EP0918009B1 - Schienenkontakt für eine Achszähleinrichtung - Google Patents

Schienenkontakt für eine Achszähleinrichtung Download PDF

Info

Publication number
EP0918009B1
EP0918009B1 EP98440184A EP98440184A EP0918009B1 EP 0918009 B1 EP0918009 B1 EP 0918009B1 EP 98440184 A EP98440184 A EP 98440184A EP 98440184 A EP98440184 A EP 98440184A EP 0918009 B1 EP0918009 B1 EP 0918009B1
Authority
EP
European Patent Office
Prior art keywords
voltage
rail contact
receiving
reference signal
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98440184A
Other languages
English (en)
French (fr)
Other versions
EP0918009A3 (de
EP0918009A2 (de
Inventor
Marc Kipping
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0918009A2 publication Critical patent/EP0918009A2/de
Publication of EP0918009A3 publication Critical patent/EP0918009A3/de
Application granted granted Critical
Publication of EP0918009B1 publication Critical patent/EP0918009B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/163Detection devices
    • B61L1/165Electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/167Circuit details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/169Diagnosis

Definitions

  • the invention relates to a rail contact for an axle counting device the preamble of claim 1.
  • Axle counting devices are mainly related to rail transport with track vacancy detection equipment, at level crossing protection and used for checking the integrity of trains.
  • An axle counter usually includes several metering points and one usually in a signal box housed axle counter evaluation device, which from the metering points transmitted transmitted pulse evaluates.
  • Each point of delivery in turn consists of one or two rail contacts and one in a separate housing housed evaluation circuit.
  • Each rail contact has a transmitting and a receiving coil, which is usually are arranged on both sides of a railroad track.
  • the transmitter coil generates an alternating electromagnetic field, which is generated by the receiving coil Will be received. If a wheel of a railway vehicle enters the Area of the alternating field occurs, this leads to a weakening of the Alternating field, whereby the signal received by the receiver coil drops. If the signal amplitude is an appropriately set threshold falls below, this is evaluated by the evaluation circuit as a wheel passage.
  • Shape and level of the signal received by the receiving coil are subject diverse time-dependent influences. These include approximately the size of the in the rail current, the temperature of the transmission and Reception coil, mechanical misalignments and signs of wear on the railroad track. In the worst case, these influences can do so cause the point of delivery detects a wheel passage, although one has not taken place. The reverse case is also possible, i. H. on Wheel passage is not recognized by the point of delivery.
  • the common rail contacts have in common that (partial) destruction of the rail contact from the point of delivery is not or not reliably is recognized. Such destruction can occur, for example come that a train passing over it or a construction vehicle The transmitter coil tears off the rail. It can then happen that the Point of delivery does not record a passing train without the error for the axle counting evaluation device would be recognizable in the signal box. This can be too cause serious danger to rail traffic, for example because a track occupancy message omitted.
  • DD246089 discloses an axle counting device with two pairs of each a transmitting and receiving coil, which one behind the other along the rail are arranged.
  • the coils are in series with an AC voltage source connected.
  • the receiving coils when exposed to the wheel Temporary impulses are generated.
  • axle counting device leads due to the redundant Design of the transmitting and receiving coils for better detection of Failures. However, mechanical adjustment of both transmitter coils is still possible necessary.
  • the task is solved by a rail contact with the characteristics of the Claim 1.
  • the field geometry of the alternating electromagnetic field generated change. This accomplishes two things. Firstly, by changing the field geometry, the external conditions mentioned above can be compensated without the need for mechanical adjustment is. Secondly, changing the field geometry allows a wheel passage simulate and in this way a self-test of the rail contact carry out.
  • Fig. 1 shows a schematic representation of a rail contact SK according to the invention.
  • the rail contact SK comprises a reception coil ES on one side of a rail SCH and two transmission coils SS1 and SS2 on the side of the rail SCH opposite the reception coil ES.
  • the two transmission coils SS1 and SS2 can also be located on the same side of the rail SCH as the reception coil ES and also do not necessarily have to be arranged with respect to one another as shown in FIG. 1. It is only necessary to ensure that the two alternating fields emitted by the transmission coils SS1 and SS2 overlap at least in the area of the reception coil ES.
  • 1 also shows schematically the field geometry FG1 of the sum field, which results from the superimposition of the two alternating fields emitted by the transmitter coils SS1 and SS2. The exact shape of the field geometry is not important for the invention.
  • FIG. 1 also shows an AC voltage source WSQ and an adjustable one Voltage divider ST.
  • the voltage divider ST two transmitter coils SS1 and SS2 with different AC voltages be charged.
  • the field geometry can thus be divided by the division of the alternating voltages influence the sum field resulting from the overlay.
  • Fig. 1 is a changed field geometry by a broken line FG2 indicated.
  • the Circuit must at least ensure that at least one of the two Transmitter applied AC voltage within a certain Range is variable in its amplitude. It is conceivable, for example, that an unchangeable AC voltage is present at a transmitter coil and the other transmitter coil with an electronically controllable AC voltage source connected is. Which of the many options you ultimately choose decides, is mainly from those associated with the respective solution Costs depend.
  • a typical time course of the receive voltage rectified in phase U shows FIG. 2.
  • the threshold value is also shown SW, falling below it triggers a counting pulse. Take it with you Wheel passage at the reception coil ES tapped receiving voltage after some time due to changing external conditions, for example the signal curve drawn in dashed lines, so according to the invention the AC voltages applied to the transmitter coils SS1 and SS2 changed long until the received voltage returns to the original signal curve accepts. It is therefore not necessary to change the threshold value.
  • the alternating voltages are preferably tracked at regular intervals time intervals.
  • Fig. 3 shows a schematic diagram for a circuit with the help of which such Tracking can be carried out.
  • the receiving coil ES is with this Circuit not only with an evaluation circuit generating the counting pulses, but also connected to a KOMP comparator.
  • the Comparator KOMP also compares the signal curve of the received voltage a reference signal curve stored in the memory MEM.
  • MEM can be a non-rewritable memory, so that the reference signal curve already when the rail contact is put into operation is present. It is also possible, as described above, for the reference signal curve only when the rail contact is started up on site, for example using a standard wheel.
  • the reference waveform ensures in any case that the evaluation circuit wheel passages reliably registered with a sufficiently large signal-to-noise ratio.
  • the comparator determines that the received from the stored waveform If there is a deviation that can be determined in advance, he provides this information to a programmable CPU, which has two controllable, AC voltage sources connected to the transmitter coils SS1 and SS2 Controls WSQ1 and WSQ2.
  • the control takes place in such a way that when the next wheel passage, the received signal curve closer to the stored one Reference signal curve lies. In this way, the field geometry can be iteratively so adapt to changed external conditions until the course the received voltage approximately matches the reference signal curve.
  • Another advantage of the rail contact according to the invention is that that the additional transmitter coil allows self-tests to be carried out.
  • a continuous change in the AC voltages applied to the transmitter coils can also be used in the absence of a railway wheel Reception coil ES produce a reception signal which is a wheel passage has the corresponding course.
  • Fig. 4 shows a schematic diagram for a circuit with the help of which Self test can be realized.
  • the circuit based on that shown in Fig. 3 Circuit based, has a self-test control unit STSE, which is performing coordinated the self-test.
  • a command from the self-test control unit STSE are made from a preferably rewritable memory MEM2 data read out to the CPU.
  • the CPU controls the AC voltage sources WSQ1 and WSQ2 so that on the receiving coil ES the reference signal curve corresponding receive voltage can be tapped.
  • the evaluation circuit AS outputs a count pulse.
  • the evaluation circuit AS transmits the self-test control unit STSE that a wheel passage has been registered. Receives the self-locking control unit STSE no such feedback from the evaluation circuit AS, so notifies the self-test control unit STSE to the axle counting device that there is an error. Appropriate operational can then from the signal box Measures are taken.
  • command to perform a self-test too can be transmitted from the interlocking from the point of delivery.
  • adaptation of the field geometry to changed ones external conditions In this way, the need is eliminated immediately to make settings on the track contact on the track, which results in results in a significant cost reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Valve Device For Special Equipments (AREA)
  • Seats For Vehicles (AREA)
  • Escalators And Moving Walkways (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

Die Erfindung betrifft einen Schienenkontakt für eine Achszähleinrichtung nach dem Oberbegriff des Anspruchs 1.
Achszähleinrichtungen werden im Schienenverkehr hauptsächlich im Zusammenhang mit Gleisfreimeldeeinrichtungen, bei der Bahnübergangssicherung und zur Integritätsüberprüfung von Zügen eingesetzt. Eine Achszähleinrichtung umfaßt meist mehrere Zählpunkte und eine üblicherweise in einem Stellwerk untergebrachte Achszählauswerteeinrichtung, die die von den Zählpunkten übermittelten Zählimpulse auswertet. Jeder Zählpunkt besteht seinerseits aus einem oder zwei Schienenkontakten und einer in einem separaten Gehäuse untergebrachten Auswerteschaltung.
Jeder Schienenkontakt hat eine Sende- und eine Empfangsspule, die üblicherweise zu beiden Seiten einer Eisenbahnschiene angeordnet sind. Die Sendespule erzeugt ein elektromagnetisches Wechselfeld, welches von der Empfangsspule empfangen wird. Wenn ein Rad eines Eisenbahnfahrzeugs in den Bereich des Wechselfeldes eintritt, so führt dies zu einer Schwächung des Wechselfeldes, wodurch das von der Empfängerspule empfangene Signal abfällt. Wenn die Signalamplitude einen geeignet festgelegten Schwellenwert unterschreitet, so wird dies von der Auswerteschaltung als Raddurchgang gewertet.
Form und Höhe des von der Empfangsspule empfangenen Signals unterliegen vielfältigen zeitabhängigen Einflüssen. Dazu gehören etwa die Größe des in der Eisenbahnschiene geführten Fahrstroms, die Temperatur der Sende- und Empfangsspule, mechanische Dejustierungen sowie Abnützungserscheinungen an der Eisenbahnschiene. Diese Einflüsse können im ungünstigen Fall dazu führen, daß der Zählpunkt einen Raddurchgang erfaßt, obwohl ein solcher nicht stattgefunden hat. Ebenso ist der umgekehrte Fall möglich, d. h. ein Raddurchgang wird nicht vom Zählpunkt erkannt.
Um den Zählpunkt an die äußeren Bedingungen anzupassen, ist bei bekannten Schienenkontakten der die Sendespule enthaltende Sendekopf mechanisch verstellbar an der Schiene befestigt. Der Schienenkontakt hat eine Zahnbacke, auf der der Sendekopf verschoben und in der endgültigen Lage durch eine Schraubenverbindung fixiert werden kann. Auf diese Weise wird die Feldgeometrie des elektromagnetischen Wechselfeldes den örtlichen Bedingungen individuell angepaßt. Nachteilig ist jedoch, daß hierzu eine Justierung direkt am Gleis erforderlich ist, was mit hohen Kosten und einer Unterbrechung des Zugverkehrs verbunden ist.
Aus der EP-A1-668 203 ist ein Schienenkontakt bekannt, bei dem auf diese mechanische Verstellmöglichkeit verzichtet wird. Eine Anpassung an äußere Bedingungen erfolgt bei dieser bekannten Lösung durch Verändern des Schwellenwertes, dessen Über- oder Unterschreiten einen Zählimpuls auslöst. Dies kann beispielsweise geschehen, indem man eine einem Standardrad entsprechende Lehre in den Bereich des Schienenkontakts bringt und ein Aufrüstkommando gibt. Die Extremalwerte des empfangenen Signals werden daraufhin gespeichert und zur Berechnung eines neuen Schwellenwertes verwendet.
Den bekannten Schienenkontakten ist gemeinsam, daß eine (teilweise) Zerstörung des Schienenkontaktes vom Zählpunkt nicht oder nicht zuverlässig erkannt wird. Eine solche Zerstörung kann beispielsweise dadurch zustande kommen, daß ein darüber hinwegfahrender Zug oder ein Baufahrzeug die Sendespule von der Schiene abreißt. Es kann dann vorkommen, daß der Zählpunkt einen vorüberfahrenden Zug nicht erfaßt, ohne daß der Fehler für die Achszählauswerteeinrichtung im Stellwerk erkennbar wäre. Dies kann zu einer ernsten Gefährdung des Schienenverkehrs führen, etwa weil eine Gleisbesetztmeldung unterbleibt.
DD246089 offenbart dazu eine Achszähleinrichtung mit zwei Paaren mit je einer Sende- und Empfangsspule, welche entlang der Schiene hintereinander angeordnet sind. Die Spulen sind dabei in Reihe an eine Wechselspannungsquelle angeschlossen. Dadurch werden in den Empfangsspulen bei Radeinwirkung zeitlich versetzte Impulse erzeugt.
Die vorhin beschriebene Achszähleinrichtung führt aufgrund der redundanten Ausführung der Sende- und Empfangsspulen zu einer besseren Erkennung von Ausfällen. Ein mechanisches Nachstellen beider Sendespulen ist jedoch weiterhin notwendig.
Es ist daher Aufgabe der Erfindung, einen Schienenkontakt anzugeben, der keine mechanischen Verstellmöglichkeiten für den Sendekopf benötigt und darüber hinaus zur Durchführung von Selbsttests geeignet ist.
Die Aufgabe wird gelöst durch einen Schienenkontakt mit den Merkmalen des Anspruchs 1. Mit Hilfe der zweiten, unabhängig ansteuerbaren Sendespule läßt sich die Feldgeometrie des erzeugten elektromagnetischen Wechselfeldes verändern. Dadurch wird zweierlei erreicht. Zum einen können durch Verändern der Feldgeometrie die oben angesprochenen äußeren Bedingungen kompensiert werden, ohne daß dazu eine mechanische Justierung erforderlich ist. Zum zweiten läßt sich durch Verändern der Feldgeometrie ein Raddurchgang simulieren und auf diese Weise ein Selbsttest des Schienenkontaktes durchführen.
Bei einem Ausführungsbeispiel der Erfindung nach Anspruch 4 ist vorgesehen, die Feldgeometrie mit Hilfe der zweiten Sendespule immer so einzustellen, daß die an der Empfangsspule abgreifbare Empfangsspannung einem Referenzsignalverlauf entspricht. Der Schwellenwert bleibt bei diesem Ausführungsbeispiel vorzugsweise während der gesamten Betriebszeit unverändert. Eine weitere vorteilhafte Ausgestaltung der Erfindung ist Anspruch 5 entnehmbar.
Die Erfindung wird nachfolgend anhand der Ausführungsbeispiele und der Zeichnungen eingehend erläutert. Es zeigen:
  • Fig. 1: einen erfindungsgemäßen Schienenkontakt SK in schematischer Darstellung;
  • Fig. 2: einen typischen Spannungsverlauf, wie er bei einem Raddurchgang an der Empfangsspule abgegriffen wird;
  • Fig. 3: eine Prinzipskizze für eine Schaltung, mit deren Hilfe die Feldgeometrie während des Betriebes an sich ändernde äußere Bedingungen angepaßt wird;
  • Fig. 4: Prinzipskizze für eine Schaltung zur Durchführung eines Selbsttests des Schienenkontaktes.
  • Fig. 1 zeigt in schematischer Darstellung einen erfindungsgemäßen Schienenkontakt SK. Der Schienenkontakt SK umfaßt eine Empfangsspule ES auf der einen Seite einer Schiene SCH sowie zwei Sendespulen SS1 und SS2 auf der der Empfangsspule ES gegenüberliegenden Seite der Schiene SCH. Die beiden Sendespulen SS1 und SS2 können sich auch auf der gleichen Seite der Schiene SCH wie die Empfangsspule ES befinden und müssen auch nicht notwendigerweise so zueinander angeordnet sein wie in Fig. 1 dargestellt. Es ist lediglich sicherzustellen, daß die beiden von den Sendespulen SS1 und SS2 ausgestrahlten Wechselfelder sich zumindest im Bereich der Empfangsspule ES überlappen. Fig. 1 zeigt außerdem schematisch die Feldgeometrie FG1 des Summenfeldes, welches sich aus der Überlagerung der beiden von den Sendespulen SS1 und SS2 ausgestrahlten Wechselfelder ergibt. Die genaue Form der Feldgeometrie ist für die Erfindung nicht bedeutsam.
    Die Fig. 1 zeigt ferner eine Wechselspannungsquelle WSQ sowie einen verstellbaren Spannungsteiler ST. Mit Hilfe des Spannungsteilers ST können die beiden Sendespulen SS1 und SS2 mit unterschiedlichen Wechselspannungen beaufschlagt werden. Je nach Aufteilung der Wechselspannung ändern sich auch die von den Sendespulen SS1 und SS2 abgestrahlten Wechselfelder. Durch die Aufteilung der Wechselspannungen läßt sich somit die Feldgeometrie des aus der Überlagerung entstehenden Summenfeldes beeinflussen. In Fig. 1 ist eine veränderte Feldgeometrie durch eine durchbrochene Linie FG2 angedeutet.
    Es versteht sich, daß anstelle der in Fig. 1 skizzierten Schaltung zu Ansteuerung der beiden Spulen auch andere Schaltungen Verwendung finden können. Die Schaltung muß zumindest gewährleisten, daß die an wenigstens eine der beiden Sendespulen angelegte Wechselspannung innerhalb eines bestimmten Bereiches in ihrer Amplitude veränderbar ist. Denkbar ist beispielsweise, daß an einer Sendespule eine nicht veränderbare Wechselspannung anliegt und die andere Sendespule mit einer elektronisch regelbaren Wechselspannungsquelle verbunden ist. Für welche der vielfältigen Möglichkeiten man sich letztlich entscheidet, wird vor allem von den mit der jeweiligen Lösung verbundenen Kosten abhängen.
    Mit Hilfe der zusätzlichen Sendespule ist es nun möglich, innerhalb gewisser Grenzen beliebige Feldgeometrien zu erzeugen. Eine Veränderung der äußeren Bedingungen kann damit durch Verändern der Feldgeometrie kompensiert werden. Hierzu sind unterschiedliche Varianten denkbar, die nachfolgend beschrieben werden.
    Die technisch einfachste Möglichkeit besteht darin, ähnlich wie in der oben zitierten EP-A1-668 203 eine einem Standardrad entsprechende Lehre in den Bereich des Schienenkontaktes zu bringen und manuell die an einer oder beiden der Sendespulen SS1 anliegenden Wechselspannungen mit Hilfe eines geeigneten Schalter so lange zu verändern, bis der Schienenkontakt zuverlässig einen Raddurchgang registriert.
    Eine andere Möglichkeit zur Anpassung der Feldgeometrie erfordert zwar einen etwas höheren technischen Aufwand, hat jedoch den Vorteil, daß, abgesehen von einer einmaligen Einjustierung, im weiteren Betrieb keine weiteren Einstellungen mehr vor Ort durchgeführt werden müssen. Zunächst wird der Schienenkontakt bei der erstmaligen Inbetriebnahme sorgfältig einjustiert. Diese Einjustierung erfolgt durch Verändern der an den Sendespulen SS1 und SS2 anliegenden Wechselspannungen. Wenn der Schienenkontakt zuverlässig einen Raddurchgang registriert und andererseits keine Fehlregistrierungen auftreten, so wird der bei einem Raddurchgang gemessene Verlauf der an der Empfangsspule ES anliegenden Empfangsspannung gespeichert und für die Zukunft als Referenzsignalverlauf verwendet.
    Einen typischen zeitlichen Verlauf der phasenrichtig gleichgerichteten Empfangsspannung U zeigt Fig. 2. Ebenfalls eingezeichnet ist der Schwellenwert SW, dessen Unterschreiten einen Zählimpuls auslöst. Nimmt die bei einem Raddurchgang an der Emfpangsspule ES abgreifbare Empfangsspannung nach einiger Zeit aufgrund sich ändernder äußerer Bedingungen beispielsweise den getrichelt gezeichneten Signalverlauf an, so werden erfindungsgemäß die an den Sendespulen SS1 und SS2 anliegenden Wechselspannungen so lange verändert, bis die Empfangsspannung wieder den ursprünglichen Signalverlauf annimmt. Ein Verändern des Schwellenwertes ist somit nicht erforderlich. Das Nachführen der Wechselspannungen erfolgt vorzugsweise in regelmäßigen zeitlichen Abständen.
    Fig. 3 zeigt eine Prinzipskizze für eine Schaltung, mit deren Hilfe sich ein derartiges Nachführen durchführen läßt. Die Empfangsspule ES ist bei dieser Schaltung nicht nur mit einer die Zählimpulse generierenden Auswerteschaltung, sondern zusätzlich noch mit einem Vergleicher KOMP verbunden. Der Vergleicher KOMP vergleicht den Signalverlauf der Empfangsspannung mit einem im Speicher MEM abgelegten Referenzsignalverlauf. Bei diesem Speicher MEM kann es sich um einen nicht überschreibbaren Speicher handeln, so daß der Referenzsignalverlauf bereits bei der Inbetriebnahme des Schienenkontakts vorliegt. Ebenso ist es möglich, wie oben beschrieben den Referenzsignalverlauf erst bei der Inbetriebnahme des Schienenkontakts vor Ort beispielsweise unter Verwendung eines Standardrades zu speichern. Der Referenzsignalverlauf stellt in jedem Fall sicher, daß die Auswerteschaltung Raddurchgänge bei hinreichend großem Störabstand zuverlässig registriert.
    Stellt der Vergleicher fest, daß der empfangene vom gespeicherten Signalverlauf über ein vorab festlegbares Maß hinaus abweicht, so gibt er diese Information an eine programmierbare Recheneinheit CPU weiter, die zwei regelbare, mit den Sendespulen SS1 und SS2 verbundene Wechselspannungsquellen WSQ1 und WSQ2 ansteuert. Die Steuerung erfolgt in der Weise, daß beim nächsten Raddurchgang der empfangene Signalverlauf näher am abgespeicherten Referenzsignalverlauf liegt. Auf diese Weise läßt sich iterativ die Feldgeometrie so an veränderte äußere Bedingungen anpassen, bis der Verlauf der Empfangsspannung annähernd mit dem Referenzsignalverlauf übereinstimmt.
    Ein weiterer Vorteil des erfindungsgemäßen Schienenkontaktes besteht darin, daß die zusätzliche Sendspule die Durchführung von Selbsttests erlaubt. Durch ein kontinuierliches Verändern der an den Sendespulen angelegten Wechselspannungen läßt sich auch ohne Anwesenheit eines Eisenbahnrades in der Empfangsspule ES ein Empfangssignal hervorrufen, welches einen einem Raddurchgang entsprechenden Verlauf hat. Mit einer Sendespule allein wäre dies nicht möglich, da man damit nicht den für den Raddurchgang charakteristische Phasensprung in der Empfangsspannung erzielen kann. Auf diese Weise läßt sich überprüfen, ob die Empfangsspule und die Sendespulen noch richtig zueinander angeordnet sind und die Auswerteschaltung fehlerfrei funktioniert.
    Fig. 4 zeigt eine Prinzipskizze für eine Schaltung, mit deren Hilfe ein derartiger Selbsttest realisiert werden kann. Die Schaltung, die auf der in Fig. 3 dargestellten Schaltung beruht, hat eine Selbstteststeuereinheit STSE, die die Durchführung des Selbsttests koordiniert. Auf ein Kommando der Selbstteststeuereinheit STSE werden aus einem vorzugsweise überschreibbaren Speicher MEM2 Daten an die Recheneinheit CPU ausgelesen. Mit Hilfe dieser Daten steuert die Recheneinheit CPU die Wechselspannungsquellen WSQ1 und WSQ2 so an, daß an der Empfangsspule ES eine dem Referenzsignalverlauf entsprechende Empfangsspannung abgegriffen werden kann. Daraufhin löst, sofern kein Fehler vorliegt, die Auswerteschaltung AS einen Zählimpuls aus. Außerdem übermittelt die Auswerteschaltung AS der Selbstteststeuereinheit STSE, daß ein Raddurchgang registriert worden ist. Erhält die Selbstfeststeuereinheit STSE keine derartige Rückmeldung von der Auswerteschaltung AS, so teilt die Selbstteststeuereinheit STSE der Achszählauswerteeinrichtung mit, daß ein Fehler vorliegt. Vom Stellwerk aus können dann entsprechende betriebliche Maßnahmen ergriffen werden.
    Es sei bemerkt, daß das Kommando zur Durchführung eines Selbsttests auch vom Stellwerk aus dem Zählpunkt übermittelt werden kann. Entsprechendes gilt auch für die Durchführung der Anpassung der Feldgeometrie an veränderte äußere Bedingungen. Auf diese Weise entfällt die Notwendigkeit, unmittelbar am Gleis Einstellungen am Schienenkontakt vorzunehmen, woraus sich eine deutliche Kostenreduktion ergibt.

    Claims (5)

    1. Schienenkontakt (SK) für eine Achszähleinrichtung mit einer Empfängerspule (ES) zum Empfangen eines elektromagnetischen Wechselfeldes,
      dadurch gekennzeichnet, daß zur Erzeugung des elektromagnetischen Wechselfelds zwei Sendespulen (SS1, SS2) vorgesehen sind, welche so angeordnet sind, dass die beiden von den Sendespulen (SS1, SS2) ausgestrahlten Wechselfelder sich zumindest im Bereich der Empfangsspule (ES) überlappen.
    2. Schienenkontakt nach Anspruch 1 mit einer Spannungsversorgungseinrichtung (WSQ, ST), die es ermöglicht, beide Sendespulen (SS1, SS2) mit unterschiedlichen Wechselspannungen zu versorgen, wobei mindestens eine der beiden Wechselspannungen innerhalb eines vorab festgelegten Bereiches frei wählbar ist.
    3. Schienenkontakt nach Anspruch 2, wobei die Spannungsversorgungseinrichtung (WSQ) einen Spannungsteiler (ST) aufweist, welcher eine einstellbare Aufteilung der von der Spannungsversorgungseinrichtung (WSQ) erzeugten Spannung auf die beiden Sendespulen (SS1, SS2) ermöglicht.
    4. Schienenkontakt nach Anspruch 2 mit:
      a) einem Speicher (MEM in Fig. 3), in dem ein Referenzsignalverlauf gespeichert ist,
      b) einem Vergleicher (KOMP), der den Verlauf der an der Empfangsspule (ES) abgegriffenen Empfangsspannung mit dem im Speicher (MEM) gespeicherten Referenzsignalverlauf vergleicht und ein Vergleichsergebnis ermittelt,
      c) einer Recheneinheit (CPU), die unter Berücksichtigung des vom Vergleicher (KOMP) gelieferten Vergleichsergebnis die Spannungsversorgungseinrichtung (WSQ1, WSQ2) so ansteuert, daß der Verlauf der bei einem Raddurchgang an der Empfangsspule (ES) abgreifbaren Empfangsspannung möglichst nahe beim Referenzsignalverlauf liegt.
    5. Schienenkontakt noch Anspruch 4, bei dem
      a) eine Selbstteststeuerungseinheit (STSE) vorhanden ist, die die Durchführung eines Selbsttests koordiniert,
      b) ein zweiter Speicher (MEM2) vorhanden ist,
      c) und die Recheneinheit (CPU) auf ein Kommando der Selbstteststeuerungseinheit (STSE) hin die Spannungsversorgungseinrichtung (WSQ1, WSQ2) so unter Verwendung der im zweiten Speicher (MEM2) gespeicherten Daten ansteuert, daß der Verlauf der ohne Raddurchgang an der Empfangsspule (ES) abgreifbaren Empfangsspannung in etwa dem Referenzsignalverlauf entspricht.
    EP98440184A 1997-10-15 1998-08-28 Schienenkontakt für eine Achszähleinrichtung Expired - Lifetime EP0918009B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19745436 1997-10-15
    DE19745436A DE19745436A1 (de) 1997-10-15 1997-10-15 Schienenkontakt für eine Achszähleinrichtung

    Publications (3)

    Publication Number Publication Date
    EP0918009A2 EP0918009A2 (de) 1999-05-26
    EP0918009A3 EP0918009A3 (de) 2001-09-26
    EP0918009B1 true EP0918009B1 (de) 2004-07-14

    Family

    ID=7845549

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98440184A Expired - Lifetime EP0918009B1 (de) 1997-10-15 1998-08-28 Schienenkontakt für eine Achszähleinrichtung

    Country Status (4)

    Country Link
    EP (1) EP0918009B1 (de)
    AT (1) ATE270988T1 (de)
    DE (2) DE19745436A1 (de)
    ES (1) ES2221139T3 (de)

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    TW200918381A (en) * 2007-09-03 2009-05-01 Siemens Ag Method for counting axles in rail vehicles
    TW200918382A (en) * 2007-09-03 2009-05-01 Siemens Ag Method for counting axles in rail vehicles
    DE102012202194A1 (de) 2012-02-14 2013-08-14 Siemens Aktiengesellschaft Sensoreinrichtung zum Detektieren eines sich entlang einer Fahrschiene bewegenden Rades
    DE102016201896A1 (de) * 2016-02-09 2017-08-10 Siemens Aktiengesellschaft Sensoreinrichtung zum Erfassen einer Magnetfeldänderung sowie Verfahren zum Abgleichen einer solchen Sensoreinrichtung

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3225166A1 (de) * 1982-07-06 1984-01-12 Gebhard Balluff Fabrik feinmechanischer Erzeugnisse GmbH & Co, 7303 Neuhausen Metalldetektor
    DE3302883A1 (de) * 1983-01-28 1984-08-02 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zum erzeugen von achszaehlimpulsen fuer achszaehlanlagen
    DD246089A1 (de) * 1986-02-19 1987-05-27 Werk F Signal Und Sicherungste Schaltungsanordnung zur ueberwachung von achszaehleinrichtungen
    AT400429B (de) * 1993-12-10 1995-12-27 Vae Ag Verfahren zum festlegen des abtastbereiches von fahrzeugbetätigten messeinrichtungen sowie einrichtung zum einstellen und justieren von messeinrichtungen an gleiswegen relativ zu radsensoren
    DE4405039A1 (de) * 1994-02-17 1995-08-24 Sel Alcatel Ag Achszähler mit änderbarer Schwellwerteinstellung

    Also Published As

    Publication number Publication date
    DE19745436A1 (de) 1999-04-22
    EP0918009A3 (de) 2001-09-26
    ES2221139T3 (es) 2004-12-16
    DE59811668D1 (de) 2004-08-19
    ATE270988T1 (de) 2004-07-15
    EP0918009A2 (de) 1999-05-26

    Similar Documents

    Publication Publication Date Title
    DE3003291C2 (de) Zweikanalige Datenverarbeitungsanordnung für Eisenbahnsicherungszwecke
    EP0535205B1 (de) Überwachungseinrichtung für eine steuervorrichtung
    DE102008028486A1 (de) Einrichtung und Verfahren zum Erzeugen eines Ortungssignals
    DE2903809A1 (de) Ueberwachungs- und anzeigeschaltung
    EP0918009B1 (de) Schienenkontakt für eine Achszähleinrichtung
    EP4417484A1 (de) Achszählersystem zum überwachen eines gleisabschnitts eines schienensystems
    EP0545026B1 (de) Einrichtung zum sicheren automatischen Steuern des gegenseitigen Abstandes von Fahrzeugen
    DE3935809A1 (de) Einrichtung zur uebertragung von steuerungsinformation auf ein schienenfahrzeug
    WO2012156268A1 (de) Zugsicherungssystem mit puls-code-modulierter führerstandssignalisierung
    EP0668203A1 (de) Achszähler mit änderbarer Schwellwerteinstellung
    WO2022089689A1 (de) Näherungsschalter, verfahren zum betreiben eines solchen sowie anordnung und verfahren zur überwachung eines gleisabschnittes
    DE2846129C2 (de) Informationsübertragungseinrichtung
    DE19817636C2 (de) Elektrisch ortsbediente Weiche
    DE1516994A1 (de) Frequenzvergleichsanordnung
    DE2247275C2 (de) Anordnung bei eisenbahnanlagen mit linienfoermiger informationsuebertragung zwischen zug und strecke
    DE3034659A1 (de) Sicherheitsvorrichtung fuer ein spurgefuehrtes, gleisfreies fahrzeug und verfahren zum betrieb der vorrichtung
    DE2711572A1 (de) Einrichtung zur sicherung der ortung fuer trassengebundene fahrzeuge
    EP0157099B1 (de) Schaltungsanordnung zum Überwachen des Vorhandenseins von Schienenfahrzeugen innerhalb bestimmter Gleisabschnitte
    AT414116B (de) Verfahren zum überwachen von zählpunkten und zählpunkt für gleisfreimeldeanlagen
    DE3837873A1 (de) Schaltungsanordnung zum erzeugen von achszaehlimpulsen fuer achszaehlanlagen im eisenbahnsicherungswesen
    DE3415824C2 (de) Oszillatorschaltung für einen Gleisstromkreis in Eisenbahnsicherungsanlagen
    WO1995033642A1 (de) Zugbeeinflussungseinrichtung
    DE1930641B2 (de) Einrichtung zur Fahrortermittlung für Schienenfahrzeuge
    EP0715581B1 (de) Steuerungsverfahren für eine sicherungseinrichtung und sicherungseinrichtung zur durchführung des verfahrens
    DE2038031C3 (de) Schaltungsanordnung zum Umstellen und Überwachen von Weichen mit Drehstromantrieben

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20020125

    AKX Designation fees paid

    Free format text: AT BE CH DE DK ES FI FR GB IT LI NL PT SE

    17Q First examination report despatched

    Effective date: 20030311

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040714

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040714

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

    REF Corresponds to:

    Ref document number: 59811668

    Country of ref document: DE

    Date of ref document: 20040819

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041014

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041014

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2221139

    Country of ref document: ES

    Kind code of ref document: T3

    BERE Be: lapsed

    Owner name: ALCATEL

    Effective date: 20040831

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050415

    BERE Be: lapsed

    Owner name: *ALCATEL

    Effective date: 20040831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041214

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20170812

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20170829

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20170824

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20170830

    Year of fee payment: 20

    Ref country code: ES

    Payment date: 20170901

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20170822

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20170823

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20170825

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59811668

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20180827

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20180827

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 270988

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20180828

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20180827

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20201110

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20180829