EP0915459B1 - Verfahren und Vorrichtung zur Belichtung eines Bildaufzeichnungsmediums - Google Patents
Verfahren und Vorrichtung zur Belichtung eines Bildaufzeichnungsmediums Download PDFInfo
- Publication number
- EP0915459B1 EP0915459B1 EP97309017A EP97309017A EP0915459B1 EP 0915459 B1 EP0915459 B1 EP 0915459B1 EP 97309017 A EP97309017 A EP 97309017A EP 97309017 A EP97309017 A EP 97309017A EP 0915459 B1 EP0915459 B1 EP 0915459B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiation
- dump
- data
- source
- radiation source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J19/00—Character- or line-spacing mechanisms
- B41J19/18—Character-spacing or back-spacing mechanisms; Carriage return or release devices therefor
- B41J19/20—Positive-feed character-spacing mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/435—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
- B41J2/447—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
- B41J2/46—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources characterised by using glass fibres
Definitions
- the present invention relates to a method and apparatus for exposing an image recording medium, such as a thermal printing plate.
- FIG. 1 is a side view of a conventional single beam internal drum imagesetter.
- a laser 1 generates a laser beam 2 which is directed onto an angled reflective surface 3 of a spinning mirror 4.
- the spinning mirror 4 is rotated by a motor 5 which is mounted on a carriage (not shown).
- the carriage (not shown) is driven parallel to the axis of a drum 7 by rotation of a lead screw 6.
- Items 3-6 are housed inside the drum 7.
- One or more image recording plates (not shown) are mounted on the inner surface of the drum 7.
- the motor 3 moves along the axis of the drum 7, and rotates the spinning mirror 4 about the axis of the drum 7 whereby the reflected laser beam 8 exposes a series of circumferential scan lines.
- a known way of improving on the efficiency and scanning time of the system of Figure 1 is to add a second spinner and a second laser as illustrated in Figure 3.
- Figure 3 illustrates the lower half 10 of a cylindrical drum.
- a first mirror 11 and a second mirror 12 are mounted at 180° to each other on a common shaft 13 which is rotated by a motor (not shown).
- a first laser 14 is directed at the spinning mirror 11, and a second laser 15 is directed at the spinning mirror 12.
- the distance between the reflective surfaces of the spinning mirrors 11,12 is equal to half the length of the drum.
- the laser 14 directs image radiation to the mirror 11 during one half cycle to expose a line on the upper half of the drum.
- the laser 15 directs image radiation to the mirror 12 during the next half cycle to expose another line on the upper half of the drum.
- a problem associated with the system of Figure 3 is that two lasers 14, 15 are required.
- the cost of lasers can be very high.
- JP-A-4-208916 describes the supply of a synthesized light beam made up of several different wavelengths to a sequence of beam splitters, each responsive to a respective one of the wavelengths to redirect light of that wavelength towards an image recording medium.
- apparatus for exposing an image recording medium comprising an optical fibre amplifier including one or more data radiation source(s) which generate encoded radiation, a dump radiation source and a pump radiation source which pumps the optical amplifier with pump radiation,.wherein the power of the pump radiation source is greater than the power of the data radiation source(s) and the dump radiation source; a routing device comprising an input arranged to receive radiation from the optical fibre amplifier, and a plurality of imaging outputs; an energy dump; wherein the routing device selectively routes the radiation received at the input from the data radiation source(s) to a selected one of the imaging outputs and from the dump radiation source to the energy dump; and means for directing the radiation from each imaging output onto the image recording medium to expose the image recording medium.
- a method of exposing an image recording medium using an optical fibre amplifier including one or more data radiation source(s) which generate encoded radiation, a dump radiation source and a pump radiation source which pumps the optical amplifier with pump radiation, wherein the power of the pump radiation source is greater than the power of the data radiation source(s) and the dump radiation source, the method comprising causing radiation from the data and dump radiation sources to be amplified; supplying the amplified radiation to one of a plurality of imaging outputs or to an energy dump respectively, depending upon its source; and exposing the image recording medium to radiation from the imaging outputs.
- the present invention provides a routing device which enables a single radiation source to be used in a scanner of the type illustrated in Figure 3 and also enables an optical fibre amplifier to be used in an imaging application. This results in a much simplified system with reduced cost.
- the radiation which exposes the image recording medium is encoded with image information to expose a desired pattern of pixels.
- the radiation source inputs radiation in the form of a series of pulses to the routing device. This enables pixels to be exposed on the image recording medium with short, high power pulses, resulting in low thermal leakage.
- the use of an optical amplifier having a pump energy source allows the average power of the optical amplifier to be conveniently adjusted by adjusting the power input by the pump energy source.
- the pump energy source preferably comprises an array of laser diodes.
- the amplifier may be operated in a continuous wave mode as illustrated schematically in Figure 4.
- a power source (not shown) provides a power signal on input line 16.
- switch 17 When switch 17 is closed the laser cavity 18 outputs a laser beam 19.
- a problem with continuous wave mode is that the output beam 19 cannot have a power any greater than the power on input line 16. This is a particular problem in thermal printing imagesetters where high laser power may be required.
- the amplifier is operated in pulsed mode, as illustrated schematically in Figure 5.
- a power source provides a power signal on input line 20 which is input continuously to the laser cavity 20.
- the laser cavity 21 stores the energy from input line 20 until switch 22 is closed to release the energy in the form of a high power pulsed laser beam 23.
- the power of the pulsed laser beam 23 can be higher than the power on input line 20. This enables pixels to be exposed on the image recording medium with short, high power pulses, resulting in low thermal leakage.
- FIG. 6 illustrates a fibre amplifier of the type described in WO95/10868.
- the fibre amplifier comprises a fibre 30 having a Erbium-Ytterbium doped single-mode inner core 31 and a multi-mode concentric outer core 32.
- a single mode seed laser 33 directs an encoded laser beam 34 into the inner core 31.
- Pump radiation is provided by a pump source 35 (an array of multi-mode laser diodes) which is coupled, transversely with respect to the optical axis of the fibre 30, to the outer core 32.
- the method of coupling the pump source 35 to the fibre 30 is described in detail in WO96/20519.
- Pump radiation from the pump source 35 propagates through the outer core 32 and couples to the amplifying inner core 31, and pumps the active material in the inner core 31.
- the fibre optic amplifier provides a highly amplified encoded output beam 36 at the wavelength of the beam 34.
- the fibre optic amplifier illustrated in Figure 6 is primarily designed for use in telecommunications in which the encoded input laser beam 34 will not be off for a significant length of time. If the seed laser 33 is off for an extended period, the fibre 30 continues to accumulate energy from the pump source 35, and as a result the fibre 30 will go into spontaneous emission. This problem is common to all pulsed laser sources and as a result pulsed laser sources are generally not used in imaging applications where the laser may be off for an extended period of time.
- the apparatus of the invention includes an energy dump; and means for directing the radiation from the radiation source either to the energy dump or to the image recording medium. This solves the spontaneous emission problem by providing an energy dump which is utilised to prevent excessive build up of energy in the radiation source.
- the data radiation source(s) and a dump radiation source generate radiation at respective different wavelengths
- the routing device comprises a filter which directs the amplified radiation to the image recording medium or to the energy dump in accordance with the wavelength of the amplified radiation.
- the apparatus typically further comprises means for encoding the radiation from the dump radiation source whereby radiation is only generated by the dump radiation source when radiation is not being generated by any of the data radiation sources. This increases efficiency and further reduces the risk of spontaneous emission. This is a particularly efficient and fast method of selectively routing the radiation from the radiation source. In particular, no acousto/optic modulators are required to encode the radiation from the radiation source.
- the radiation may be transmitted through air to the image recording medium, but preferably the means for directing the radiation from each imaging output onto the image recording medium comprises a plurality of fibre-optic cables, each coupled to a respective one of the imaging outputs.
- the amplifier comprises a fibre laser which provides an output suitable for coupling to the fibre-optic cables.
- the apparatus may be used in a conventional imagesetter. However it is particularly suited to a thermal imagesetter in which the radiation source generates radiation of a wavelength and power suitable for exposure of a thermal imaging plate. Suitable wavelengths are in the infra-red region. Typically the image recording medium has a media sensitivity of 50-200mJcm -2 . Typically the average power delivered by the radiation source at the image recording medium is 2-10W (in the case where the image recording medium is exposed uniformly).
- an internal drum thermal imagesetter comprises a drum 50 carrying one or more thermal imaging plates (not shown) on its inner surface.
- Two spinning mirrors 51,52 are mounted at 180° to each other on a common shaft 45 which is rotated by a motor 46 on a carriage (not shown) which is driven by a lead screw 47.
- An encoder 48 encodes the angular position of the shaft 45 to provide a series of pulses which are frequency multiplied by a desired factor to generate a clock signal 49 at a desired frequency (typically 20-120MHz).
- a laser is schematically indicated at 53, and has a pair of imaging outputs 54,55.
- Radiation from the imaging output 54 is input to a fibre optic cable 56 which is fixed at its far end to a lens 57 which is fixed in relation to the spinning mirror 52. Radiation from the imaging output 55 is input to a fibre optic cable 58 which is fixed at its far end to a lens 59 which is fixed in relation to the spinning mirror 51.
- Control means schematically indicated at 159 controls the laser 53 such that encoded radiation is selectively directed to a selected one of the spinning mirrors 51,52.
- Figure 8 is a flattened representation of the outer surface of the drum 50.
- the shadow area 9 lies between 140° and 220° and the upper half of the drum lies between 270° and 90°.
- Four thermal imaging plates 60-63 are mounted on the upper half of the drum.
- the left-hand mirror 51 exposes plates 60 and 61 (in the upper left quarter 64 of the drum) with cyan and magenta image separations, and the right-hand mirror 52 exposes plates 62 and 63 (in the upper right quarter 65 of the drum) with yellow and black image separations.
- FIG 9 illustrates a first example of the radiation source 53 and control means 159 indicated schematically in Figure 7.
- the radiation source 53 comprises an optical fibre laser amplifier of the type illustrated in Figure 6 (like reference numerals being used for like components) and described in WO95/105868 and WO96/20519.
- a suitable radiation source is the IRE-Polus YLPM-Series Pulsed Yterrbium Doped Fibre laser.
- Three seed lasers 73-75 comprising a pair of data lasers 73,74 and a dump laser 75 are directed at one end of the inner core 31.
- the seed lasers 73-75 emit radiation at slightly different wavelengths centred around a desired infra-red wavelength of approximately 1015nm.
- the data lasers 73,74 emit radiation at 1010nm and 1020nm
- the dump laser 75 emits radiation at 1030nm.
- a filter 76 filters the amplified beam output from the other end of the inner core 31 and directs radiation at the wavelength of the first data laser 73 to output 54, radiation at the wavelength of the second data laser 74 to output 55, and radiation at the wavelength of the dump laser 75 to an energy dump 72.
- the pair of imaging outputs 54,55 (output 1 and output 2) are coupled to the fibre-optic cables 56,58.
- the seed lasers 73-75 are low power single mode lasers which are switched by a microprocessor 78, as described below.
- the power of the pump laser diodes 35 can be selected in accordance with the desired power to be delivered on the film.
- the required power is determined by the media sensitivity (typically 50-200mJcm -2 ), drum angle (typically 209 degrees), resolution (typically 48-144 lines/win), film height (typically 930mm), film width (typically 1130mm), spinner speed (typically 30,000 RPM), and optics efficiency (typically 90%).
- the power of the pump diodes is typically selected to give an output power of 3-10W. In the example of Figure 9, the pump diodes 35 deliver 8W.
- a first data store 90 contains binary image data to be recorded as a pattern of pixels on the upper left quarter of the drum 50 via first imaging output 54 (output 1).
- a second data store 91 contains binary image data to be recorded as a pattern of pixels on the upper right quarter of the drum via second imaging output 55 (output 2).
- the microprocessor 78 reads out the data from the stores 90,91 in response to the clock signal 49 from encoder 48.
- the microprocessor 78 controls the lasers 73-75 as described in the examples of Figures 10 and 11.
- Figures 10 and 11 illustrate the radiation output by imaging output 54 (output 1), imaging output 55 (output 2) and dump output 72.
- the binary image data read out from data stores 90 (data 1) and 91 (data 2) are also shown, along with the clock signal 49 which has a clock period 130 of 20ns.
- Figure 10 illustrates the encoding scheme when the data streams from stores 90,91 are non-overlapping, ie. when only the upper half of the drum is exposed.
- mirror 52 For the first half revolution of shaft 45 (to the left of line 110), mirror 52 (output 1) exposes a line on the upper right quarter 65 of the drum. Only part of the line is illustrated in Figure 10.
- mirror 51 For the second half revolution of shaft 45 (to the right of line 110), mirror 51 (output 2) exposes a line on the upper left quarter 64 of the drum.
- the microprocessor 78 controls the seed lasers 73-75 such that a radiation pulse is output by the amplifier on each positive clock step. If data 1 is high, then a radiation pulse is output on the first output 54 to expose a single pixel. If data 2 is high, then a radiation pulse is output on the second output 55 to exposes a single pixel. If neither data lines are high, then a radiation pulse is output to energy dump 72. Therefore the dump laser 75 is encoded as NOT(DATA1 OR DATA2). In the encoding scheme of Figure 10 (in which only the upper half of the drum is exposed) it can be seen that data 1 and data 2 are never high at the same time.
- the microprocessor 78 causes the dump laser 75 to emit a 2ns pulse which is amplified to generate a 2ns amplified radiation pulse 101 to be output to the energy dump 72.
- the microprocessor receives a pulse 103 from store 90.
- data 1 is high and the microprocessor 78 causes the laser 73 to emit a 2ns pulse which causes an amplified 2ns radiation pulse 104 to be emitted from output 54.
- the duration of the pulses emitted by the seed lasers 73-75 can be adjusted by an RS 232 command before running an image.
- the pulse duration can be set equal to the clock period of 20ns, resulting in a continuous wave mode in which the pulses 101,104 are not temporally separated, and in which radiation is continuously input to the filter 76.
- the pulse duration is set to less than the 20ns clock period (for instance 2ns as shown in Figure 10), resulting in a pulsed mode in which the pulses are temporally separated (in the example of Figure 10 by 18ns) and in which radiation is input as a series of pulses to the filter 76.
- Figure 11 illustrates an alternative encoding scheme which is required when the data 1 and data 2 are overlapping (for instance if the drum is to be exposed in the complete area outside the shadow area 9, ie. from 220° to 140°).
- the microprocessor 78 controls the seed lasers 73-75 such that a radiation pulse is output by the amplifier on each positive clock step and each negative clock step. If data 1 is high during a positive clock step, then a radiation pulse is output on the first output 54. If data 2 is high during a negative clock step, then a radiation pulse is output on the second output 55. Otherwise a radiation pulse is output to energy dump 72. As a result, due to the reduced storage time, the energy delivered by each pulse is half the energy delivered by the pulses in Figure 10.
- data 1 and data 2 are both low and therefore the dump laser 75 emits a seed pulse which generates an amplified radiation pulse 121 which is directed to dump 72.
- data 1 is high and therefore laser 73 emits a seed pulse which generates an amplified radiation pulse 123 which is directed to the first output 54.
- data 2 is high and therefore laser 74 emits a seed pulse which generates an amplified radiation pulse 125 which is directed to the second output 55.
- both edges of the clock are used but in a first alternative two clocks may be run in quadrature, each controlling one of the data channels; or in a second alternative the clock may be run at twice the frequency of the clock in Figure 10, each channel being controlled by alternate positive clock steps.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Laser Beam Printer (AREA)
- Lasers (AREA)
- Electronic Switches (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Projection-Type Copiers In General (AREA)
Claims (13)
- Vorrichtung zur Belichtung eines Bildaufzeichnungsmediums, mit einem optischen Faserverstärker (53), der eine oder mehrere Datenstrahlungsquelle(n) (73, 74) einschließt, die die codierte Strahlung erzeugen, eine Abschaltstrahlungsquelle (75) und eine Pumpstrahlungsquelle (35), die in den optischen Verstärker Pumpstrahlung pumpt, wobei die Leistung der Pumpstrahlungsquelle größer als die Leistung der Datenstrahlungsquelle(n) und der Abschaltstrahlungsquelle ist, einem Verteilgerät (76), das einen zum Empfangen von Strahlung von dem optischen Faserverstärker vorgesehenen Eingang aufweist, und mehrere Bildausgänge (54, 55), einen Energieabschalter (72), wobei das Verteilgerät (76) wahlweise die Strahlung an dem Eingang von den/r Datenstrahlungsquelle(n) zu einem der ausgewählten Bildausgänge und von der Abschaltstrahlungsquelle zu dem Energieabschalter lenkt, und Mittel (56, 58) zum Richten der Strahlung von jedem Bildausgang auf das Bildaufzeichnungsmedium, um das Bildaufzeichnungsmedium zu belichten.
- Vorrichtung nach Anspruch 1, wobei die Daten und Pumpstrahlungsquellen (73-75) Strahlung bei jeweils unterschiedlichen Wellenlängen erzeugen und wobei das Verteilgerät (76) einen Filter aufweist, der die verstärkte Strahlung auf das Bildaufzeichnungsmedium oder den Energieabschalter richtet, abhängig mit der Wellenlänge der verstärkten Strahlung.
- Vorrichtung nach Anspruch 1 oder Anspruch 2, die zusätzlich Mittel (48) zum Codieren der Strahlung von der Abschaltstrahlungsquelle aufweist, wobei die Strahlung nur durch die Abschaltstrahlungsquelle erzeugt wird, wenn keine Strahlung durch eine der Datenstrahlungsquellen erzeugt wird.
- Vorrichtung nach einem der vorangegangenen Ansprüche, wobei die Mittel zum Richten der Strahlung von jedem Bildausgang auf das Bildaufzeichnungsmedium mehrere faseroptische Kabel (56, 58) aufweisen, von denen jedes jeweils an einen der Bildausgänge gekoppelt ist.
- Vorrichtung nach einem der vorangegangenen Ansprüche, wobei der optische Verstärker Strahlung an den Bildausgängen (54, 55) bei einer Wellenlänge und Leistung erzeugt, die zur Belichtung einer thermischen Bildplatte geeignet ist.
- Vorrichtung nach einem der vorangegangenen Ansprüche, wobei der optische Verstärker ausgelegt ist, um Strahlung in Form einer Pulsreihe an das Umlenkgerät (76) einzugeben.
- Vorrichtung nach einem der vorangegangenen Ansprüche, wobei die Strahlungsquelle Laser aufweist.
- Ein Belichter mit einem Träger zum Halten eines Bildaufzeichnungsmediums und einer Vorrichtung nach einen der vorangegangenen Ansprüche zum Belichten des Bildaufzeichnungsmediums.
- Verfahren zum Belichten eines Bildaufzeichnungsmediums, das einen optischen Faserverstärker (53) einschließlich einer oder mehrerer Datenstrahlungsquelle(n) (73, 74) verwendet, die eine codierte Strahlung erzeugt(en), eine Abschaltstrahlungsquelle und Pumpstrahlungsquelle (35) besitzt, die in den optischen Verstärker Strahlung pumpt, wobei die Leistung der Pumpstrahlungsquelle größer als die Leistung der Datenstrahlungsquelle(n) und der Abschaltstrahlungsquelle ist, wobei das Verfahren folgendes aufweist: Verstärken der Strahlung von den Daten und Abschaltstrahlungsquellen (73-75), Versorgen einer von mehreren Bildausgängen (54) bzw. von einem Energieabschalter (72) mit der verstärkten Strahlung abhängig von ihrer Quelle und Belichten des Bildaufzeichnungsmediums mit Strahlung von den Bildausgängen.
- Verfahren nach Anspruch 9, wobei zu verstärkende Strahlung von den Daten und Abschaltquellen (73-75) in Übereinstimmung mit einem Zeitgebersignal ausgewählt wird.
- Verfahren nach Anspruch 9 oder Anspruch 10, wobei Strahlung von der Strahlungsquelle verstärkt wird, wenn Strahlung von der Datenquelle(n) nicht verstärkt wird.
- Verfahren nach einem der Ansprüche 1 bis 11, wobei die verstärkte Strahlung aus einer Reihe von Pulsen besteht.
- Verfahren nach einem der Ansprüche 9 bis 12, wobei die Strahlungsquelle Laser aufweisen.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1997624971 DE69724971T2 (de) | 1997-11-10 | 1997-11-10 | Verfahren und Vorrichtung zur Belichtung eines Bildaufzeichnungsmediums |
EP97309017A EP0915459B1 (de) | 1997-11-10 | 1997-11-10 | Verfahren und Vorrichtung zur Belichtung eines Bildaufzeichnungsmediums |
JP31784498A JPH11249053A (ja) | 1997-11-10 | 1998-11-09 | 露光装置、露光方法およびイメージセッタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97309017A EP0915459B1 (de) | 1997-11-10 | 1997-11-10 | Verfahren und Vorrichtung zur Belichtung eines Bildaufzeichnungsmediums |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0915459A1 EP0915459A1 (de) | 1999-05-12 |
EP0915459B1 true EP0915459B1 (de) | 2003-09-17 |
Family
ID=8229605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97309017A Expired - Lifetime EP0915459B1 (de) | 1997-11-10 | 1997-11-10 | Verfahren und Vorrichtung zur Belichtung eines Bildaufzeichnungsmediums |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0915459B1 (de) |
JP (1) | JPH11249053A (de) |
DE (1) | DE69724971T2 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10357432A1 (de) * | 2003-12-09 | 2005-07-07 | Heidelberger Druckmaschinen Ag | Verfahren und Vorrichtung zur Bebilderung einer Druckform |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04208916A (ja) * | 1990-11-30 | 1992-07-30 | Dainippon Screen Mfg Co Ltd | 円筒内面走査型画像記録装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9217705D0 (en) * | 1992-08-20 | 1992-09-30 | Ici Plc | Data-recordal using laser beams |
JPH06152034A (ja) * | 1992-11-06 | 1994-05-31 | Sumitomo Cement Co Ltd | ダミー光入力制御型光ファイバ増幅方法 |
JP2907666B2 (ja) * | 1993-01-20 | 1999-06-21 | 住友大阪セメント株式会社 | ダミー光入力制御型定利得光ファイバ増幅方法および装置 |
US6064514A (en) * | 1995-10-30 | 2000-05-16 | Nec Corporation | Optical surge preventing method and system for use with or in a rare earth doped fiber circuit |
-
1997
- 1997-11-10 EP EP97309017A patent/EP0915459B1/de not_active Expired - Lifetime
- 1997-11-10 DE DE1997624971 patent/DE69724971T2/de not_active Expired - Fee Related
-
1998
- 1998-11-09 JP JP31784498A patent/JPH11249053A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04208916A (ja) * | 1990-11-30 | 1992-07-30 | Dainippon Screen Mfg Co Ltd | 円筒内面走査型画像記録装置 |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 016, no. 551 (P - 1453) 20 November 1992 (1992-11-20) * |
Also Published As
Publication number | Publication date |
---|---|
JPH11249053A (ja) | 1999-09-17 |
EP0915459A1 (de) | 1999-05-12 |
DE69724971D1 (de) | 2003-10-23 |
DE69724971T2 (de) | 2004-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1147906B1 (de) | Mehrstrahlenbelichtungsgerät | |
US6219168B1 (en) | Single rotating polygon mirror with adjacent facets having different tilt angles | |
US6437816B1 (en) | Laser exposure unit including plural laser beam sources differing in wavelengths | |
US5717450A (en) | Data-recordal using fibre lasers | |
JPH04502375A (ja) | レーザプリンタ | |
US5151714A (en) | Color image recording apparatus | |
EP0915613B1 (de) | Verfahren und Gerät zur Belichtung eines Bildaufzeichnungsmediums | |
JPH07111510B2 (ja) | 画像走査記録装置 | |
EP0915459B1 (de) | Verfahren und Vorrichtung zur Belichtung eines Bildaufzeichnungsmediums | |
US5905851A (en) | Light beam scanning recording device | |
EP0356238B1 (de) | Verfahren zur Verminderung des durchschnittlichen Datenflusses in einer Laserregistriervorrichtung mit drehbarem Spiegel | |
US5986688A (en) | Method and apparatus for producing an image on a printing medium | |
CA2253623A1 (en) | Method and apparatus for illumination of light-sensitive materials | |
JP3783586B2 (ja) | 露光装置 | |
JPH11129531A (ja) | 画像走査記録装置 | |
JP3583577B2 (ja) | レーザー露光装置 | |
JP4285085B2 (ja) | 光記録装置 | |
JP2004325859A (ja) | 光記録装置 | |
JPH09216417A (ja) | 光学素子及び画像記録装置 | |
JPH06234235A (ja) | レーザビーム記録装置 | |
JPS5814135A (ja) | 画像走査記録装置 | |
JPH09314870A (ja) | 画像記録装置 | |
JPH11251625A (ja) | 独立に変調されたレーザダイオードアレイを光ファイバアレイに結合するための方法及び装置 | |
JP2003241147A (ja) | 偏光光学素子及び露光装置 | |
JPH0951137A (ja) | 半導体レーザー駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991012 |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
17Q | First examination report despatched |
Effective date: 20020507 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7G 03G 15/04 B Ipc: 7G 03G 13/04 B Ipc: 7G 02B 26/10 B Ipc: 7G 03B 27/74 B Ipc: 7H 01S 3/06 B Ipc: 7G 11B 7/135 A |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69724971 Country of ref document: DE Date of ref document: 20031023 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040618 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20051103 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20051109 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20061110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061110 |