EP0916894A1 - Brenner für den Betrieb eines Wärmeerzeugers - Google Patents
Brenner für den Betrieb eines Wärmeerzeugers Download PDFInfo
- Publication number
- EP0916894A1 EP0916894A1 EP97810867A EP97810867A EP0916894A1 EP 0916894 A1 EP0916894 A1 EP 0916894A1 EP 97810867 A EP97810867 A EP 97810867A EP 97810867 A EP97810867 A EP 97810867A EP 0916894 A1 EP0916894 A1 EP 0916894A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner according
- section
- flow
- swirl generator
- burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/40—Mixing tubes or chambers; Burner heads
- F23D11/402—Mixing chambers downstream of the nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
- F23D17/002—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07002—Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/14—Special features of gas burners
- F23D2900/14021—Premixing burners with swirling or vortices creating means for fuel or air
Definitions
- the invention relates to a burner for operating a heat generator according to Preamble of claim 1.
- the upstream side consists of a swirl generator, the flow formed therein seamlessly in a mixing section is transferred. This is done using one at the beginning of the Mixing section flow geometry formed for this purpose, which consists of transition channels exists, which is sectoral, according to the number of those acting Partial body of the swirl generator, capture the end face of the mixing section and in Flow direction swirl. Downstream of these transition channels the mixing section has a number of filming holes, which one Ensure an increase in the flow velocity along the pipe wall. This is followed by a combustion chamber, the transition between the Mixing section and the combustion chamber formed by a cross-sectional jump in whose plane a backflow zone or backflow bubble forms. The Twist strength in the swirl generator is selected so that the bursting of the Vortex does not occur within the mixing section, but further downstream, as executed above, in the area of the cross-sectional jump.
- the invention seeks to remedy this.
- the invention as set out in the claims is characterized, the task is based on a burner at the beginning to propose the above-mentioned type of precautions which affect the quality of the mixture Fuel / air mixture can improve.
- the fuel in the swirl generator is injected on both sides along the inlet channels through which the combustion air flows into the interior.
- the main advantages of the invention can be seen in the fact that the fuel injection provided on both sides of the inlet channels achieves a better penetration depth of the fuel into the combustion stream, which leads to a better premixing between fuel and combustion air.
- the injection levels of the two fuel injector rows, which are at the transition to the interior of the Swirl generator are arranged from the tip to the exit of the swirl generator increases. This is the route to the swirl generator of the fuel injectors further downstream, this leads to a better premixing of the injected fuel.
- the object according to the invention is also particularly suitable for use in the case of other burners in which the swirl generator is also the premixing section of the burner.
- the swirl generator is also the premixing section of the burner.
- particular reference is made to the Document EP-0 321 809 B1 pointed out, which is an integrating component This description forms.
- Fig. 1 shows the overall structure of a burner.
- the top of the burner is a Swirl generator 100 effective, the configuration of which is shown in the following FIG. 2 and 3 is shown and described in more detail.
- It is a conical body that is tangential multiple times in the circumferential direction of one incoming combustion air flow 115 is applied, wherein in the area the inflow of this combustion air 115 different injections 116, 116a of a gaseous and / or liquid fuel are:
- Another fuel injection can by a fuel nozzle arranged centrally and at the top 103 can be accomplished.
- operation with a liquid and / or gaseous fuel are maintained.
- the one forming here Swirl flow is provided on the basis of a swirl generator 100 downstream Transition geometry seamlessly transferred into a transition piece 200, that no detachment areas can form in this zone.
- the configuration this transition geometry is described in more detail in FIG. 4.
- Outflow side this transition piece 200 becomes the transition geometry which is thereby formed extended by a mixing tube 20, both parts of the actual Form mixing section 220 of the burner.
- the mixing section 220 consist of a single piece, i.e. then that the transition piece 200 and the mixing tube 20 into a single coherent Bodies merge, maintaining the characteristics of each part.
- Transition piece 200 and mixing tube 20 are made from two parts, so these are connected by a bushing ring 10, the same bushing ring 10 serves as an anchoring surface for the swirl generator 100 on the head side.
- a Such sleeve ring 10 also has the advantage that different mixing tubes can be used without affecting the basic configuration of the burner to have to change something. Downstream of the mixing tube 20 is the actual combustion chamber 30 of a combustion chamber, which is here only by a Flame tube is shown.
- the mixing section 220 largely fulfills the task that a defined distance is provided downstream of the swirl generator 100 in which achieves a perfect premixing of different types of fuel can be.
- This mixing section that is to say, the mixing tube 20, enables furthermore a loss-free flow guidance, so that there is also an operative connection with the transition geometry initially no backflow zone or Backflow bubble can form, which over the length of the mixing section 220 on the Mixing quality can be exercised for all types of fuel.
- This Mixing section 220 has yet another property, which consists in that the axial velocity profile in it itself has a pronounced maximum has the axis so that the flame reignites from the combustion chamber not possible. However, it is correct that with such a configuration this Axial velocity drops towards the wall. To reignite this too, the mixing tube 20 in the flow and circumferential direction with a number of regularly or irregularly distributed bores 21 various cross-sections and directions through which an amount of air flows into the interior of the mixing tube 20, and along the wall in the sense induce an increase in flow rate during filming. This Bores 21 can also be designed so that on the inner wall of the mixing tube 20 at least additionally sets an effusion cooling.
- transition channels 201 Another way of increasing the speed of the mixture within To achieve the mixing tube 20 is that its flow cross-section on the outflow side of the transition channels 201, which have already been mentioned Form transition geometry, undergoes a narrowing, causing the whole Speed level within the mixing tube 20 is raised.
- these bores 21 run at an acute angle the burner axis 60.
- the outlet corresponds to the transition channels 201 the narrowest flow cross-section of the mixing tube 20.
- the transition channels mentioned 201 accordingly bridge the respective cross-sectional difference, without negatively influencing the flow formed. If the chosen precaution when guiding the pipe flow 40 along the mixing pipe 20 triggers an intolerable pressure loss, this can be remedied are created by not at the end of this mixing tube in the figure shown diffuser is provided.
- combustion chamber 30 combustion chamber 30
- Backflow zone 50 which has the properties of a flame front disembodied flame holder.
- FIG. 2 shows a swirl generator constructed from four partial bodies 140, 141, 142, 143 100, these partial bodies having a blade profile shape, with which a targeted flow for the through the respective inlet channels 120 into the interior 114 incoming combustion air flow 115 is accomplished.
- Flow cross section of the inlet channels 120 is determined by the displacement of the respective Central axes 141a, 142a, 143a, 144a of the partial body are achieved, as is shown in FIG. 2 emerges particularly well.
- the fuel 116, 116a in the swirl generator is on both sides injected along the inlet channels 120. The closer type of injection goes from the explanations under Fig. 3.
- FIG. 3 shows a perspective illustration of a four-slot swirl generator 100.
- the introduction of fuel 116, 116a for admixing into the combustion air flow 115 is accomplished here by means of fuel lines, which are integrated into the partial bodies 140-143, in contrast to the fuel supply according to EP-0 780 629 A2.
- the bilateral fuel supply along the inlet channels 120 is held here in such a way that the individual opposite ones Injections are arranged axially offset from one another. In order to it is achieved that the intermediate space between two injections on the one side from the opposite offset injection on the other Page is filled. This is important as it means the injected fuel captured by the combustion air flow 115 forms a bubble spray.
- Opposite staggered fuel bubbles are able to fill the entire cross section of the inlet channels 120, the depth of penetration of the entered Fuel is bigger, which has a positive effect on the fuel / combustion air mixture formation affects.
- Another measure Optimally shaping mixture formation concerns the design of the injection level H of the fuel 116, 116a in the axial direction of the swirl generator 100. This increases from the tip of the swirl generator 100 to the swirl generator outlet.
- the transition piece 200 in a three-dimensional view.
- the transition geometry is corresponding for a swirl generator 100 with four partial bodies 2 and 3, built. Accordingly, the transition geometry as a natural extension of the upstream partial bodies, four transition channels 201 on, whereby the conical quarter area of said partial body is extended until it cuts the wall of the mixing tube.
- the same considerations also apply if the swirl generator is based on a principle other than the one below Fig. 3 described, is constructed.
- the down in the direction of flow running surface of the individual transition channels 201 has a flow direction spiral shape, which has a crescent shape Course describes, corresponding to the fact that the flow cross-section is present of the transition piece 200 flared in the flow direction.
- the swirl angle of the transition channels 201 in the flow direction is selected so that that the pipe flow then up to the cross-sectional jump on Combustion chamber entrance still has a sufficient distance to be perfect Premix with the injected fuel. Further increases the axial speed is also affected by the above-mentioned measures on the mixing tube wall downstream of the swirl generator.
- the transition geometry and the measures in the area of the mixing tube bring about a significant increase of the axial velocity profile towards the center of the mixing tube, see above that the danger of early ignition is decisively counteracted.
- the flow cross-section of the tube 20 receives a transition radius R in this area, the size of which basically depends on the flow within the tube 20.
- This radius R is selected so that the flow is applied to the wall and the swirl number can increase significantly.
- the size of the radius R can be quantitatively defined so that it is> 10% of the inner diameter d of the tube 20.
- the backflow bladder 50 now increases enormously.
- This radius R extends to the exit plane of the tube 20, the angle ⁇ between the beginning and end of the curvature being ⁇ 90 °.
- the tear-off edge A runs along one leg of the angle ⁇ into the interior of the tube 20 and thus forms a tear-off step S with respect to the front point of the tear-off edge A, the depth of which is> 3 mm.
- the edge running parallel to the exit plane of the tube 20 can be brought back to the exit plane level using a curved course.
- the angle ⁇ ' which extends between the tangent of the tear-off edge A and perpendicular to the exit plane of the tube 20, is the same size as the angle ⁇ .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
- Spray-Type Burners (AREA)
- Combustion Of Fluid Fuel (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
Abstract
Description
Die wesentlichen Vorteile der Erfindung sind darin zu sehen, dass durch die beidseits der Eintrittskanäle vorgesehene Brennstoffeindüsung eine bessere Eindringtiefe des Brennstoffes in den Verbrennungsstrom erreicht wird, was zu einer besseren Vormischung zwischen Brennstoff und Verbrennungsluft führt.
- Fig. 1
- einen als Vormischbrenner ausgelegten Brenner mit einer Mischstrecke stromab eines Drallerzeugers,
- Fig. 2
- einen schematischen Querschnitt durch einen vierschaligen Drallerzeuger,
- Fig. 3
- einen vierschaligen Drallerzeuger in dreidimensionaler Ansicht,
- Fig. 4
- eine Ausgestaltung der Uebergangsgeometrie zwischen Drallerzeuger und Mischstrecke und
- Fig. 5
- eine Abrisskante zur räumlichen Stabilisierung der Rückströmzone.
Claims (15)
- Brenner zum Betrieb eines Wärmeerzeugers, wobei der Brenner im wesentlichen aus einem Drallerzeuger für einen Verbrennungsluftstrom, aus Mitteln zur Eindüsung mindestens eines Brennstoffes in den Verbrennungsluftstrom besteht, wobei stromab des Drallerzeugers eine Mischstrecke angeordnet ist, welche innerhalb eines ersten Streckenteils in Strömungsrichtung eine Anzahl Uebergangskanäle zur Ueberführung einer im Drallerzeuger gebildeten Strömung in ein stromab dieser Uebergangskanäle nachgeschaltetes Mischrohr aufweist, dadurch gekennzeichnet, dass der Drallerzeuger (100) beidseits eines jeden drallerzeugenden Eintrittskanals (120) mit Brennstoffinjektoren (116, 116a) ausgestattet ist.
- Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die beidseits wirkenden Brennstoffinjektoren (116, 116a) in axialer Richtung versetzt zueinander angeordnet sind.
- Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Reihen der Brennstoffinjektoren (116, 116a) eine Eindüsungsebene (H) bilden, und dass diese Eindüsungsebene (H) von der Spitze bis zum Austritt des Drallerzeugers (100) zunimmt.
- Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Drallerzeuger (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (140, 141, 142, 143) besteht, dass die jeweiligen Mittelachsen (140a, 141a, 142a, 143a) dieser Teilkörper zueinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Eintrittskanäle (120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpern gebildeten Innenraum (114) eine Vormischstrecke wirkbar ist.
- Brenner nach Anspruch 4, dadurch gekennzeichnet, dass kopfseitig des Drallerzeugers (100) eine Brennstoffdüse (103) angeordnet ist.
- Brenner nach Anspruch 4, dadurch gekennzeichnet, dass die Teilkörper (140, 141, 142, 143) im Querschnitt eine schaufelförmige Profilierung aufweisen.
- Brenner nach Anspruch 4, dadurch gekennzeichnet, dass die Teilkörper in Strömungsrichtung einen festen Kegelwinkel, oder eine zunehmende Kegelneigung, oder eine abnehmende Kegelneigung aufweisen.
- Brenner nach Anspruch 4, dadurch gekennzeichnet, dass die Teilkörper spiralförmig ineinandergeschachtelt sind.
- Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Uebergangskanäle (201) in der Mischstrecke (220) der Anzahl der vom Drallerzeuger (100) gebildeten Teilströme entspricht.
- Brenner nach Anspruch 1, dadurch gekennzeichnet, dass das den Uebergangskanälen (201) nachgeschaltete Mischrohr (20) in Strömungs- und Umfangsrichtung mit Oeffnungen (21) zur Eindüsung eines Luftstromes ins Innere des Mischrohres (20) versehen ist.
- Brenner nach Anspruch 10, dadurch gekennzeichnet, dass die Oeffnungen (21) unter einem spitzen Winkel gegenüber der Brennerachse (60) des Mischrohres (20) verlaufen.
- Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflussquerschnitt des Mischrohres (20) stromab der Uebergangskanäle (201) kleiner, gleich gross oder grösser als der Querschnitt der im Drallerzeuger (100, 100a) gebildeten Strömung (40) ist.
- Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromab der Mischstrecke (220) ein Brennraum (30) angeordnet ist, dass zwischen der Mischstrecke (220) und dem Brennraum (30) ein Querschnittssprung vorhanden ist, der den anfänglichen Strömungsquerschnitt des Brennraumes (30) induziert, und dass im Bereich dieses Querschnittssprunges eine Rückströmzone (50) wirkbar ist.
- Brenner nach Anspruch 13, dadurch gekennzeichnet, dass stromauf der Rückströmzone (50) ein Diffusor und/oder eine Venturistrecke vorhanden ist.
- Brenner nach Anspruch 1, dadurch gekennzeichnet, dass das Mischrohr (20) brennraumseitig (30) eine Abrisskante (A) aufweist.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59710788T DE59710788D1 (de) | 1997-11-13 | 1997-11-13 | Brenner für den Betrieb eines Wärmeerzeugers |
EP97810867A EP0916894B1 (de) | 1997-11-13 | 1997-11-13 | Brenner für den Betrieb eines Wärmeerzeugers |
US09/187,343 US6027331A (en) | 1997-11-13 | 1998-11-06 | Burner for operating a heat generator |
JP32224098A JP4263278B2 (ja) | 1997-11-13 | 1998-11-12 | 熱発生器を運転するためのバーナ |
CNB981269826A CN1137342C (zh) | 1997-11-13 | 1998-11-13 | 用于驱动热发生器的喷嘴 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97810867A EP0916894B1 (de) | 1997-11-13 | 1997-11-13 | Brenner für den Betrieb eines Wärmeerzeugers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0916894A1 true EP0916894A1 (de) | 1999-05-19 |
EP0916894B1 EP0916894B1 (de) | 2003-09-24 |
Family
ID=8230469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97810867A Expired - Lifetime EP0916894B1 (de) | 1997-11-13 | 1997-11-13 | Brenner für den Betrieb eines Wärmeerzeugers |
Country Status (5)
Country | Link |
---|---|
US (1) | US6027331A (de) |
EP (1) | EP0916894B1 (de) |
JP (1) | JP4263278B2 (de) |
CN (1) | CN1137342C (de) |
DE (1) | DE59710788D1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005121648A1 (de) * | 2004-06-08 | 2005-12-22 | Alstom Technology Ltd | Vormischbrenner mit gestufter flüssigbrennstoffversorgung sowie verfahren zum betreiben eines vormischbrenners |
EP1614963A1 (de) * | 2004-07-09 | 2006-01-11 | Siemens Aktiengesellschaft | Verfahren und Vormischverbrennungssystem |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001272682A1 (en) * | 2000-06-15 | 2001-12-24 | Alstom Power N.V. | Method for operating a burner and burner with stepped premix gas injection |
DE10040869A1 (de) * | 2000-08-21 | 2002-03-07 | Alstom Power Nv | Verfahren und Vorrichtung zur Unterdrückung von Strömungswirbeln innerhalb einer Strömungskraftmaschine |
DE10051221A1 (de) * | 2000-10-16 | 2002-07-11 | Alstom Switzerland Ltd | Brenner mit gestufter Brennstoff-Eindüsung |
DE102004015904A1 (de) * | 2004-03-31 | 2005-10-20 | Alstom Technology Ltd Baden | Verfahren zur Flüssigbrennstoffzerstäubung in einem Vormischbrenner sowie Vormischbrenner |
EP1817526B1 (de) * | 2004-11-30 | 2019-03-20 | Ansaldo Energia Switzerland AG | Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner |
WO2006069861A1 (de) * | 2004-12-23 | 2006-07-06 | Alstom Technology Ltd | Vormischbrenner mit mischstrecke |
US8448881B2 (en) * | 2006-10-13 | 2013-05-28 | Rolls-Royce Power Engineering Plc | Fuel injector |
EP1990578A1 (de) * | 2007-05-08 | 2008-11-12 | ALSTOM Technology Ltd | Gasturbine mit Wassereinspritzung |
US20090255118A1 (en) * | 2008-04-11 | 2009-10-15 | General Electric Company | Method of manufacturing mixers |
US8220269B2 (en) * | 2008-09-30 | 2012-07-17 | Alstom Technology Ltd. | Combustor for a gas turbine engine with effusion cooled baffle |
US8220271B2 (en) * | 2008-09-30 | 2012-07-17 | Alstom Technology Ltd. | Fuel lance for a gas turbine engine including outer helical grooves |
CN101936530A (zh) * | 2010-09-29 | 2011-01-05 | 中国石油化工股份有限公司 | 一种多点燃烧的长火焰超低氮氧化物排放的气体燃烧器 |
CN102705867A (zh) * | 2012-06-11 | 2012-10-03 | 石家庄市新华工业炉有限公司 | 一种煤粉点火器 |
EP2685163B1 (de) * | 2012-07-10 | 2020-03-25 | Ansaldo Energia Switzerland AG | Multikonus-Vormischungsbrenner für eine Gasturbine |
EP2722591A1 (de) * | 2012-10-22 | 2014-04-23 | Alstom Technology Ltd | Mehrfach-Kegelbrenner für eine Gasturbine |
CN109237472B (zh) * | 2018-06-26 | 2024-05-17 | 天时燃烧设备(苏州)有限责任公司 | 燃烧管组件和燃烧器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2508665A1 (de) * | 1975-02-28 | 1976-09-09 | Klaus Dipl Ing Matzke | Brenner mit einleitkoerper |
EP0321809A1 (de) | 1987-12-21 | 1989-06-28 | BBC Brown Boveri AG | Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner |
WO1993017279A1 (en) * | 1992-02-26 | 1993-09-02 | United Technologies Corporation | Premix gas nozzle |
EP0747635A2 (de) * | 1995-06-05 | 1996-12-11 | Allison Engine Company, Inc. | Magervormischbrenner mit niedrigem NOx-Ausstoss für industrielle Gasturbinen |
DE19545310A1 (de) * | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Vormischbrenner |
EP0780629A2 (de) | 1995-12-21 | 1997-06-25 | ABB Research Ltd. | Brenner für einen Wärmeerzeuger |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE42821T1 (de) * | 1985-03-04 | 1989-05-15 | Siemens Ag | Brenneranordnung fuer feuerungsanlagen, insbesondere fuer brennkammern von gasturbinenanlagen sowie verfahren zu ihrem betrieb. |
DE3860569D1 (de) * | 1987-01-26 | 1990-10-18 | Siemens Ag | Hybridbrenner fuer vormischbetrieb mit gas und/oder oel, insbesondere fuer gasturbinenanlagen. |
DE19547912A1 (de) * | 1995-12-21 | 1997-06-26 | Abb Research Ltd | Brenner für einen Wärmeerzeuger |
-
1997
- 1997-11-13 DE DE59710788T patent/DE59710788D1/de not_active Expired - Lifetime
- 1997-11-13 EP EP97810867A patent/EP0916894B1/de not_active Expired - Lifetime
-
1998
- 1998-11-06 US US09/187,343 patent/US6027331A/en not_active Expired - Lifetime
- 1998-11-12 JP JP32224098A patent/JP4263278B2/ja not_active Expired - Fee Related
- 1998-11-13 CN CNB981269826A patent/CN1137342C/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2508665A1 (de) * | 1975-02-28 | 1976-09-09 | Klaus Dipl Ing Matzke | Brenner mit einleitkoerper |
EP0321809A1 (de) | 1987-12-21 | 1989-06-28 | BBC Brown Boveri AG | Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner |
WO1993017279A1 (en) * | 1992-02-26 | 1993-09-02 | United Technologies Corporation | Premix gas nozzle |
EP0747635A2 (de) * | 1995-06-05 | 1996-12-11 | Allison Engine Company, Inc. | Magervormischbrenner mit niedrigem NOx-Ausstoss für industrielle Gasturbinen |
DE19545310A1 (de) * | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Vormischbrenner |
EP0780629A2 (de) | 1995-12-21 | 1997-06-25 | ABB Research Ltd. | Brenner für einen Wärmeerzeuger |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005121648A1 (de) * | 2004-06-08 | 2005-12-22 | Alstom Technology Ltd | Vormischbrenner mit gestufter flüssigbrennstoffversorgung sowie verfahren zum betreiben eines vormischbrenners |
US7997896B2 (en) | 2004-06-08 | 2011-08-16 | Alstom Technology Ltd | Premix burner with staged liquid fuel supply and also method for operating a premix burner |
EP1614963A1 (de) * | 2004-07-09 | 2006-01-11 | Siemens Aktiengesellschaft | Verfahren und Vormischverbrennungssystem |
Also Published As
Publication number | Publication date |
---|---|
CN1225437A (zh) | 1999-08-11 |
JPH11223305A (ja) | 1999-08-17 |
EP0916894B1 (de) | 2003-09-24 |
US6027331A (en) | 2000-02-22 |
DE59710788D1 (de) | 2003-10-30 |
CN1137342C (zh) | 2004-02-04 |
JP4263278B2 (ja) | 2009-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0833105B1 (de) | Vormischbrenner | |
EP0704657B1 (de) | Brenner | |
EP0916894B1 (de) | Brenner für den Betrieb eines Wärmeerzeugers | |
EP0780629B1 (de) | Brenner für einen Wärmeerzeuger | |
EP0918191B1 (de) | Brenner für den Betrieb eines Wärmeerzeugers | |
EP0780630B1 (de) | Brenner für einen Wärmeerzeuger | |
EP0797051B1 (de) | Brenner für einen Wärmeerzeuger | |
EP0918190A1 (de) | Brenner für den Betrieb eines Wärmeerzeugers | |
WO2006042796A2 (de) | Brenner für gasturbine | |
DE19757189B4 (de) | Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers | |
EP0775869B1 (de) | Vormischbrenner | |
EP0899508A1 (de) | Brenner für einen Wärmeerzeuger | |
DE19545026A1 (de) | Vormischbrenner | |
EP0994300B1 (de) | Brenner für den Betrieb eines Wärmeerzeugers | |
EP0909921B1 (de) | Brenner für den Betrieb eines Wärmeerzeugers | |
EP0931980A1 (de) | Brenner für den Betrieb eines Wärmeerzeugers | |
EP0903540B1 (de) | Brenner für den Betrieb eines Wärmeerzeugers | |
EP0919768B1 (de) | Brenner zum Betrieb eines Wärmeerzeugers | |
EP0833104B1 (de) | Brenner zum Betrieb einer Brennkammer | |
DE19537636B4 (de) | Kraftwerksanlage | |
EP0913630B1 (de) | Brenner für den Betrieb eines Wärmeerzeugers | |
DE19515082B4 (de) | Vormischbrenner | |
DE19914666B4 (de) | Brenner für einen Wärmeerzeuger | |
DE19547914A1 (de) | Vormischbrenner für einen Wärmeerzeuger | |
DE10042315A1 (de) | Brenner für einen Wärmeerzeuger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
17P | Request for examination filed |
Effective date: 19990920 |
|
17Q | First examination report despatched |
Effective date: 20011119 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59710788 Country of ref document: DE Date of ref document: 20031030 Kind code of ref document: P |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040126 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040625 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59710788 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59710788 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 59710788 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20161122 Year of fee payment: 20 Ref country code: DE Payment date: 20161121 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59710788 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59710788 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59710788 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20171112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20171112 |