EP0913010A1 - Brennstoffzellenanlage für ein elektrofahrzeug - Google Patents

Brennstoffzellenanlage für ein elektrofahrzeug

Info

Publication number
EP0913010A1
EP0913010A1 EP97931691A EP97931691A EP0913010A1 EP 0913010 A1 EP0913010 A1 EP 0913010A1 EP 97931691 A EP97931691 A EP 97931691A EP 97931691 A EP97931691 A EP 97931691A EP 0913010 A1 EP0913010 A1 EP 0913010A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
electric vehicle
cooling
cell system
fuel cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97931691A
Other languages
English (en)
French (fr)
Inventor
Horst GRÜNE
Peter Buchner
Rittmar Von Helmolt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0913010A1 publication Critical patent/EP0913010A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a drive battery made of fuel cells for an electric vehicle, and a method for operating this fuel cell system.
  • liquid-cooled fuel cells have been used as drive batteries in electric vehicles, such as buses or cars.
  • the drive battery consisting of the individual fuel cells, is installed in the electric vehicle above the driven axle, in the cargo area or in the engine compartment.
  • the waste heat of the fuel cells generated during operation is released into the ambient air of the electric vehicle.
  • This technology requires a complex cooling system with liquid cooling and various heat exchangers in the electric vehicle to regenerate the heated cooling medium. Not only does this result in considerable structural expenditure, but the cooling system also mostly contributes a not inconsiderable part to the total weight of the electric vehicle and thus increases the energy output that is at least necessary for the traction of the electric vehicle. Because of these disadvantages of the fuel cell cooling which has been practiced to date, there is a need to design a cooling system for a fuel cell system in an electric vehicle which has a simpler, just as effective, compact and lighter cooling.
  • An electric vehicle with a fuel cell for energy supply is known for example from DE-43 22 765 Cl.
  • a hybrid system for driving an electric vehicle is known from DE-A 40 01 684.
  • it also includes an accumulator and a fuel cell. It is therefore an object of the present invention to provide a mobile fuel cell energy supply with a cooling system for an electric vehicle, which places less weight on the electric vehicle than has hitherto been customary with this technology and which nevertheless delivers the same performance data.
  • the present invention therefore relates to an electric vehicle, the drive battery of which comprises a fuel cell system with a, optionally secondary, cooling system through which a gaseous cooling medium flows, in which the fuel cell system is arranged such that the, optionally secondary, cooling medium is entirely or is partly introduced into the cooling system of the fuel cell system by the dynamic pressure of the airstream.
  • the dynamic pressure of the airstream which acts on the electric vehicle while driving, can cause the cooling medium to flow through the cooling system or can be used to increase the flow rate of the cooling medium through the cooling system of the fuel cell system.
  • the invention also relates to a method for electric traction with a drive battery, which comprises a fuel cell system with a, optionally secondary, cooling system, in which the energy obtained from the airstream is converted in the cooling system.
  • the drive battery of the electric vehicle consists of liquid-cooled fuel cells, the heat loss of the fuel cells (up to 60%) first being transferred to a liquid cooling medium, which is then cooled in a heat exchanger with the airstream.
  • the drive battery of the electric vehicle is made of air-cooled fuel cells and the airstream can be fed directly into the cooling system of the fuel cells.
  • the fuel cells of the drive battery consist of PEM fuel cells, where PEM stands for polymer electrolyte membrane
  • a preferred embodiment of the invention is the arrangement in which the air-cooled fuel cell system is installed directly on the radiator. It may be advantageous if the fuel cell system is protected by a massive bumper attached to the front of the vehicle.
  • the air-cooled fuel cell system is particularly preferably installed in the electric vehicle in such a way that the plane normals on the active surfaces of the individual fuel cells are perpendicular to the direction of travel, so that the airstream flows parallel to the active surfaces.
  • Electric vehicle means any means of transportation driven by an electric motor, the surface on which it is traveling, ie road, rail, water, snow or sand etc. doesn't matter. It is crucial that the electric vehicle is powered by a drive battery.
  • a “power battery of an electric vehicle” is understood to mean a mobile energy supply system that consists at least in part of fuel cells.
  • fuel cells In addition to the fuel cells, other means of power generation such as other batteries or the like can also be used.
  • the drive battery does not have to be exclusive consist of fuel cells, but must contain fuel cells.
  • Pressure source with which the cooling system is fed with gaseous, usually air-containing, cooling medium, can serve as a fan, a compressor or the like.
  • fuel cells All types of fuel cells that can be considered for mobile energy supply can be used as “fuel cells”.
  • the PEM fuel cell and the direct methanol fuel cell are in the foreground.
  • a “primary cooling system” or “normal cooling system” is a cooling system in which the cooling medium (liquid or wind) flows directly over the bipolar plates of the fuel cells and absorbs the waste heat from the fuel cells.
  • a "secondary cooling system” is a cooling system in which a heated (because it is consumed in a primary cooling system) cooling medium is cooled and thus regenerated.
  • a "air-cooled fuel cell” is a fuel cell in which primary cooling is possible with the head wind.
  • the head wind is determined with its predetermined Back pressure is fed into the cooling system of the fuel cell and can also be supported by another independent gas or liquid flow
  • a drive battery is preferably used, the arrangement of which in the outer region of the electric vehicle is such that the airstream alone is sufficient to ensure the air cooling of the drive battery, which consists of fuel cells Vehicles, a supporting fan blower can be used
  • the “exterior of the electric vehicle” is the entire exterior of the electric vehicle. This term is therefore not restricted to the front of the vehicle, it is quite conceivable that the drive battery is located on the top of the roof or below under the passenger or loading space of the electric vehicle.
  • the decisive factor in the exterior of the electric vehicle is that the airstream has a direct effect on it.
  • the drive battery is installed in the vehicle in the place of a conventional radiator. This is advantageous if a massive bumper, such as it is known from off-road vehicles, for example, and can be formed from thick steel pipes that
  • Ant ⁇ ebsbatterie is mounted upstream, so that it is protected from damage in the event of minor collisions
  • Optimal utilization of the dynamic pressure of the headwind takes place when the plane normal of the active surfaces of the fuel cells are perpendicular to the direction of travel.
  • the headwind can flow along the cell sheets and act directly as a cooling medium correspondingly, the active surfaces must also be aligned parallel to the direction of flow of the airstream. It is obvious that it is parallel to these Alignment to the headwind gives two possibilities, firstly the possibility that the cell is vertical and secondly the possibility that it is mounted horizontally.
  • the individual fuel cells of the “stacks” ie the cell stack of the fuel cells in the drive battery
  • the individual active surfaces of the heat exchanger can be stacked from top to bottom or from right to right be stacked on the left.
  • the "heat loss" of a fuel cell is the heat that is released and not used in the implementation of the fuel cell. Since fuel cells are usually operated with a thermodynamic efficiency of less than 60%, heat loss is also on the order of magnitude > 40% of the chemical energy plugged into the fuel cell. In the case of liquid-cooled fuel cells, this heat energy or heat loss is first released to a liquid cooling medium, such as water.
  • the liquid cooling medium flows around the bipolar plates of individual fuel cells in the drive battery and is circulated driven, ie regenerated by means of a heat exchanger connected to the fuel cell stack, ie cooled and introduced again into the fuel cell stack. According to the invention, the headwind during operation of the heat exchanger in which the cooling medium is regenerated is then used.
  • the bipolar plates of the fuel cells are the end plates of the individual fuel cells above and below the cathode or anode compartment, which at the same time enable electrical conduction within a fuel cell stack.
  • the cooling medium flows between the bipolar plates of the individual fuel cells, and in the case of air-cooled fuel cells, the airstream flows in the same space.
  • the "active area" of a fuel cell is the area in which either the electrolyte or the electrodes are located or along which the reaction media such as oxidant and fuel flow
  • a cell with an active area of 300 cm 2 is square with an edge area of 210 mm and a thickness of approx. 4.5 mm per cell. 100 of these cells are connected to form a block or stack, with one each at the front and back of the block / stack End plate of about 2 cm thick is attached, which holds the individual cells of the fuel cell stack together.
  • Two blocks with _e 100 cells result in a cuboid that is 42 cm high, 21 cm deep and 49 cm wide.
  • Such a cuboid has a total output of 15 kW at a power of 0.25 W / cm 2. This power is sufficient to be installed in and pull a small car, and the cuboid also has the dimensions that it is good in de Electric vehicle front of a small car, where the radiator usually sits, can be integrated.
  • Two blocks of cells with an active area of 400 cm 2 which are stacked to form 150 cells, have a width of 72 cm with an output of 42 kW if an output of 0.35 watts per cm 2 is reached.
  • the air-cooled fuel cell batteries installed in a vehicle make use of this consideration. If the airstream supports the cooling air flow, the most energy-efficient cooling is possible with this arrangement at a given operating temperature.
  • the size and weight of each fuel cell system corresponds approximately to the coolant / air heat exchanger of a conventional vehicle, which according to the invention can be omitted. With the air-cooled fuel cell battery, the lowest power-to-weight ratio and the lowest power volume are possible, because simply because of the otherwise necessary heat exchangers, all other solutions must in principle become heavier and larger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Die Erfindung betrifft eine Brennstoffzellenanlage für ein Elektrofahrzeug, das (zumindest u.a.) mit Brennstoffzellen angetrieben wird, bei dem die - bevorzugt aber nicht ausschließlich luftgekühlte - Brennstoffzellenanlage so eingebaut ist, daß der Staudruck des Fahrtwinds das Kühlsystem betreibt. Bevorzugt befindet sich ein Brennstoffzellenstapel am Kühler des Fahrzeugs und der Fahrtwind kühlt direkt die einzelnen Brennstoffzellen.

Description

Beschreibung
Brennstoffzellenanlage für ein Elektrofahrzeug
Die Erfindung betrifft eine Antriebsbatterie aus Brennstoffzellen für ein Elektrofahrzeug, sowie ein Verfahren zum Betreiben dieser Brennstoffzellenanlage .
Bislang werden hauptsächlich flüssigkeitsgekühlte Brennstoff- zellen als Antriebsbatterien in Elektrofahrzeugen, wie beispielsweise Bussen oder Pkws eingesetzt. Die Antriebsbatterie, bestehend aus den einzelnen Brennstof zellen, wird dabei im Elektrofahrzeug oberhalb der angetriebenen Achse, im Laderaum oder im Motorenraum angebracht. Die während des Betriebs anfallende Verlustwärme der Brennstoffzellen wird an die Umgebungsluft des Elektrofahrzeuges abgegeben. Diese Technologie erfordert ein aufwendiges Kühlsystem mit Flüssigkeitsküh- lung und verschiedenen Wärmeaustauschern im Elektrofahrzeug zur Regenerierung des erwärmten Kühlmediums. Dabei entstehen nicht nur erhebliche konstruktive Aufwendungen, sondern das Kühlsystem trägt auch meistens zum Gesamtgewicht des Elektro- fahrzeugs einen nicht unerheblichen Teil bei und erhöht somit die, für die Traktion des Elektrofahrzeugs, zumindest notwendige Energieleistung. Wegen dieser Nachteile der bisher prak- tizierten Brennstoffzellenkühlung besteht das Bedürfnis, ein Kühlsystem für eine Brennstoffzellenanlage in einem Elektrofahrzeug zu entwerfen, das eine einfachere, genauso effektive, kompaktere und leichtere Kühlung aufweist.
Ein Elektrofahrzeug mit einer Brennstoffzelle zur Energieversorgung ist zum Beispiel aus der DE-43 22 765 Cl bekannt.
Ein Hybridsystem zum .Antrieb eines Elektrofahrzeugs ist aus der DE-A 40 01 684 bekannt. Es umfaßt neben dem Elektromotor noch einen Akkumulator und eine Brennstoffzelle. Aufgabe der vorliegenden Erfindung ist es daher, eine mobile Brennstoffzellenenergieversorgung mit Kύhlsystem für ein Elektrofahrzeug zur Verfügung zu stellen, die dem Elektrofahrzeug weniger zusätzliches Gewicht aufbürdet als es bis- lang bei dieser Technologie üblich ist und die trotzdem gleiche Leistungsdaten liefert.
Gegenstand der vorliegenden Erfindung ist deshalb ein Elektrofahrzeug, dessen Antriebsbatterie eine Brennstoffzellenan- läge mit einem, gegebenenfalls sekundären, Kühlsystem, durch das ein gasförmiges Kühlmed um fließt, umfaßt, bei dem die Brennstoffzellenanlage so angeordnet ist, daß das, gegebenenfalls sekundäre, Kühlmedium ganz oder teilweise durch den Staudruck des Fahrtwinds in das Kühlsystem der Brennstoffzel- lenanlage eingeleitet wird.
Im Sinne der Erfindung kann der Staudruck des Fahrtwinds, der auf das Elektrofahrzeug während des Fahrbetriebs einwirkt, das Durchströmen des Kühlmediums durch das Kühlsystem bewir- ken oder zur Erhöhung der Durchstromgeschwmdigkeit des Kühlmediums durch das Kühlsystem der Brennstoffzellenanlage ausgenutzt werden.
Außerdem ist Gegenstand der Erfindung ein Verfahren zur Elek- trotraktion mit einer Antriebsbatterie, die eine Brennstoff - zellenanlage mit einem, gegebenenfalls sekundärem, Kühlsystem umfaßt, bei dem in dem Kühlsystem die aus dem Fahrtwind gewonnene Energie umgesetzt wird.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen sowie aus der Beschreibung und den Ausführungsbeispielen.
Bei einer Ausgestaltung der Erfindung wird neben dem Fahrt - wind noch eine andere Druckquelle, wie beispielsweise ein
Ventilator benutzt, um das, gegebenenfalls sekundäre, Kuhlme- d um durch das, gegebenenfalls sekundäre Kuhlsystem zu leiten
Bei einer Ausfuhrungsform der Erfindung besteht die Antriebsbatterie des Elektrofahrzeugs aus flussigkeitsgekuhlten Brennstoffzellen, wobei die Verlustwarme der Brennstoffzellen (bis zu 60%) zunächst an ein flüssiges Kuhlmedium übertragen wird, das dann in einem Wärmetauscher mit dem Fahrtwind gekühlt wird.
Be einer anderen Ausgestaltung der Erfindung ist die Antriebsbatterie des Elektrofahrzeugs aus luftgekühlten Brennstoffzellen und der Fahrtwind kann direkt in das Kuhlsystem der Brennstoffzellen eingespeist werden.
Bei einer vorteilhaften Ausgestaltung der Erfindung bestehen die Brennstoffzellen der Antriebsbatterie aus PEM- Brennstoffzellen, wobei PEM für Polymer Elektrolyt Membran steht
Eine bevorzugte Ausfuhrungsform der Erfindung ist die Anordnung, bei der die luftgekühlte Brennstoffzellenanlage direkt am Kuhler, eingebaut ist Dabei kann es vorteilhaft sein, wenn die Brennstoffzellenanlage durch einen, vor dem vorder- sten Frontbereich des Fahrzeugs angebrachten, massiven Stoßfanger geschützt ist.
Besonders bevorzugt wird die luftgekühlte Brennstoffzellenanlage im Elektrofahrzeug so eingebaut, daß die Ebenennormalen auf die aktiven Flachen der einzelnen Brennstoffzellen senkrecht zur Fahrtrichtung stehen, so daß der Fahrtwind parallel zu den aktiven Flachen strömt.
Als „Elektrofahrzeug" wird ]edes mit Elektromotor angetriebe- nes Fortbewegungsmittel bezeichnet, wobei der Untergrund, auf dem es fahrt, d h Straße, Schiene, Wasser, Schnee oder Sand etc. keine Rolle spielt. Entscheidend ist, daß das Elektrofahrzeug mit einer Antriebsbatterie angetrieben wird.
Als „Antriebsbatterie eines Elektrofahrzeugs" wird ein mobi- les Energieversorgungssystem verstanden, das zumindest zum Teil aus Brennstoffzellen besteht. Dabei können unterstützend zu den Brennstoffzellen auch noch andere Mittel zur Energieerzeugung wie andere Batterien oder ähnliches eingesetzt werden. Ξrfindungsgemäß muß die Antriebsbatterie nicht aus- schließlich aus Brennstoffzellen bestehen, muß aber Brennstoffzellen enthalten.
Als „Staudruck des Fahrtwinds" wird der Druck bezeichnet, der durch die Bewegung des Fahrzeugs durch die Umgebungsluft als Staudruck wirksam wird (ps = pL/2 V2) . Als weitere
„Druckquelle", mit der das Kühlsystem mit gasförmigem, in der Regel aus Luft bestehendem, Kühlmedium gespeist wird kann ein Ventilator, ein Kompressor oder ähnliches dienen.
Als „Brennstoffzellen" können alle Arten von Brennstoffzellen, die für die mobile Energieversorgung in Betracht kommen, eingesetzt werden. Die PEM-Brennstoffzelle und die Direktmethanol-Brennstoffzelle stehen dabei im Vordergrund.
Als „primäres Kühlsystem" oder „normales Kühlsystem" wird ein Kühlsystem bezeichnet, in dem das Kühlmedium (Flüssigkeit oder Fahrtwind) direkt über die Bipolarplatten der Brennstoffzellen strömt und die Abwärme der Brennstoffzellen aufnimmt..
Als „sekundäres Kühlsystem" wird ein Kühlsystem bezeichnet, in dem ein erwärmtes (weil in einem primären Kühlsystem verbrauchtes) Kühlmedium abgekühlt und somit regeneriert wird.
Als „luftgekühlte Brennstoffzelle" wird eine Brennstoffzelle bezeichnet, bei der die primäre Kühlung mit dem Fahrtwind möglich ist. Dabei wird der Fahrtwind mit seinem vorgegebenen Staudruck in das Kühlsystem der Brennstoffzelle eingespeist und kann zusätzlich noch von einem weiteren unabhängigen Gas- oder Flussigkeitsstrom unterstützt werden
Bevorzugt w rd eine Antriebsbatterie eingesetzt, deren Anordnung im Außenbereich des Elektrofahrzeugs derart ist, daß der Fahrtwind allein ausreicht, um die Luftkühlung der Antriebsbatterie, die aus Brennstoffzellen besteht, zu sichern Für geringe Fahrgeschwindigkeit oder hohe Außentemperatur kann, w e bei herkömmlichen, durch Verbrennungsmotor getriebenen Fahrzeugen, ein unterstützendes Ventilatorgeblase eingesetzt werden
Als „Außenbereich des Elektrofahrzeugs" wird das gesamte Au- ßere des Elektrofahrzeugs bezeichnet Dieser Terminus ist also nicht auf die Fahrzeugfront beschrankt, es ist durchaus denkbar, daß sich die .Antriebsbatterie oben auf dem Dach oder unten unter dem Fahrgast- oder Laderaum des Elektrof hrzeugs befindet Entscheidend beim Außenbereich des Elektrofahrzeugs ist, daß der Fahrtwind darauf direkt einwirkt Dabei wird es oft zu der Anordnung kommen, daß die Antriebsbatterie an der Stelle eines herkömmlichen Kuhlers im Fahrzeug eingebaut wird In diesem Fall ist es von Vorteil, wenn ein massiver Stoßfanger, wie er beispielsweise von Gelandewagen her be- kannt ist und aus dicken Stahlrohren gebildet sein kann, der
Antπebsbatterie vorgelagert angebracht ist, so daß diese bei kleineren Zusammenstoßen vor Beschädigung geschützt ist
Eine optimale Ausnutzung des Staudrucks des Fahrtwindes fm- det statt, wenn die Ebenennormalen der aktiven Flachen der Brennstoffzellen senkrecht zur Fahrtrichtung stehen Dabei kann der Fahrtwind entlang der Zellbleche strömen und direkt als Kuhlmedium wirken Bei der Anbringung des Wärmetauschers einer flussigkeitsgekuhlten Antriebsbatterie im Fahrtwind des Elektrofahrzeugs werden entsprechend die aktiven Flachen auch parallel zur Stromungsrichtung des Fahrtwindes ausgerichtet sein Offensichtlich ist dabei, daß es für diese parallele Ausrichtung zum Fahrtwind zwei Möglichkeiten gibt, nämlich einmal die Möglichkeit, daß die Zelle vertikal und einmal die Möglichkeit, daß sie horizontal angebracht ist. Anders ausgedrückt können die einzelnen Brennstoffzellen der „Stacks" (d.h. der Zellenstapel der Brennstoffzellen in der Antriebsbatterie) sowohl von oben nach unten als auch von links nach rechts gestapelt sein. Ebenso können die einzelnen aktiven Flächen des Wärmetauschers von oben nach unten oder von rechts nach links gestapelt sein.
Als „Verlustwärme" einer Brennstoffzelle wird die Wärme bezeichnet, die be der Umsetzung an der Brennstoffzelle frei w rd und nicht genutzt wird. Nachdem Brennstoffzellen üblicherweise mit einem thermodynamisehen Wirkungsgrad von weni- ger als 60% betrieben werden, fällt ebenso üblicherweise Verlustwärme in einer Größenordnung von > 40% der in die Brennstoffzelle hineingesteckten chemischen Energie an. Bei flüs- sigkeitsgekühlten Brennstoffzellen wird diese Wärmeenergie oder Verlustwärme zunächst an ein flüssiges Kühlmedium, wie beispielsweise Wasser abgegeben. Das flüssige Kühlmedium umfließt dabei die bipolaren Platten einzelner Brennstoffzellen der Antriebsbatterie und wird im Kreis gefahren, d.h. über einen an den Brennstoffzellenstapel angeschlossenen Wärmetauscher regeneriert, d.h. abgekühlt und wieder m den Brenn- stoff zellenstapel eingeleitet. Erfindungsgemäß wird dann der Fahrtwind beim Betrieb des Wärmetauschers, in dem Kühlmedium regeneriert wird, eingesetzt.
Die bipolaren Platten der Brennstoffzellen sind die Abschluß- bleche der einzelnen Brennstoffzellen ober- und unterhalb des Kathoden- oder Anodenraums, die gleichzeitig die elektrische Leitung innerhalb eines Brennstoffzellenstapels ermöglichen. Bei flüssigkeitsgekühlten Brennstoffzellen fließt das Kühlmedium zwischen den Bipolarplatten der einzelnen Brennstof zel- len durch und bei luf gekühlten Brennstoffzellen strömt im selben Zwischenraum der Fahrtwind. Als „aktive Flache" einer Brennstoffzelle wird d e Flache bezeichnet, in der sich entweder der Elektrolyt oder die Elektroden befinden bzw entlang derer die Reaktionsmedien wie beispielsweise Oxidans und Brennstoff, fließen
Im folgenden wird die Erfindung noch anhand von zwei Ausfuh- rungsbeispielen luftgekühlter Brennstoff∑ellenanlagen m Fahrzeugen, die erfmdungsgemaß bevorzugt werden, naher erläutert .
1 Beispiel .
Eine Zelle mit 300 cm2 aktiver Flache ist quadratisch mit einer Kantenfläche von 210 mm und einer Dicke pro Zelle von ca 4,5 mm Jeweils 100 dieser Zellen werden zu einem Block oder Stapel verbunden, wobei jeweils vorne und hinten am Block/Stapel noch eine Endplatte von ca. 2 cm Dicke befestigt wird, die die einzelnen Zellen des Brennstoffzellenstapels zusammenhält. Zwei Blocke mit _e 100 Zellen ergeben einen Quader, der 42 cm hoch, 21 cm tief und 49 cm breit ist. Ein derartiger Quader hat bei einer Leistung von 0,25 W/cm2 eine Gesamtleistung von 15 kW Diese Leistung reicht aus, um in einen Kleinwagen eingebaut zu werden und diesen zu ziehen, und der Quader hat außerdem die Abmessungen, daß er gut in d e Elektrofahrzeugfront eines Kleinwagens, wo üblicherweise der Kühler sitzt, integrierbar ist.
2 Zwei Blocke aus Zellen mit ιe 400 cm2 aktiver Fläche, die zu 150 Zellen gestapelt sind, haben eine Breite von 72 cm bei einer Leistung von 42 kW, wenn pro cm2 eine Leistung von 0,35 Watt erreicht ist. Ein solcher Stapel oder eine solche .Antriebsbatterie wird m einem Mittelklassewagen über der Vorderachse quer eingebaut, wo er einerseits gut mit Kuhlluft versorgt werden kann und andererseits vor Beschädigung bei leichten Unfällen gut geschützt ist. Da die Wärmeflußdichte (d.h. die erzeugte oder abzuführende Wärme pro Flächeneinheit) einer Brennstoffzelle, verglichen mit der eines herkömmlichen Verbrennungsmotors, vergleichsweise gering und homogen ist, kann bei geeigneter Führung ei- ner Luftströmung die gesamte anfallende Wärme des Brennstoff- zellenblockes (= der Antriebsbatterie) ohne großen Aufwand direkt an die Umgebungsluf abgegeben werden.
Die jeweils in ein Fahrzeug eingebauten, luftgekühlten Brenn- stoffzellenbatterien, wie in den Beispielen beschrieben, machen von dieser Überlegung Gebrauch. Wenn der Fahrtwind die Kühlluftströmung unterstützt, ist mit dieser Anordnung bei gegebener Betriebstemperatur die energetisch günstigste Kühlung überhaupt möglich. Abmessung und Gewicht jeder Brenn- stoffzellenanlage entspricht etwa dem Wärmetauscher Kühlflüssigkeit/Luft eines herkömmlichen Fahrzeugs, der erfindungsgemäß entfallen kann. Mit der luftgekühlten Brennstoffzellen- batterie ist das geringste Leistungsgewicht und das geringste Leistungsvolumen möglich, denn allein wegen der ansonsten notwendigen Wärmetauscher müssen alle anderen Lösungen prinzipiell schwerer und größer werden.

Claims

Patentansprüche
1 Brennstoffzellenanlage als Antriebsbatterie für ein Elektrofahrzeug, die zumindest ein primäres Kühlsystem, durch das ein gasformiges Kühlmedium fließt, umfaßt, d a d u r c h g e k e n n z e i c h n e t , daß die Brennstoffzellenanlage so ausgestaltet ist, daß der Staudruck des Fahrtwindes das Kühlmedium ganz oder teilweise in das Kühlsystem treibt.
2 Anlage nach Anspruch 1, bei der neben dem Staudruck noch eine andere Druckquelle, beispielsweise ein Ventilator, benutzt wird, um dasKuhlmedium durch das Kühlsystem zu leiten.
3 .Anlage nach Anspruch 1 oder 2, bei der ein primäres Kühlmedium flüssig ist, das nach seiner Erwärmung im primären Kühlsystem der Brennstoffzellenanlage in einem sekundären Kühlsystem durch ein sekundäres Kühlmedi- um gekühlt und regeneriert wird.
4. Anlage nach Anspruch 3 , bei der das sekundäre Kühlsystem einen Wärmetauscher umfaßt
5. Anlage nach einem der vorstehenden Ansprüche, bei der die Brennstoffzellenanlage PEM-BrennstoffZeilen umfaßt.
6. Anlage nach einem der vorstehenden Ansprüche, bei der die Brennstoffzellenanlage im Kühler, d.h. im vordersten Frontbereich des Elektrofahrzeugs angeordnet ist
7. Anlage nach einem der vorstehenden Ansprüche, bei dem die Brennstoffzellenanlage über der angetriebenen Achse des Elektrofahrzeugs angeordnet ist.
8 Anlage nach einem der vorstehenden Ansprüche, bei der die Brennstoffzellen so m das Elektrofahrzeug eingebaut sind, daß die Ebenennormalen der aktiven Flachen der einzelnen Brennstoffzellen senkrecht zur Fahrtrichtung stehen
9 Verfahren zum Betreiben einer Brennstoffzellenanlage für ein Elektrofahrzeug nach einem oder mehreren der Ansprüche 1
d a d u r c h g e k e n n z e i c h n e t , daß die aus dem Staudruck des Fahrtwindes gewonnene Energie zur ganzen oder teilweisen Einleitung des gasformigen Kühl- meidums in das Kühlsystem genutzt wird.
EP97931691A 1996-07-18 1997-06-30 Brennstoffzellenanlage für ein elektrofahrzeug Ceased EP0913010A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19629084A DE19629084C2 (de) 1996-07-18 1996-07-18 Brennstoffzellenanlage als Antriebsbatterie für ein Elektrofahrzeug sowie Verfahren zum Betreiben einer solchen Brennstoffzellenanlage
DE19629084 1996-07-18
PCT/DE1997/001372 WO1998004013A1 (de) 1996-07-18 1997-06-30 Brennstoffzellenanlage für ein elektrofahrzeug

Publications (1)

Publication Number Publication Date
EP0913010A1 true EP0913010A1 (de) 1999-05-06

Family

ID=7800231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97931691A Ceased EP0913010A1 (de) 1996-07-18 1997-06-30 Brennstoffzellenanlage für ein elektrofahrzeug

Country Status (7)

Country Link
US (1) US20010049040A1 (de)
EP (1) EP0913010A1 (de)
JP (1) JP2000514745A (de)
CA (1) CA2261123A1 (de)
DE (1) DE19629084C2 (de)
NO (1) NO990223L (de)
WO (1) WO1998004013A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822691A1 (de) 1998-05-20 1999-11-25 Volkswagen Ag Brennstoffzellensystem und Verfahren zum Erzeugen elektrischer Energie mittels eines Brennstoffzellensystems
DE19822689A1 (de) 1998-05-20 1999-11-25 Volkswagen Ag Brennstoffzellensystem und Verfahren zum Erzeugen elektrischer Energie mittels eines Brennstoffzellensystems
CA2339987A1 (en) 1998-08-10 2000-02-24 Siemens Aktiengesellschaft Device and method for using the waste heat of an air-cooled fuel cell battery
DE19900166C1 (de) * 1999-01-05 2000-03-30 Siemens Ag Flüssigkeitsgekühlte Brennstoffzellenbatterie mit integriertem Wärmetauscher sowie Verfahren zum Betreiben einer flüssigkeitsgekühlten Brennstoffzellenbatterie
DE19908099A1 (de) 1999-02-25 2000-08-31 Daimler Chrysler Ag Brennstoffzellensystem
AU2516901A (en) * 2000-01-19 2001-07-31 Manhattan Scientifics, Inc. Fuel cell stack with cooling fins and use of expanded graphite in fuel cells
DE10061784A1 (de) * 2000-12-12 2002-06-20 Daimler Chrysler Ag Elektrochemischer Brennstoffzellenstapel
DE10065307A1 (de) * 2000-12-29 2002-07-11 Siemens Ag Brennstoffzellenanlage für ein Kraftfahrzeug
JP3951836B2 (ja) * 2002-07-05 2007-08-01 日産自動車株式会社 燃料電池システムの制御装置
DE10306081B4 (de) * 2003-02-07 2005-10-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Brennstoffzellenstack mit Bipolarplatten
DE10330814A1 (de) * 2003-07-08 2005-02-03 Still Gmbh Industrieschlepper mit elektrischem Fahrantrieb
JP4482341B2 (ja) 2004-01-30 2010-06-16 本田技研工業株式会社 車載用燃料電池スタックの運転方法
JP4371308B2 (ja) 2004-01-30 2009-11-25 本田技研工業株式会社 車載用燃料電池スタック
JP4448703B2 (ja) 2004-01-30 2010-04-14 本田技研工業株式会社 車載用燃料電池スタックの運転方法
DE102004026562B3 (de) * 2004-05-27 2006-03-16 Montech Ag Transportsystem mit Laufwagen, welche mittels Brennstoffzellen angetrieben sind
US7451808B2 (en) 2004-09-17 2008-11-18 Behr Gmbh & Co. Exchanging device for motor vehicles
US7314680B2 (en) * 2004-09-24 2008-01-01 Hyteon Inc Integrated fuel cell power module
DE102004053729B4 (de) * 2004-11-06 2010-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Kraftfahrzeug mit einer Brennstoffzelle
DE102005021413A1 (de) * 2005-05-10 2006-05-04 Daimlerchrysler Ag Fahrzeug mit einem Brennstoffzellensystem zur Erzeugung elektrischer Leistung
US20070003813A1 (en) * 2005-06-30 2007-01-04 General Motors Corporation Stable conductive and hydrophilic fuel cell contact element
US9017890B2 (en) * 2008-04-18 2015-04-28 The Boeing Company Alternative path cooling of a high temperature fuel cell
DE102008002103A1 (de) * 2008-05-30 2009-12-03 Robert Bosch Gmbh Vorrichtung zur Temperaturregelung eines Speichers für elektrische Energie
DE102009039364A1 (de) 2009-08-29 2011-03-03 Daimler Ag Fahrzeug mit wenigstens einem Kühlkreislauf zum Kühlen eines Brennstoffzellensystems
JP5516229B2 (ja) * 2010-08-24 2014-06-11 スズキ株式会社 空冷式燃料電池の吸気装置
JP5810753B2 (ja) 2011-08-31 2015-11-11 スズキ株式会社 燃料電池車両
DE102011113945A1 (de) 2011-09-20 2013-03-21 Daimler Ag Verfahren zum Betreiben eines Brennstoffzellensystems
JP5999477B2 (ja) * 2012-05-23 2016-09-28 スズキ株式会社 燃料電池車両
KR101459444B1 (ko) * 2012-11-07 2014-11-07 현대자동차 주식회사 연료 전지 시스템 및 그 운전 방법
CN113193208B (zh) * 2021-04-25 2022-10-14 电子科技大学 一种固定翼无人机空冷型燃料电池动力系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0122254B1 (de) * 1983-04-08 1987-06-10 AVL Gesellschaft für Verbrennungskraftmaschinen und Messtechnik mbH.Prof.Dr.Dr.h.c. Hans List Kraftfahrzeug
DE4001684A1 (de) * 1990-01-22 1991-07-25 Merck Patent Gmbh Hybridsystem fuer traktionszwecke
DE4322765C1 (de) * 1993-07-08 1994-06-16 Daimler Benz Ag Verfahren und Vorrichtung zur dynamischen Leistungsregelung für ein Fahrzeug mit Brennstoffzelle
US5470671A (en) * 1993-12-22 1995-11-28 Ballard Power Systems Inc. Electrochemical fuel cell employing ambient air as the oxidant and coolant
DE4412451C1 (de) * 1994-04-12 1995-09-28 Daimler Benz Ag Anordnung eines Antriebsaggregats in einem Elektrofahrzeug
DE19600200C1 (de) * 1996-01-04 1997-04-24 Siemens Ag Verfahren zum Betrieb von PEM-Brennstoffzellen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9804013A1 *

Also Published As

Publication number Publication date
JP2000514745A (ja) 2000-11-07
US20010049040A1 (en) 2001-12-06
CA2261123A1 (en) 1998-01-29
NO990223D0 (no) 1999-01-18
WO1998004013A1 (de) 1998-01-29
DE19629084A1 (de) 1998-01-22
DE19629084C2 (de) 1998-07-16
NO990223L (no) 1999-03-18

Similar Documents

Publication Publication Date Title
WO1998004013A1 (de) Brennstoffzellenanlage für ein elektrofahrzeug
DE60113619T2 (de) Wärmekontrollsystem für eine elektrochemische Zelle
DE69925095T2 (de) Ein elektrochemisches Antriebssystem
DE4412451C1 (de) Anordnung eines Antriebsaggregats in einem Elektrofahrzeug
DE10236739B4 (de) Regeneratives Bremssystem für ein batterieloses Brennstoffzellenfahrzeug
DE112009004806B4 (de) Brennstoffzellensystem und -fahrzeug
DE102004016375B4 (de) Brennstoffzellensystem mit Kühlkanälen sowie Verfahren zum Betrieb eines Brennstoffzellensystems mit Kühlkanälen
EP0677417A1 (de) Anordnung eines Antriebsaggregats in einem Elektrofahrzeug
DE112009004862T5 (de) Brennstoffzellenanordnung und Fahrzeug
DE10047145B4 (de) Kraftfahrzeug mit einer Brennstoffzellen-Vorrichtung und die Verwendung einer Brennstoffzellen-Vorrichtung
DE102011014969B4 (de) Verfahren zum Betreiben eines Brennstoffzellensystems in einem Standby-Modus
DE102009035101A1 (de) Verfahren und Vorrichtung zum Starten eines Brennstoffzellenmotors in einem Fahrzeug, der mit einem Ultrakondensator ausgestattet ist
DE102006000112A1 (de) Separatoreinheit
DE102010011578A1 (de) Kraftfahrzeug
WO2002054520A1 (de) Für den mobilen einsatz vorgesehenen brennstoffzellenanlage mit latentwärmespeicher und verfahren zur wärmeisolierung derselben
DE112009004847T5 (de) Brennstoffzellensystem
DE102018104968B4 (de) Brennstoffzellenfahrzeug
DE112020004489B4 (de) Elektrisch angetriebenes Kraftfahrzeug mit einem Aggregat und dessen Nachrüstung
DE102009048573A1 (de) Kraftfahrzeug, insbesondere Dreirad
DE10152233A1 (de) Brennstoffzellensystem
DE102016120459A1 (de) Brennstoffzellensystem mit einem Kühlmittelkreislauf sowie Fahrzeug ein Brennstoffzellensystem aufweisend
DE102009049198A1 (de) Fahrzeug mit einem Brennstoffzellensystem
DE102017011282A1 (de) Energieversorgungssystem für ein Fahrzeug
DE102010006019A1 (de) Vorrichtung zur Bereitstellung von elektrischer Energie
DE202019105829U1 (de) Hybridenergieversorgungseinheit und deren Verwendung und ein Elektrofahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK ES FI FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19990607

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20060206