EP0914287B1 - Procede d'embobinage d'un fil arrivant en continu - Google Patents

Procede d'embobinage d'un fil arrivant en continu Download PDF

Info

Publication number
EP0914287B1
EP0914287B1 EP98916999A EP98916999A EP0914287B1 EP 0914287 B1 EP0914287 B1 EP 0914287B1 EP 98916999 A EP98916999 A EP 98916999A EP 98916999 A EP98916999 A EP 98916999A EP 0914287 B1 EP0914287 B1 EP 0914287B1
Authority
EP
European Patent Office
Prior art keywords
winding
speed
spindle
package
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98916999A
Other languages
German (de)
English (en)
Other versions
EP0914287A1 (fr
Inventor
Hermann Westrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Saurer GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saurer GmbH and Co KG filed Critical Saurer GmbH and Co KG
Publication of EP0914287A1 publication Critical patent/EP0914287A1/fr
Application granted granted Critical
Publication of EP0914287B1 publication Critical patent/EP0914287B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • B65H54/52Drive contact pressure control, e.g. pressing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H67/00Replacing or removing cores, receptacles, or completed packages at paying-out, winding, or depositing stations
    • B65H67/04Arrangements for removing completed take-up packages and or replacing by cores, formers, or empty receptacles at winding or depositing stations; Transferring material between adjacent full and empty take-up elements
    • B65H67/044Continuous winding apparatus for winding on two or more winding heads in succession
    • B65H67/048Continuous winding apparatus for winding on two or more winding heads in succession having winding heads arranged on rotary capstan head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for winding a continuously starting thread into a bobbin, in which the bobbin is formed on a driven bobbin spindle, which is cantilevered on a movable carrier, in which a pressure roller mounted on a second movable carrier with a by the position of the pressure roller abutment force which can be changed relative to the bobbin is applied to the circumference of the bobbin and in which a change in the center distance between the bobbin and the pressure roller required by the increase in diameter of the bobbin takes place by an evasive movement of the pressure roller and / or by an evasive movement of the bobbin spindle depending on the increasing bobbin diameter, whereby the evasive movement of the winding spindle during the winding travel is controlled according to a predetermined speed function (F v ), which assigns a specific speed (v) to the evasive movement as well as e A winding machine for performing the method.
  • F v predetermined speed function
  • a method and a winding machine are known from EP 0 374 536, in which the evasive movement of the bobbin receiving the bobbin during Spooling travel is regulated depending on the position of the pressure roller. in this connection the evasive movement of the winding spindle can take place gradually or continuously. There the contact force between the pressure roller and the spool from the relative position between the pressure roller and the spool is a change in Contact pressure inevitable during the winding cycle.
  • a method and a winding machine are known from WO 96/01222 which the rotational movement of the winding turret depending on the Angular position of the winding spindle takes place. From the relationship between the Angular position of the winding spindle on the turret and the diameter of the bobbin changes from the changing diameter to the corresponding angular position closed. Since the pressure roller on the spool is stationary, this causes As the bobbin grows, the contact force between the pressure roller increases and the coil. In addition, the method can - especially in the case of soft coils override the winding turret so that the contact between the pressure roller and the coil is completely lost
  • the method disclosed in DE 195 38 480 also has the disadvantage that the gradual rotary movement of the winding turret depending on the Angular position of the winding spindle in the course of the winding travel through the Increase in diameter caused inconsistent change in investment power between Coil and the pressure roller causes.
  • the known method there is a time specified according to which the angular speed of the turret in Depending on the position of the winding turret is recurrently calculated.
  • the object of the present invention is to create a method for Winding a continuously running thread and a winding machine to carry out the method such that the thread throughout Reel travel with a specified investment power or a specified investment aircraft profile on the spool at an essentially constant starting speed the thread is wound up.
  • Another object of the invention is to determine the center distance between the Pressure roller and the spool proportional to the increasing diameter change.
  • the speed function arranges everyone in the course of the coil trip Coil diameter depends on the temporal increase in diameter of the coil certain speed too.
  • the particular advantage of this process is that that the contact force set on the pressure roller is independent of the evasive movement to increase the center distance between the coil and the Pressure roller. The circumferential contact between the coil and the pressure roller remains unchanged as long as the speed of the evasive movement Diameter increase is adjusted.
  • the length of the loop around the thread Pressure roller is referred to as the so-called "print length".
  • the print length thus defines the length from the point at which the thread runs onto the pressure roller Deposit point of the thread on the bobbin.
  • the print length determines the thread guide of the thread on the pressure roller and directly affects the bobbin build-up. So For example, if the print length is too short, the risk of the tee at the Kitchen sink. In these cases, the oscillated thread falls off the end of the bobbin From the bobbin edge. The speed of the evasive movement of the winding spindle leaves therefore pretend that the pressure roller is constantly in a position in which the print length on the pressure roller is constant.
  • the winding spindle is equipped with a Speed moves, which is proportional to that in parts of the winding travel Diameter increase of the coil is and thus to an unchanged position of the Pressure roller leads or in some areas not proportional to the diameter increase is the winding spindle, so that the location, the pressure roller in Changed with regard to influencing the investment power or the print length.
  • This Process variant is particularly advantageous to certain contact pressure profiles to be observed during the winding trip. You can also use it to define defined print lengths adjust on the pressure roller during the winding cycle.
  • the winding travel is through a Marked winding time in which the coil is completely wound.
  • the winding time depends on the winding speed, the thread titer and the Coil construction.
  • the bobbin has a specific one at each point in the winding cycle Coil diameter. So that each winding time can be a specific one Coil diameter can be assigned.
  • Claim 3 can be used particularly advantageously in processes in which the Winding parameters and thread type remain unchanged.
  • the control of the Evasion movement of the winding spindle can be carried out as a pure time control.
  • the the speed function on which the control is based represents the Relationship between the speed of the evasive movement and the Winding time.
  • the position of the carrier of the pressure roller relative to Machine frame or the position of the carrier of the winding spindle relative to Machine frame is determined. Since the pressure roller and the spool are in constant Standing in circumferential contact can only be done from the geometric conditions the respective position of the pressure roller or the calculate the corresponding position of the winding spindle.
  • the method variant according to claim 6 has the advantage that for detection of the coil diameter, no additional devices are required.
  • To the Keeping thread tension substantially constant during winding the winding speed is regulated with the help of the pressure roller.
  • the setpoint specifies a constant speed of the pressure roller. at Deviation of the actual speed from the target speed becomes the drive of the winding spindle controlled in such a way that the desired speed is set on the pressure roller. This information already available in a winding machine can be found at this method variant at the same time to determine the coil diameter be used.
  • the speed of the evasive movement is calculated in advance from a parameter which characterizes the temporal increase in diameter of the coil and the coil diameter.
  • v is the speed and K the diameter increase parameter and D denotes the coil diameter.
  • the pressing force can be kept essentially constant during the winding travel.
  • the parameter K, the temporal increase in diameter of the bobbin characterizes during the bobbin travel Determine the stationary support of the winding spindle.
  • the position of the pressure roller can be for example by the pivot angle ⁇ of the movable as a swing arm Define the carrier of the pressure roller. From the position of Pressure roller and the coil diameter can be due to the geometric Relation between the pressure roller and the winding spindle through the Calculate the force of the contact force. The speed will then based on the coil diameter, which corresponds to the calculated contact force, and of the diameter increase determined.
  • the method according to claim 10 is particularly suitable for determining the contact force and to use it to control the evasion speed.
  • the method according to claim 11 is particularly advantageous to a continuously winding thread, with an automatic change between a first and a second winding spindle by rotating one Turret revolver takes place. This is done in a winding area at the beginning of the Spool travel the center distance between the pressure roller and the spool through the Evasion movement of the pressure roller with a fixed carrier of the winding spindle changed. During this time, the second winding spindle with one fully wound coil in a so-called parking station. The full coil is in this Time removed from the winding spindle by means of a clearing device and against one Empty sleeve replaced. Then the winding trip is in one Transition area continued such that the center distance through the Evasion movement of the winding spindle is increased.
  • a transition area and a winding area can be used for the evasive movement of the winding spindle relevant speed function in the winding area during the winding cycle in the Winding area can be determined.
  • the carrier of the Winding spindle (winding turret) silent.
  • the increasing coil diameter causes in this phase, an evasive movement of the pressure roller.
  • the pressure roller is dodge on a guideway determined by the wearer. When going through this guideway will be the weight component acting on the coil surface the pressure roller constantly change. So everyone corresponds Position of the pressure roller a certain contact force.
  • the Actual values of the plant force and the control of the evasive movement of the Based on the winding spindle in the winding area can be advantageous Weight tolerances of the pressure roller and the carrier of the pressure roller as well any hysteresis forces that occur when the pressure roller moves, be compensated.
  • the temporal Determine diameter increase in the winding area From the known Sleeve diameter and the current measured per unit of time Spool diameter is the amount of pade deposited on the spool per Determine the time unit so that the diameter increase of the coil and the parameter K are known. This allows the speed function with which the Evasive movement of the winding spindle in the winding area must be carried out for calculate the total winding travel in advance.
  • the speed is the Evasion movement of the winding spindle is equal to the angular speed of the Spindle turret.
  • the evasive movements of the winding spindle are caused by a drive that drives the respective carrier and its speed can be changed.
  • the Drive is advantageously designed as an electric motor, which by means of a Actuator is controlled to change the drive speed.
  • the type of carrier for the winding spindle can also be used as a pneumatic cylinder, Pneumatic motor or servo drive.
  • the winding machine according to the invention is characterized by this that the signals generated to control the winding speed can be used simultaneously to avoid the evasive movement of the winding spindle Taxes.
  • a speed function depending on the Spool diameter or winding time can drive the turret any time of the winding trip to that of the current diameter increase rate appropriate speed can be set. In parts of the winding trip this does not take place, which changes the position of the pressure roller. That can be desired and be brought about in a targeted manner, or it can be brought about by appropriate Changes in the evasive movement can be compensated again.
  • the winding machine To provide feedback on the controlled change in position during the winding cycle. to obtain the bobbin turret is the winding machine according to claim 16 particularly beneficial.
  • the position of the carrier of the pressure roller or the position of the winding turret continuously detected by a position sensor and the Control device abandoned. Because due to the geometric arrangement everyone Position of the pressure roller and each position of the winding turret only one Coil diameter corresponds to a comparison between the control and the Actual position.
  • the design of the winding machine according to is particularly advantageous here Claim 18, which during the winding trip a running calculation of Speed function for controlling the winding turret calculated.
  • the Winding parameters such as the speed of the pressure roller and the speed of the winding spindle are continuously submitted to a computing unit of the control device.
  • the Calculation can be done both continuously and at intervals, for example Carry out predetermined diameter steps.
  • the carrier of the pressure roller is connected to a drive. So there is the possibility during the winding trip to wind contactless in certain sections. Because the speed function the winding turret is known during the winding trip, can be in contactless Precisely determine the winding's target diameter for the winding. A cyclical one Lifting the pressure roller from the surface of the spool can also be strong prepared threads can be beneficial to the growing in front of the starting gap To be able to remove the lubricating film.
  • the drive of the carrier is, for example, as Pneumatic cylinder executed.
  • FIGS. 1 and 2 are identical described.
  • the winding machine has a winding turret 11, which by means of the bearing 20 in a machine frame 9 is rotatably mounted.
  • the winding turret 11 is one Electric motor 40 driven.
  • In the winding turret 11 are two winding spindles 14 and 15 rotatably offset eccentrically offset from each other by 180 °.
  • Fig. 1 is shown that the winding spindle 14 in the operating position in one Winding area and the winding spindle 15 in a waiting position in one Exchange area of the winding machine is located.
  • a thread 1 is supplied to the winding machine at a constant speed.
  • the thread 1 is first passed through the head thread guide 2, which is the tip of the Traversing triangle forms Then the thread arrives at a traversing device.
  • the traversing device consists of a traversing drive 6 and Wings 3.
  • the wings 3 alternately guide the thread 1 along a guideline 4 back and forth within the limits of a traverse stroke.
  • the traversing device is movably mounted on the machine frame 9 of the winding machine. This is what a Carrier 7, at the free end of the traversing device is attached and with the other end is pivoted such that the traversing device a Movement perpendicular to itself and to the pressure roller 5, i.e. a Parallel shift, can perform.
  • the coil 17 is on the winding tube 16 is formed.
  • the winding tube 16 is on the freely rotatable winding spindle 14 clamped
  • the winding spindle 14 is with the clamped thereon Bobbin 16 and the bobbin 17 to be formed thereon in the middle winding area.
  • the winding spindle 14 is supported in the winding turret 11 via the bearing 30.
  • the Winding spindle 14 is driven by a winding spindle drive 27, which for example as a synchronous motor or asynchronous motor Spool spindle drive 27 is aligned with the spindle 14 on the turret 11 attached.
  • the winding spindle drive 27 is connected by a frequency transmitter 21 Three-phase current supplied by controllable frequency.
  • the control of the frequency transmitter 21 is done by a control unit 34, which is controlled by a speed sensor 35 becomes.
  • the speed sensor 35 scans the speed of the pressure roller 5.
  • the frequency generator 30 of the winding spindle 14 is controlled so that the Speed of the pressure roller 5 and thus also the surface speed of the Coil 17 remains constant despite the increasing coil diameter.
  • winding spindle drive 27 is formed by an asynchronous motor, a Detection of the speed of the winding spindle by a speed sensor (not here shown).
  • the signal from the speed sensor is given to control unit 34.
  • the Control unit 34 now regulates the winding spindle speed to one in an inner loop constant value.
  • the signal of the speed sensor 35, the speed of the Pressure roller detected, leads in an outer control loop that the Spool spindle speed is changed.
  • the second winding spindle 15 is eccentric via a bearing 29 in the winding turret 11 arranged and is driven by means of a spindle drive 28.
  • the Reel spindle drive 28 is currently deactivated because the reel spindle 15 for replacement a full bobbin is ready against an empty tube 18
  • the winding turret 11 is rotatable in the machine frame 9 of the winding machine stored and is driven by the electric motor 40 in the direction of rotation 23.
  • the Electric motor 40 is designed, for example, as an asynchronous motor.
  • the Electric motor 40 serves to rotate the turret 11 in the sense that the Center distance between the pressure roller 5 and the winding spindle 14 as it grows Coil diameter is increased.
  • the electric motor 40 is used for this purpose Actuator 13 frequency controlled so that the turret 11 any Can execute rotational speed in the direction of rotation 23.
  • Actuator 13 frequency controlled so that the turret 11 any Can execute rotational speed in the direction of rotation 23.
  • a rotational movement against the Direction of rotation 23 are given to the winding turret.
  • the pressure roller 5 is mounted on a rocker 8, so that the Pressure roller makes a movement in radial component to the winding spindle 14 can execute.
  • the rocker 8 is on the machine frame 9 about the pivot axis 25 pivoted.
  • the pivot axis 25 is through a rubber block formed (not shown here). This rubber block is fixed in the machine frame clamped.
  • the rocker 8 is attached to the rubber block, so that the rocker 8 is elastically pivotable. This rubber-elastic storage works like a spring on the rocker 8 in the sense of increasing the contact pressure acts.
  • a relief device 12 which can be acted upon pneumatically and which acts on the rocker 8 from below against the weight, the weight, that bears on the pressure roller and thus as a contact force on the spool 17, entirely or partially compensated so that a fine adjustment of a basic value the desired contact pressure between the contact roller and the coil surface is adjustable.
  • the relief device 12 can be controlled via a control device 10 to be controlled.
  • a position sensor 19 is arranged below the rocker 8.
  • the Position sensor 19 detects the stroke of the pressure roller 5 or the pivot angle of the Swing 8 relative to the machine frame 9. The sensor could therefore be considered a Be implemented.
  • the sensor 19 is connected to a control device 10 connected.
  • the control device 10 is also connected to the control device 34 and the Converter 13 coupled.
  • a force sensor 41 is arranged to detect the contact force between the pressure roller 5 and the coil 17 is used.
  • the force sensor 41 can for example, be formed by strain gauges, which the bearing load of the pressure roller to capture.
  • the coil 17 is wound on the sleeve 16.
  • the speed of rotation is here controlled by the actuator 13 and the electric motor 40.
  • the control device 10 is based on the speeds of the pressure roller 5 given by the control unit 34 and the Speed of the winding spindle 14 of the currently wound bobbin diameter calculated. From a master curve stored in the control device 10 between the bobbin diameter and the speed of rotation of the bobbin turret the associated coil diameter can thus be associated with it Determine the speed of rotation of the turret.
  • the master curve is over a Input 24 of the control device 10 abandoned.
  • the control device 10 inputs corresponding control signal to the actuator 13 so that the electric motor 40 with the certain rotational speed is operated. Is the rotational speed of the Turret turret precisely adapted to the diameter increase, so that remains Pressure roller 5 unchanged in its position. If it is too slow The speed of rotation or the speed of rotation changes too quickly Position of the pressure roller. This change in position is detected by sensor 19 detected. The sensor 19 leads its signal directly to the control device 10 Control device 10 is now a correction of the rotational speed so that the Pressure roller is moved back into its new position. So the set remains Contact force between the pressure roller and the spool essentially unchanged.
  • the Calculate diameter increase per unit of time This gives you the opportunity to predefined speed function on the actual diameter increase adapt or calculate in advance.
  • the control device 10 a computing unit that a running or gradual calculation of the Diameter increase and a correction and advance calculation of the Speed function for moving the winding turret determined. This The speed function is then determined by the control device 10 as Basis for controlling the drive of the winding turret taken.
  • a speed function F v is shown in a diagram in FIG. 3, the coil diameter D being plotted on the abscissa and the rotational speed of the turret v being plotted on the ordinate.
  • the winding trip is essentially divided into three sections. The first section I is the winding area at the beginning of the winding trip. The second section II is the so-called transition area, and section III is the wikel area.
  • the winding area I begins at a coil diameter D 1 .
  • D 1 is the diameter of the empty tube. This means that the thread has just been caught on the empty tube and the winding travel begins. In this phase I, the winding turret is not rotated.
  • the speed function F v shows zero speed. The winding spindle is thus fixed.
  • the increase in diameter between D 1 and D 2 is absorbed by the evasive movement of the pressure roller.
  • the pressure roller is thus pivoted evenly on the rocker 8 in this phase.
  • the electric motor of the turret is activated.
  • a steadily accelerated rotary movement is set on the winding turret.
  • the speed function Fv increases linearly. It is thereby achieved that the pressure roller 5 is pivoted back very quickly into its starting position at the beginning of the winding cycle.
  • This transition area II is thus passed through very quickly.
  • the starting position of the pressure roller represents an optimal working point for the further course of the winding cycle.
  • the coil diameter is D 3 . Now the speed of rotation of the winding turret is no longer accelerated.
  • the evasive movement of the winding spindle is now adapted to the diameter increase of the coil.
  • the speed function F v shows a course which is essentially proportional to the diameter increase, ie the speed of the winding turret decreases hyperbolically with increasing coil diameter.
  • the winding cycle is ended after reaching the full winding with the maximum bobbin diameter D 4 .
  • FIG. 4 A further diagram is shown in FIG. 4, the reel diameter D being plotted on the abscissa and the contact force P between the reel and the pressure roller on the ordinate. It can be seen here that the contact force in the winding area I initially increases linearly between the diameters D 1 and D 2 . Due to the evasive movement of the pressure roller, the relative position of the pressure roller to the spool changes continuously, so that the weight force of the pressure roller acting on the spool changes, in this case increases. With the simultaneous movement of the pressure roller and the turret, there is only a slight increase in the contact pressure in transition area II. In winding area III, an essentially constant contact force is then achieved by controlling the turret rotation speed.
  • the speed function is determined by the specified contact force.
  • the change in speed is not proportional to the increase in diameter, since the change in contact force has to be compensated for due to the change in position of the winding spindle. This compensation can be done by step or steady change of position of the pressure roller, which is controlled by the speed of rotation of the winding turret.
  • the procedure - as described according to FIG. 3 - leads to the schematic positions shown in FIGS. 5 to 7 in a winding machine.
  • the winding turret 11 is stationary in the winding area (FIG. 5).
  • the winding spindle 14 thus remains in its position.
  • the pressure roller 5 is therefore pivoted on the rocker 8 by an angle ⁇ until the coil diameter D 2 is reached in the direction of movement 32 in order to avoid the increasing coil diameter.
  • the evasive movement of the pressure roller can also be done, for example a drive (12) take place which engages the rocker.
  • the rotary drive of the turret 11 is activated.
  • the control device 10 will control the rotary drive in such a way that the winding turret is moved at a maximum accelerated speed until the pressure roller 5 has returned to its starting position (FIG. 6). In this phase, the winding turret has traveled the angle of rotation ⁇ 1 in the direction of rotation 23.
  • the rotary drive of the bobbin turret 11 is controlled by means of the control device 10 such that a rotational speed which is dependent on the diameter increase is set on the bobbin turret.
  • the winding turret has traveled the angle of rotation ⁇ 2 .
  • both from the position of the pressure roller and the current Coil diameter determine the respective position of the turret or from the Position of the turret and the current diameter of the coil the position the pressure roller.
  • a position sensor on the turret can also be used be attached, which detects the angular position of the turret and the Control device gives up. In this case, the position sensor on the rocker Pressure roller is not required.
  • the control of the evasive movement can also be done by a The position of the pressure roller and the winding spindle is determined because each position defines a coil diameter.
  • the control device is included a position sensor for the pressure roller and with a position sensor for the Turret connected. The sensor signals become the current one Coil diameter and the diameter increase determined. The The increase in diameter then leads from a stored master curve to the speed of the evasive movement to be set.
  • the method according to the invention cannot only be carried out by one according to FIGS. 1 and 2 described winding machine are executed but is also advantageous Can be carried out by winding machines with only one winding spindle.
  • the winding spindle is stored on a movable support.
  • the carrier of the winding spindle is there coupled with an inverter-controlled drive.
  • the carrier can be as Swing arm to be executed, which is mounted on one side on the machine frame.
  • the carrier of the winding spindle or the pressure roller as one Linear guide be carried out in the case of a carriage by a linear drive is driven.
  • the method according to the invention is also suitable for changing the contact force solely by changing the rotational speeds of the carrier of the winding spindle or winding turret.
  • the contact force acting between the pressure roller and the spool results from the weight of the pressure roller.
  • 8 shows the force ratio between the pressure roller 5 and the spool 17.
  • the weight of the pressure roller is denoted by G, which has a vertical direction of action.
  • the contact force P, which acts between the pressure roller and the spool 17, has, as the direction of action, the connecting line between the axis center M A of the pressure roller and the axis center M S of the winding spindle.
  • the coil 17 has the diameter D 1 in this phase.
  • the coil 17 now grows from the diameter D 1 to the diameter D 2 in the course of the winding cycle.
  • the position of the winding spindle is not changed.
  • the axis center M A of the pressure roller will move on a circular guide path F A , the center of which is formed by the axis center M T of the pivot axis of the carrier or the rocker.
  • the carrier or the rocker of the pressure roller is thus shifted by the angle ⁇ . Since the weight G of the pressure roller remains unchanged, one that acts between the pressure roller 5 and the spool 17 will act due to the changed angular position. Result in contact force P ⁇ .
  • the winding machine according to the invention thus offers the possibility of setting a contact force which is desirable for the formation of the bobbin simply by changing the position of the pressure roller.
  • the weight G of the pressure roller could be increased or relieved by a force sensor as required by a constant value. If a contact force desired for the bobbin build-up is set by changing the position of the pressure roller, the pressure roller is then held in position by moving the winding spindle away by means of the turret.
  • Constant control of the rotational speed of the carrier or of the turret take place in that a sensor detects the speed of the evasive movement detected and given as the actual value of the control device.
  • the Control device can therefore a constant based on an actual-target comparison Speed correction can be made.
  • the method according to the invention can also advantageously be used to change the thread wrap on the pressure roller during a winding cycle.
  • the pressure roller is shown in two different positions in FIG. 9.
  • the pressure roller can be guided, for example, by a rocker which is rotatably mounted in the pivot axis MT. In the lowest position of the pressure roller, a coil with the diameter D 1 is wound on the winding spindle. In the upper position of the pressure roller, the bobbin on the winding spindle has grown to the diameter D 2 .
  • the pressure roller and the winding spindle are so to the thread run that a the surface line of the pressure roller running thread 1 only after partial wrap placed on the pressure roller on the spool surface of the spool to be wound becomes.
  • the looping area of the thread 1 on the pressure roller is here characterized by the angle ⁇ .
  • This partial length of the perimeter is also called so-called print length
  • the print length has a significant influence on the coil structure. To achieve an undisturbed coil build-up is one Minimum print length required on the pressure roller.
  • the wrap angle of the pressure roller at the lower position is marked Y1.
  • the wrap angle in the upper position of the pressure roller is designated by ⁇ 2 , the wrap angle ⁇ 2 being smaller than the wrap angle ⁇ 1 .
  • the print length can thus be influenced solely by changing the position of the pressure roller.
  • the print length will increase as the axial distance between the winding spindle and the pressure roller increases.
  • Such a change in the print length can be compensated for by changing the position of the pressure roller in the meantime.
  • the speed of the winding turret can also be determined as a function of a print length to be maintained on the pressure roller.

Landscapes

  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)
  • Winding Filamentary Materials (AREA)
  • Winding Of Webs (AREA)

Claims (20)

  1. Procédé pour embobiner un fil en marche continue en une bobine, dans lequel la bobine est formée sur une broche de bobinage entraínée et montée en projection sur un support (8) mobile, dans lequel un cylindre-presseur (5) monté sur un deuxième support (8) mobile s'applique contre la périphérie de la bobine avec une force d'application qui peut être modifiée par la position du cylindre-presseur (5) relativement par rapport à la bobine et dans lequel une modification de la distance entre l'axe de la bobine et du cylindre-presseur (5) nécessaire par la croissance du diamètre de bobine, est effectuée par un mouvement d'évitement du cylindre-presseur (5) et/ou par un mouvement d'évitement de la broche de bobinage (14) en fonction du diamètre croissant de bobine, dans quel cas le mouvement d'évitement de la broche de bobinage (14) durant le cycle de bobinage est commandé selon une fonction de vitesse prédéterminée (Fv) qui au cours du cycle de bobinage associe à chaque diamètre de bobine (D) une vitesse (v) donnée du mouvement d'évitement, dans quel cas au moins dans des phases du cycle de bobinage la vitesse (v) déterminée par la fonction de vitesse (Fv) diffère de la vitesse nécessaire pour la compensation de la croissance du diamètre de bobine, de sorte que la position du cylindre-presseur (8) est modifiée.
  2. Procédé selon la revendication 1, caractérisé en ce que dans d'autres phases du cycle de bobinage la vitesse (v) déterminée par la fonction de vitesse (Fv) correspond à la croissance du diamètre de bobine durant le cycle de bobinage, de sorte que dans ces phases la bobine devient plus grande, tandis que la position du cylindre-presseur (5) reste sensiblement inchangée.
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la commande du mouvement d'évitement de la broche de bobinage (14) est effectuée durant le cycle de bobinage en fonction d'un temps d'enroulement.
  4. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la commande du mouvement d'évitement de la broche de bobinage (14) est effectuée durant le cycle de bobinage en fonction du diamètre de bobine.
  5. Procédé selon la revendication 4, caractérisé en ce que le diamètre de bobine est déterminé par la position du support (8) du cylindre-presseur (5) et/ou par la position du support de la broche de bobinage.
  6. Procédé selon la revendication 4, caractérisé en ce que le diamètre de bobine est déterminé par le rapport de vitesse de rotation de la vitesse de rotation du cylindre-presseur (5) et de la vitesse de rotation de la broche de bobinage (14).
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la vitesse (v) du mouvement d'évitement est calculée en avance à partir d'un paramètre (K) qui détermine la croissance du diamètre de bobine et à partir du diamètre de bobine (D) comme fonction du temps d'enroulement ou du diamètre de bobine.
  8. Procédé selon la revendication 7, caractérisé en ce que le paramètre (K) est déterminé durant le cycle de bobinage pendant que le support de la broche de bobinage (14) est arrêté.
  9. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la vitesse (v) du mouvement d'évitement est prédéterminée à partir d'un paramètre (K) déterminant la croissance du diamètre de bobine, du diamètre de bobine (D) et à partir de la position du cylindre-presseur (a) comme fonction du temps d'enroulement ou du diamètre de bobine.
  10. Procédé selon la revendication 9, caractérisé en ce que le paramètre et la force d'application entre le cylindre-presseur (5) et la bobine sont déterminés en fonction de la position du cylindre-presseur (5) relativement par rapport à la bobine durant le cycle de bobinage, tandis que le support de la broche de bobinage (14) est arrêté.
  11. Procédé selon l'une des revendications 1 à 8, dans quel cas le support de la broche de bobinage est formé par un revolver de bobinage avec une deuxième broche de bobinage (14), caractérisé en ce que dans une zone de démarrage d'enroulement au début du cycle de bobinage le cylindre-presseur (5) est déplacé hors d'une position de départ, tandis que le support (8) de la broche de bobinage (14) est arrêté, en ce que dans une zone de transition le cylindre-presseur (5) et la broche de bobinage (14) sont déplacés communément à une vitesse qui augmente constamment jusqu'à ce que le cylindre-presseur (5) ait atteint sa position de départ avant le début du cycle de bobinage et en ce que dans une zone d'enroulement la broche de bobinage (14) est déplacée par le revolver de bobinage (11) selon une fonction de vitesse prédéterminée, qui au cours du cycle de bobinage associe à chaque diamètre de bobine une vitesse donnée du mouvement d'évitement.
  12. Procédé selon la revendication 11, caractérisé en ce que les valeurs réelles de la force d'application sont déterminées en fonction de la position du cylindre-presseur (5) durant le cycle de bobinage à l'intérieur de la zone de démarrage d'enroulement et en ce que la vitesse du revolver de bobinage (11) est modifiée en fonction d'une comparaison entre la valeur réelle de la force d'application et la valeur désirée de la force d'application qui est prédéterminée par le profil.
  13. Procédé selon la revendication 11 ou 12, caractérisé en ce que la fonction de la vitesse du revolver de bobinage (11) pour la zone d'enroulement est calculée en avance à partir des paramètres de bobinage déterminés durant le cycle de bobinage à l'intérieur de la zone de démarrage d'enroulement.
  14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que le mouvement d'évitement de la broche de bobinage (14) est effectué au moyen d'un entraínement du support de la broche de bobinage (14) dont la vitesse peut être modifiée.
  15. Machine à embobiner pour l'exécution du procédé selon l'une des revendications 1 à 14, avec un dispositif de va-et-vient, avec un cylindre-presseur (5) monté sur un support (8) qui est déplaçable par rapport au bâti de machine, avec une broche de bobinage (14) montée en projection sur un revolver de bobinage (11) pouvant être tourné, avec un entraínement (40) pour le revolver de bobinage (11) et avec un dispositif de commande (10) pour la commande d'un mouvement d'évitement de la broche de bobinage (14) en fonction de la croissance du diamètre de bobine, dans quel cas le dispositif de commande (10) a une entrée (24) pour l'entrée d'une fonction de vitesse (Fv), qui au cours du cycle de bobinage associe à chaque diamètre de bobine (D) une vitesse (v) donnée du mouvement d'évitement de la broche de bobinage (14) et en ce que le dispositif de commande (10) est relié à un appareil de commande (34) pour déterminer le diamètre de bobine (D) ou le temps d'enroulement, de sorte que l'entraínement (40) du revolver de bobinage (11), dont la vitesse est modifiable, peut être commandé selon la fonction de vitesse (Fv), dans quel cas au moins dans des phases du cycle de bobinage, la vitesse (v) déterminée par la fonction de vitesse (Fv) diffère de la vitesse nécessaire pour la compensation de la croissance du diamètre de bobine, de sorte que la position du cylindre-presseur (8) peut être modifiée.
  16. Machine à embobiner selon la revendication 15, caractérisé en ce qu'un capteur de position (19) pour déterminer la position du support (8) du cylindre-presseur (5) ou du revolver de bobinage (11) est relié au dispositif de commande (10).
  17. Machine à embobiner selon la revendication 16, caractérisé en ce que le support est réalisé en tant que bras oscillant (8) monté unilatéralement sur le bâti de machine et en ce que le capteur de position (19) est réalisé en tant que capteur angulaire déterminant l'angle de pivotement du bras oscillant (8).
  18. Machine à embobiner selon l'une des revendications 15 à 17, caractérisé en ce que le dispositif de commande (10) a une unité arithmétique qui à partir des paramètres de bobinage délivrés par l'appareil de commande (34) calcule la fonction de vitesse (Fv) pour commander la vitesse de revolver de bobinage.
  19. Machine à embobiner selon l'une des revendications 15 à 18, caractérisé en ce que le dispositif de commande (10) est relié à un capteur de force (41) pour déterminer la force d'application entre le cylindre-presseur et la bobine et qu'il a une unité de mémoire pour mémoriser les valeurs réelles de la force d'application en fonction de la position du support du cylindre-presseur.
  20. Machine à embobiner selon l'une des revendications 15 à 19, caractérisé en ce que le support (8) du cylindre-presseur (5) a un entraínement (12) qui peut être commandé par le dispositif de commande (10).
EP98916999A 1997-03-25 1998-03-18 Procede d'embobinage d'un fil arrivant en continu Expired - Lifetime EP0914287B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19712422 1997-03-25
DE19712422 1997-03-25
DE19738421 1997-09-03
DE19738421 1997-09-03
PCT/EP1998/001583 WO1998042607A1 (fr) 1997-03-25 1998-03-18 Procede d'embobinage d'un fil arrivant en continu

Publications (2)

Publication Number Publication Date
EP0914287A1 EP0914287A1 (fr) 1999-05-12
EP0914287B1 true EP0914287B1 (fr) 2004-05-26

Family

ID=26035204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916999A Expired - Lifetime EP0914287B1 (fr) 1997-03-25 1998-03-18 Procede d'embobinage d'un fil arrivant en continu

Country Status (7)

Country Link
US (1) US6105896A (fr)
EP (1) EP0914287B1 (fr)
KR (1) KR20000015980A (fr)
CN (1) CN1102124C (fr)
DE (1) DE59811457D1 (fr)
TW (1) TW483866B (fr)
WO (1) WO1998042607A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572050B1 (en) * 1999-04-14 2003-06-03 Dupont-Toray Co. Ltd. Process for winding elastomeric fiber package
IT1313958B1 (it) * 1999-12-17 2002-09-26 Cognetex Spa Procedimento per comandare il dispositivo di azionamento di rotazionedi un gruppo di raccolta
US6622956B2 (en) * 2000-11-08 2003-09-23 Murata Kikai Kabushiki Kaisha Take-up winder
KR20030015971A (ko) * 2001-08-18 2003-02-26 김경희 다중 화면 표현 장치
JP4128412B2 (ja) * 2002-08-20 2008-07-30 Tstm株式会社 レボルビング型糸条巻取機
FR2850093B1 (fr) * 2003-01-22 2005-12-30 Saint Gobain Vetrotex Bobinoir a courses decouplees pour fibres thermoplastiques
DE102006008339A1 (de) * 2006-02-23 2007-08-30 Saurer Gmbh & Co. Kg Aufspulmaschine
FR2899571B1 (fr) * 2006-04-10 2009-02-06 Saint Gobain Vetrotex Procede de fabrication d'un enroulement a fils separes
KR100932625B1 (ko) * 2008-05-23 2009-12-17 주식회사 코오롱 아라미드 섬유의 제조방법
WO2011010756A1 (fr) * 2009-07-21 2011-01-27 Kolon Industries, Inc. Procédé d’enroulement de fibre et procédé de préparation de fibre aramide à l’aide de ce dernier
CN102009874A (zh) * 2010-11-16 2011-04-13 北京中丽制机工程技术有限公司 卷绕机转盘传动装置的控制方法
CN102069950A (zh) * 2010-12-17 2011-05-25 东莞市协永福实业有限公司 一种新式单丝卷绕成形方法
BR112014000985A2 (pt) * 2011-07-15 2017-02-21 Zhengzhou Zhongyuan Spandex Eng Tech Co Ltd aparelho de enrolamento de fibra de filamento e método de enrolamento para aparelho de enrolamento de fibra de filamento
JP5766576B2 (ja) * 2011-10-19 2015-08-19 Tmtマシナリー株式会社 紡糸巻取装置
CN103922184B (zh) * 2013-01-12 2017-07-28 合肥智光应用技术研究所 一体化无接触复绕机
DE102013009653A1 (de) * 2013-06-08 2014-12-11 Saurer Germany Gmbh & Co. Kg Verfahren zum Einstellen einer Drehwinkelstellung eines eine Spulenhülse drehbeweglich halternden Spulenrahmens und Spulen herstellende Textilmaschine mit mehreren Spulstellen
CN103352264A (zh) * 2013-07-25 2013-10-16 江苏长乐纤维科技有限公司 卷绕机底层接压的控制方法及采用该方法卷绕的聚酯纤维
CN103818772B (zh) * 2014-03-07 2015-05-27 卡尔迈耶(中国)有限公司 盘头压紧装置
WO2017093950A1 (fr) * 2015-12-03 2017-06-08 Siddharth LOHIA Procédé pour positionner une broche avec précision dans un enrouleur automatique de type tourelle
US20170233215A1 (en) 2016-02-15 2017-08-17 Reel Power Licensing Corp. Automatic cut and transfer coiler and or spooler
DE102017006865A1 (de) * 2017-07-19 2019-01-24 Oerlikon Textile Gmbh & Co. Kg Aufspulmaschine
CN108380694A (zh) * 2018-02-26 2018-08-10 江门市日盈不锈钢材料厂有限公司 一种卷料机构及卷料系统
US10807327B2 (en) * 2018-05-23 2020-10-20 The Boeing Company Systems and methods for attaching to a surface and applying a calibrated load
DE102018120322A1 (de) * 2018-08-21 2020-02-27 Maschinenfabrik Rieter Ag Spinn- oder Spulmaschine und Methode zum Betreiben einer Spinn- oder Spulmaschine
BR112020020026A2 (pt) * 2019-01-07 2021-01-05 Lohia Corp Limited Método para posicionar um fuso com precisão em um bobinador automático do tipo torre
CN110422690B (zh) * 2019-07-09 2022-01-18 安徽三绿实业有限公司 一种3d打印软性线材收卷装置及其工作方法
CN111170079B (zh) * 2020-02-17 2021-09-14 南京工程学院 一种钢绞线收卷时绕线位置测量装置
CN113501382B (zh) * 2021-06-17 2023-03-14 国网河北省电力有限公司邯郸市新区供电分公司 一种多余线缆自动收集存储装置
DE102021005131A1 (de) 2021-10-13 2023-04-13 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Aufspulen eines anlaufenden Fadens
DE102022002512A1 (de) * 2022-07-09 2024-01-11 Oerlikon Textile Gmbh & Co. Kg Verfahren und Vorrichtung zum Ermitteln einer Drehzahlstellgröße für eine Antriebseinheit eines Spulspindelrevolvers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58907348D1 (de) * 1988-12-22 1994-05-05 Barmag Barmer Maschf Aufspulmaschine.
US5489067A (en) * 1989-09-27 1996-02-06 Kamitsu Seisakusho, Ltd. Turret type precision yarn winder
US5100072A (en) * 1990-06-06 1992-03-31 Barmag Ag Yarn winding apparatus and method
JPH05246622A (ja) * 1992-03-02 1993-09-24 Koutsu Seisakusho:Kk タレット型巻糸装置
JP3288377B2 (ja) * 1992-03-05 2002-06-04 バルマーク アクチエンゲゼルシヤフト 巻取り機
JP3224928B2 (ja) * 1993-01-14 2001-11-05 帝人製機株式会社 糸条の巻取機
DE4423491A1 (de) * 1994-07-05 1996-01-11 Neumag Gmbh Verfahren zum Steuern des Drehantriebs einer Aufspulmaschine
DE19538480C2 (de) * 1995-10-16 2001-10-25 Sahm Georg Fa Spulmaschine und Verfahren zum Aufwickeln eines kontinuierlich zulaufenden Fadens auf eine Spule
DE59707828D1 (de) * 1996-04-04 2002-09-05 Barmag Barmer Maschf Aufspulmaschine

Also Published As

Publication number Publication date
EP0914287A1 (fr) 1999-05-12
US6105896A (en) 2000-08-22
DE59811457D1 (de) 2004-07-01
KR20000015980A (ko) 2000-03-25
TW483866B (en) 2002-04-21
CN1102124C (zh) 2003-02-26
WO1998042607A1 (fr) 1998-10-01
CN1220642A (zh) 1999-06-23

Similar Documents

Publication Publication Date Title
EP0914287B1 (fr) Procede d'embobinage d'un fil arrivant en continu
DE102006018428B4 (de) Verfahren und Vorrichtung zum Verlegen von langgestrecktem Wickelgut
EP0374536B1 (fr) Machine de bobinage
EP0941955B1 (fr) Méthode et dispositif pour continuellement enrouler une bande de matériau
EP1159217B1 (fr) Guide-fil pour l'amenee traversante d'un fil a une bobine receptrice entrainee en rotation
EP1089933B1 (fr) Changement de fil
EP0912435A1 (fr) Procede de bobinage continu d'une bande de materiau et bobineuse correspondante
EP0561128A1 (fr) Procédé et dispositif destiné à l'enroulement d'un matériau
DE2328828C2 (de) Hilfsfadenführer
EP0768271B1 (fr) Bobinoir pour un fil en déplacement continu
EP0460546A2 (fr) Dispositif de bobinage
DE3702702C2 (fr)
EP1507730A1 (fr) Procede et bobineuse pour l'enroulement d'un fil alimente en continu sur un tube pour former une bobine
DE3872554T2 (de) Vorrichtung und verfahren zum intermittierenden speichern und wiederabgeben von faeden waehrend des aufspulens von konischen spulen mit konstanter fadenzufuehrgeschwindigkeit.
DE19849007A1 (de) Verfahren zum Aufspulen eines laufenden Fadens
EP1238933B1 (fr) Méthode et dispositif pour continuellement enrouler une bande de matériau
EP0593951A2 (fr) Dispositif de filature
DE19832809A1 (de) Verfahren zur Steuerung einer Aufspulmaschine
EP1151950A2 (fr) Procédé de fonctionnement d'une machine textile pour la fabrication de bobines à spires croisées
EP1222133B1 (fr) Procede et dispositif pour enrouler un fil sur une bobine
EP0799787B1 (fr) Bobinoir
DE19832811A1 (de) Verfahren zum Aufwickeln eines Fadens
DE10253489A1 (de) Verfahren zur Steuerung einer Auflagekraft zwischen einer Andrückwalze und einem Fadenwickel
DE102015222045B3 (de) Fadenverlegevorrichtung
EP2810907B1 (fr) Procédé de réglage d'une position d'angle de rotation d'un râtelier de bobines supportant en rotation une bobine et machine textile fabricant des bobines dotée de plusieurs têtes de bobinage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI

17Q First examination report despatched

Effective date: 20020206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAURER GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040526

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

REF Corresponds to:

Ref document number: 59811457

Country of ref document: DE

Date of ref document: 20040701

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050301

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080328

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080319

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080415

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090318