EP0919110B1 - Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature - Google Patents
Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature Download PDFInfo
- Publication number
- EP0919110B1 EP0919110B1 EP97930399A EP97930399A EP0919110B1 EP 0919110 B1 EP0919110 B1 EP 0919110B1 EP 97930399 A EP97930399 A EP 97930399A EP 97930399 A EP97930399 A EP 97930399A EP 0919110 B1 EP0919110 B1 EP 0919110B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resonator
- microwave
- coupled
- highly
- field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 13
- 230000008878 coupling Effects 0.000 claims description 16
- 238000010168 coupling process Methods 0.000 claims description 16
- 238000005859 coupling reaction Methods 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- 238000005245 sintering Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 238000000137 annealing Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 238000003466 welding Methods 0.000 claims 1
- 241001135893 Themira Species 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009768 microwave sintering Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/707—Feed lines using waveguides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/6402—Aspects relating to the microwave cavity
Definitions
- the invention relates to a high-mode microwave resonator for high temperature treatment of materials. With him should Ceramics are sintered or materials are dried can. The more homogeneous the field distribution, the better this is achieved inside the resonator or in the microwave oven.
- DE 43 13 806 describes a device for heating materials described by microwaves.
- the device exists from a heating chamber through which to process Material is transported.
- the heating chamber has one Part of the wall that is concavely curved.
- the coupled Microwave reflects and on the material volume to be heated focused.
- a comparable device is shown in WO 90/03714.
- the heating chamber is used to heat the food to try that Food volume to be heated with a more uniform temperature field to provide.
- JP 4-137391 the heating chamber is around one of the first reflection walls second reflection wall opposite, expanded, with which the process volume is aimed at with an increased uniform field to meet, so that an even To achieve heating of the object.
- a cylindrical reaction vessel is described in US Pat. No. 5,532,462, the inside of which is stingy with microwave energy.
- the multimod microwave is coupled into the vessel in such a way that it is absorbed and reflected on the inner wall, in such a way that the absorption and reflection are helical progressively.
- the inside of the boiler should be so even be heated.
- FR-A 2 072 618 describes a microwave resonator described, the resonator of a prismatic, with respect its longitudinal axis symmetrical even-numbered cavity is polygonal cross section. The lateral surface segments as well the two faces are flat. The homogeneity of the field is generated by a rotating wing, which functions as a Kind of antenna forms and the even distribution of that from that Wing in the resonator emitted microwave beam promotes.
- the invention is based, strong inhomogeneous task Exaggerated fields (caustics) in a resonator, which acts as a microwave oven is used to avoid and a coupling Microwave beam through an external geometry in the volume to distribute in order to heat or burn or goods to be sintered in a largely homogeneous field to be able to suspend.
- a resonator which acts as a microwave oven is used to avoid and a coupling Microwave beam through an external geometry in the volume to distribute in order to heat or burn or goods to be sintered in a largely homogeneous field to be able to suspend.
- the task is accomplished by a high-fashion microwave resonator solved according to claim 1.
- the resonator is a prismatic one, in terms of its Longitudinal axis symmetrical cavity with even polygonal Cross-section. All surface segments of the resonator are flat or equivalent, topologically flat. This keeps the Coupled microwave beam in the event of reflections on the resonator wall always divergent and does not become like circular cylindrical and spherical geometries always focused.
- the beam is divided into two symmetrical halves because the beam axis from the microwave coupling window first to the closest, common Edge of two lateral surface segments falls. With that you reach a first strong fanning out after the first reflection, the when the beam is first reflected on only one flat wall segment is not reached.
- the MiRa code was developed as a gridless analytical computer procedure with which complex resonator geometries can be examined.
- the inner walls of the resonator are metallic or with a metallic layer, making it suitable for the microwave are a mirror that reflects better the higher the electrical conductivity of the walls is. Beyond that they persist in the process environment, d. H. for the touching Atmosphere must be chemically inert and must be cooled to with thermal stress, which is predominantly from radiation and more or less subordinate to convection, to withstand.
- a material like silver or copper or gold or stainless steel or some other suitable one metallic material as wall or interior wall coating used for the resonator (claim 3).
- the microwave is coupled into the resonator by one of the two flat faces.
- the coupling opening lies outside the center of the end face (Claim 4), see above that there is a common edge of two abutting shell segments there that is closest to the coupling opening lies. To this edge runs from the coupling opening outgoing beam axis and divides there at the first reflection first in two beam axes, up to the second Reflection are mirror images of each other.
- the resonator Due to the homogeneous field distribution achieved in the steady state the resonator is now very good as a microwave oven Suitable for sintering ceramic substances. But it can other objects can also be heated or dried or simply tempered (claim 5).
- a quasi-optical beam with a Gaussian beam is inserted into the resonator Beam profile or a microwave beam that comes close to this profile coupled (claim 6).
- the coupling into the resonator 1 with a hexagonal cross section quasi-optical microwave beam 2 is used in the two Figures 1a and 1b simplified with the first two Reflections shown.
- the microwave beam 2 enters the resonator 1 through the coupling opening 3 in the figure 1a lower front 4.
- the beam axis 5 of the in Resonator 1 entering the first beam part is with a Angle a to the end face 4 inclined with the coupling opening 3. It is oriented so that it is on the closest edge of two abutting, flat polygon surfaces. On these two contiguous polygon surfaces becomes the Beam 2 reflected for the first time and simultaneously in two to each other divided symmetrical parts.
- the interior of the resonator 1 is due to the always divergent beam path with increasing Reflections filled in more and more evenly.
- the microwave oven consists of a cylindrical Form 6 with two connecting pieces 7 and 8, of which one 8th attaches to the lateral surface and the temperature measurement as well serves to pump out or flood the interior of the resonator and the second 7 attaches obliquely to one of the two end faces 4. Over the latter, the microwave 2 is inside the resonator coupled. That is why it is also with the coupling window 9 completed at the joint to the beam-guiding waveguide.
- the inside of the original cylinder 6 is from the front side 4 to End face 4 with the applicator insert which is hexagonal in cross section 10 coaxial.
- the applicator 10 is shown in FIG rotated so far about the cylinder axis that the incident Beam axis 5 on the closest edge of two intersecting Polygon walls of the applicator insert 10 falls. So that is done then there the first symmetrical division of the incident Microwave beam 2.
- the MiRa code as a tool for determining and interpreting the optimal resonator geometry is a crucial tool. It is in its essential features and its basic Use explained in Figure 4. The more detailed connections of these codes are in the o. e. Literature comprehensible by the authors H. Feher et al. described. Essentially first a resonator model with polygonal Cross section assumed, modeled and used to calculate the in this field geometry occurring resonator geometry used. The numerical calculation is carried out using the MiRa field calculation, in which the microwave entering the resonator 1 2 is followed optically. The successive filling of fields in Resonator 1 can finally u. a. display suitable for video, so that z. B. as a result the longitudinal and cross-sectional development demonstrated the field distribution inside the resonator can be.
- the aim is to keep the energy density in the defined working volume as large as possible, while at the same time little variation in the field strength values around the mean value (homogeneous distribution).
- the working volume for comparison of the conditions, is defined as the coherent volume that has the best field quality with the original cylindrical geometry.
- the study with the MiRa code to investigate the field homogeneity of various prismatic applicator designs revealed an optimum for the hexagonal structure with edge loading according to FIGS. 1a, b and 2b.
- FIG. 3 shows the quotient normalized to the maximum (worst case) for the application of edges or walls.
- the edge loading shows a better homogeneous energy yield except for the pentagonal cross section.
- the normalized scatter is shown in FIG. With the hexagonal Applicator predicts that with him the least scatter with the highest possible energy density is to be expected. This finding has been confirmed experimentally, and it shows a spacious, completely homogeneous Blackening of the thermal papers placed in the resonator in all measured levels up to the applicator wall. The predictions are confirmed by the experiment, so that the MiRa code is characterized by high reliability. Calculations for higher polygonal cross sections Order converge in the scattering behavior of the resonator field quickly against the cylinder geometry.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Claims (6)
- Résonateur à hyperfréquences à mode de fonctionnement élevé pour le traitement à température élevée de matériaux, le résonateur (1) étant une cavité prismatique, symétrique par rapport à son axe longitudinal, à section polygonale paire, et les segments de surface enveloppe ainsi que les deux faces frontales (4) du résonateur (1) étant des surfaces planes,
caractérisé en ce quel'axe (5) du faisceau hyperfréquences (2) injecté à travers l'une des deux faces frontales (4), est dirigé de façon inclinée sur l'arête la plus proche de deux segments de surface enveloppe qui se rejoignent, pour que le faisceau hyperfréquences (2), divergent, injecté dans le résonateur (1), soit ouvert en deux composantes symétriques par réflexion et diffraction, par la première réflexion à proximité du point d'injection (3) et,pour les autres réflexions sur les parois intérieures du résonateur, les faisceaux s'ouvrent de plus en plus pour que l'ensemble du volume du résonateur présente une distribution très homogène du champ. - Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 1,
caractérisé en ce que
pour obtenir l'homogénéité du champ avec une oscillation minimale, la section du résonateur (1) est hexagonale ou octogonale. - Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 2,
caractérisé en ce que
les parois intérieures du résonateur (1) sont revêtues d'une matière métallique à conductivité électrique élevée, telle que de l'argent, du cuivre, de l'or, de l'aluminium ou de l'acier inoxydable, les parois constituant des miroirs pour le faisceau hyperfréquences (2) injecté. - Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 3,
caractérisé en ce que
le résonateur (1) est un four de traitement à haute température de matériaux, comme par exemple pour le chauffage, le séchage ou le frittage et/ou le soudage de matières céramiques, ou encore la trempe de semi-conducteurs. - Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 4,
caractérisé en ce que
la fenêtre de couplage (3) est réalisée de manière décentrée dans une face frontale (4). - Résonateur à hyperfréquences à mode de fonctionnement élevé selon la revendication 5,
caractérisé en ce que
le faisceau hyperfréquences (2) injecté est un faisceau quasi-optique à profil gaussien ou voisin d'un profil gaussien.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1996133245 DE19633245C1 (de) | 1996-08-17 | 1996-08-17 | Hochmodiger Mikrowellenresonator für die Hochtemperaturbehandlung von Werkstoffen |
DE19633245 | 1996-08-17 | ||
PCT/EP1997/003328 WO1998008359A1 (fr) | 1996-08-17 | 1997-06-25 | Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0919110A1 EP0919110A1 (fr) | 1999-06-02 |
EP0919110B1 true EP0919110B1 (fr) | 2001-09-26 |
Family
ID=7802925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97930399A Expired - Lifetime EP0919110B1 (fr) | 1996-08-17 | 1997-06-25 | Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0919110B1 (fr) |
JP (1) | JP3299977B2 (fr) |
DE (2) | DE19633245C1 (fr) |
WO (1) | WO1998008359A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19700141A1 (de) * | 1997-01-04 | 1998-07-09 | Gero Hochtemperaturoefen Gmbh | Brennofen für die Hochtemperaturbehandlung von Materialien mit niedrigem dielektrischem Verlustfaktor |
DE19752728C2 (de) * | 1997-11-28 | 1999-11-04 | Karlsruhe Forschzent | Mittels Mikrowellen beheizter Drehrohrofen |
DE19802745C2 (de) | 1998-01-26 | 1999-11-25 | Karlsruhe Forschzent | Mikrowellentechnische Zünd- und Verbrennungsunterstützungs-Einrichtung für einen Kraftstoffmotor |
US6320170B1 (en) | 1999-09-17 | 2001-11-20 | Cem Corporation | Microwave volatiles analyzer with high efficiency cavity |
IT1319036B1 (it) * | 1999-11-03 | 2003-09-23 | Technology Finance Corp Pro Pr | Dispositivo dielettrico di riscaldamento |
ATE556038T1 (de) * | 2000-10-19 | 2012-05-15 | Kek High Energy Accelerator | Kalzinierungsofen, herstellung von kalzinierten körpern und kalzinierter körper |
DE10329411B4 (de) * | 2003-07-01 | 2006-01-19 | Forschungszentrum Karlsruhe Gmbh | Mikrowellenresonator, eine aus einem solchen Mikrowellenresonator modular aufgebaute Prozessstraße, ein Verfahren zum Betreiben und nach diesem Verfahren thermisch prozessierte Gegenstände/Werkstücke mittels Mikrowelle |
DE10329412B4 (de) * | 2003-07-01 | 2005-09-22 | Forschungszentrum Karlsruhe Gmbh | Hochmodiger Mikrowellenresonator zur thermischen Prozessierung |
JP2006260915A (ja) * | 2005-03-16 | 2006-09-28 | Masaji Miyake | 電磁波加熱装置 |
WO2012043753A1 (fr) | 2010-09-30 | 2012-04-05 | 株式会社サイダ・Fds | Dispositif à micro-ondes et tube d'écoulement pour ce dispositif |
JP5681847B2 (ja) * | 2010-09-30 | 2015-03-11 | 株式会社サイダ・Fds | マイクロ波装置 |
KR101390663B1 (ko) * | 2012-06-15 | 2014-04-30 | 국립대학법인 울산과학기술대학교 산학협력단 | 공진기 고차모드 발생장치 |
DE102017114102A1 (de) | 2017-06-26 | 2018-12-27 | Harald Heinz Peter Benoit | Vorrichtung und Verfahren zum Erhitzen eines Materials |
EP3566722A1 (fr) * | 2018-05-08 | 2019-11-13 | Cleanwood Technology S.L. | Système de désinfection pour tonneaux en bois |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4837532B1 (fr) * | 1969-12-01 | 1973-11-12 | ||
GB1495691A (en) * | 1974-03-23 | 1977-12-21 | Matsushita Electric Ind Co Ltd | Microwave oven |
AU521896B2 (en) * | 1976-11-17 | 1982-05-06 | Jean, O.A.L. | Apparatus for subjecting a material to electromagnetic waves |
GB8822703D0 (en) * | 1988-09-28 | 1988-11-02 | Core Consulting Group | Microwave-powered heating chamber |
DE4313806A1 (de) * | 1993-04-27 | 1994-11-03 | Rene Salina | Vorrichtung zum Erhitzen von Materialien in einer mit Mikrowellen bestrahlbaren Heizkammer und Verfahren zum Herstellen von keramischem Gut, bei dem das Rohgut mittels Mikrowellen getrocknet wird |
US5532462A (en) * | 1994-04-29 | 1996-07-02 | Communications & Power Industries | Method of and apparatus for heating a reaction vessel with microwave energy |
-
1996
- 1996-08-17 DE DE1996133245 patent/DE19633245C1/de not_active Expired - Fee Related
-
1997
- 1997-06-25 DE DE59704730T patent/DE59704730D1/de not_active Expired - Lifetime
- 1997-06-25 WO PCT/EP1997/003328 patent/WO1998008359A1/fr active IP Right Grant
- 1997-06-25 JP JP51029898A patent/JP3299977B2/ja not_active Expired - Fee Related
- 1997-06-25 EP EP97930399A patent/EP0919110B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3299977B2 (ja) | 2002-07-08 |
DE19633245C1 (de) | 1997-11-27 |
DE59704730D1 (de) | 2001-10-31 |
WO1998008359A1 (fr) | 1998-02-26 |
EP0919110A1 (fr) | 1999-06-02 |
JP2000501880A (ja) | 2000-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0919110B1 (fr) | Resonateur a hyperfrequences a mode de fonctionnement eleve pour traitement de materiaux a haute temperature | |
DE69002882T2 (de) | Mikrowellenunterstützter Fliessbettprozessor. | |
DE10106164A1 (de) | Gleichmäßige Heizstruktur für einen Mikrowellenherd | |
EP1060355A2 (fr) | Procede et dispositif pour le frittage hyperfrequence de combustible nucleaire | |
Lee et al. | Ray‐tube integration in shooting and bouncing ray method | |
AT389764B (de) | Verfahren und einrichtung zur bestimmung innenballistischer kenngroessen in rohrwaffen | |
EP0367267A2 (fr) | Pointe the balayage pour faisceau electro-magnétique | |
EP1183709A1 (fr) | Dispositif a dilatation lineaire destine au traitement micro-ondes de grande surface et a la production de plasma grande surface | |
DE4114039C2 (fr) | ||
Gori et al. | A new type of optical fields | |
DE3828951C2 (fr) | ||
EP1320118B1 (fr) | Réacteur pour le revêtement simultané des deux faces de verres de lunettes | |
DE1069233B (fr) | ||
DE10329412B4 (de) | Hochmodiger Mikrowellenresonator zur thermischen Prozessierung | |
US6072168A (en) | Microwave resonator for the high temperature treatment of materials | |
DE102018204913B3 (de) | NMR-MAS-Probenkopf mit optimiertem MAS-DNP-Spulenklotz für schnelle Probenrotation | |
EP0992090B1 (fr) | Ensemble resonateur pour lasers a l'etat solide | |
EP1114424B1 (fr) | Dispositif et procede pour obtenir de maniere controlee un flux photonique entre des resonances d'un resonateur electromagnetique | |
EP0169472A2 (fr) | Elément de guide d'ondes pour micro-ondes | |
Gouws | Initial stage selective laser flash sintering of aluminum nitride | |
DE19633247A1 (de) | Mikrowellenofen zur Sinterung von Sintergut und Verfahren zur Temperaturgradientenreduzierung im Sintergut | |
DE69300934T2 (de) | Verlustloser Wellenleiterkoppler. | |
DE102008001637B4 (de) | Mikrowellenofen zur thermischen Behandlung von Gütern | |
DE4331979C2 (de) | Verfahren zur Herstellung eines Streukörpers zum Einsatz in einem optischen Resonator, Vorrichtung zur Erzeugung einer vorgebbaren Lichtverteilung mit dem Streukörper | |
DE69830083T2 (de) | Elektromagnetische strahlung expositionskammer für verbesserte heizung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19981216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR IT |
|
17Q | First examination report despatched |
Effective date: 19990917 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
ITF | It: translation for a ep patent filed | ||
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT |
|
REF | Corresponds to: |
Ref document number: 59704730 Country of ref document: DE Date of ref document: 20011031 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030627 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050625 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150623 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59704730 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170103 |