois

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837532B1 (fr) * 1969-12-01 1973-11-12
GB1495691A (en) * 1974-03-23 1977-12-21 Matsushita Electric Ind Co Ltd Microwave oven
AU521896B2 (en) * 1976-11-17 1982-05-06 Jean, O.A.L. Apparatus for subjecting a material to electromagnetic waves
GB8822703D0 (en) * 1988-09-28 1988-11-02 Core Consulting Group Microwave-powered heating chamber
DE4313806A1 (de) * 1993-04-27 1994-11-03 Rene Salina Vorrichtung zum Erhitzen von Materialien in einer mit Mikrowellen bestrahlbaren Heizkammer und Verfahren zum Herstellen von keramischem Gut, bei dem das Rohgut mittels Mikrowellen getrocknet wird
US5532462A (en) * 1994-04-29 1996-07-02 Communications & Power Industries Method of and apparatus for heating a reaction vessel with microwave energy

Also Published As

Publication number Publication date
JP3299977B2 (ja) 2002-07-08
DE19633245C1 (de) 1997-11-27
DE59704730D1 (de) 2001-10-31
WO1998008359A1 (fr) 1998-02-26
EP0919110A1 (fr) 1999-06-02
JP2000501880A (ja) 2000-02-15

Similar Documents

Publication Publication Date Title
EP0919110B1 (fr) Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature
DE69002882T2 (de) Mikrowellenunterstützter Fliessbettprozessor.
DE10106164A1 (de) Gleichmäßige Heizstruktur für einen Mikrowellenherd
EP1060355A2 (fr) Procede et dispositif pour le frittage hyperfrequence de combustible nucleaire
Lee et al. Ray‐tube integration in shooting and bouncing ray method
AT389764B (de) Verfahren und einrichtung zur bestimmung innenballistischer kenngroessen in rohrwaffen
EP0367267A2 (fr) Pointe the balayage pour faisceau electro-magnétique
EP1183709A1 (fr) Dispositif a dilatation lineaire destine au traitement micro-ondes de grande surface et a la production de plasma grande surface
DE4114039C2 (fr)
Gori et al. A new type of optical fields
DE3828951C2 (fr)
EP1320118B1 (fr) Réacteur pour le revêtement simultané des deux faces de verres de lunettes
DE1069233B (fr)
DE10329412B4 (de) Hochmodiger Mikrowellenresonator zur thermischen Prozessierung
US6072168A (en) Microwave resonator for the high temperature treatment of materials
DE102018204913B3 (de) NMR-MAS-Probenkopf mit optimiertem MAS-DNP-Spulenklotz für schnelle Probenrotation
EP0992090B1 (fr) Ensemble resonateur pour lasers a l'etat solide
EP1114424B1 (fr) Dispositif et procede pour obtenir de maniere controlee un flux photonique entre des resonances d'un resonateur electromagnetique
EP0169472A2 (fr) Elément de guide d'ondes pour micro-ondes
Gouws Initial stage selective laser flash sintering of aluminum nitride
DE19633247A1 (de) Mikrowellenofen zur Sinterung von Sintergut und Verfahren zur Temperaturgradientenreduzierung im Sintergut
DE69300934T2 (de) Verlustloser Wellenleiterkoppler.
DE102008001637B4 (de) Mikrowellenofen zur thermischen Behandlung von Gütern
DE4331979C2 (de) Verfahren zur Herstellung eines Streukörpers zum Einsatz in einem optischen Resonator, Vorrichtung zur Erzeugung einer vorgebbaren Lichtverteilung mit dem Streukörper
DE69830083T2 (de) Elektromagnetische strahlung expositionskammer für verbesserte heizung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 19990917

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed
GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59704730

Country of ref document: DE

Date of ref document: 20011031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030627

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150623

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59704730

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103