EP0906508B1 - Injecteur de carburant pour moteur a combustion interne - Google Patents

Injecteur de carburant pour moteur a combustion interne Download PDF

Info

Publication number
EP0906508B1
EP0906508B1 EP97925918A EP97925918A EP0906508B1 EP 0906508 B1 EP0906508 B1 EP 0906508B1 EP 97925918 A EP97925918 A EP 97925918A EP 97925918 A EP97925918 A EP 97925918A EP 0906508 B1 EP0906508 B1 EP 0906508B1
Authority
EP
European Patent Office
Prior art keywords
spindle
fuel
guide
section
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97925918A
Other languages
German (de)
English (en)
Other versions
EP0906508A1 (fr
Inventor
Finn Quordrup Jensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel AS
Original Assignee
MAN B&W Diesel AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN B&W Diesel AS filed Critical MAN B&W Diesel AS
Publication of EP0906508A1 publication Critical patent/EP0906508A1/fr
Application granted granted Critical
Publication of EP0906508B1 publication Critical patent/EP0906508B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the present invention relates to a fuel injector for an internal combustion engine, particularly a two-stroke crosshead engine, having an outer housing with a mounting flange at its back end and an injection nozzle protruding from the housing at its front end, and a fuel passage extending centrally in the injector, the fuel passage passing from the mounting flange through at least one thrust piece, a central fuel tube, a spindle and a spindle guide and ending in the injection nozzle, the spindle guide having a central bore the circularly cylindrical inner surface of which constitutes the guide surface for the spindle, the fuel tube having a front section extending more than halfway down into the central bore of the spindle guide and having a smaller external diameter than a back section and at the transition between the two sections an annular surface facing axially in the direction of the injection nozzle, and a back spring guide for a pre-tensioned closing spring, the spindle having a central bore open to the back in which the front section of the fuel tube is inserted, and a front spin
  • Such a fuel injector is known from DK-B-155757, which describes an injector for injection of readily ignitable pilot oil and gaseous fuel.
  • the thrust bushing here acts as a guide for an external valve slide for opening and closing the gas supply.
  • the fuel tube acts as a valve housing for a venting valve and thus extends integrally along the main part of the injector length.
  • the spindle for opening and closing of the pilot oil is designed with a relatively large clearance between both the fuel tube on the inside and the bore of the spindle guide on the outside to prevent the spindle from getting caught or being worn unevenly because of alignment inaccuracies between the elongated fuel tube and the bore of the spindle guide.
  • DK-B-167502 (EP-A 0 606 371) teaches a fuel injector in which the closing spring is received in a central cavity in the slide guide, and a central fuel tube is formed integrally with the back section of the slide guide. Also this case requires a relatively large clearance between the bottom section of the spindle and the bore in the slide guide and the front section of the fuel tube, respectively, to compensate for manufacturing tolerances and consequent lack of complete coaxiality between the fuel tube and the bore in the slide guide.
  • a further injector of a somewhat different design is known from DE-A-2030445, in which a hollow spindle with a relatively thin wall thickness slides in the annular space between a fuel tube and a bore in the spindle guide.
  • the back end of the spindle has a very heavily formed front spring guide for the closing spring.
  • the opening movement of the spindle is here limited by the fact that at its largest diameter the back surface of the spring guide hits a projection in the injector housing. This imparts a bending moment to the thin spindle wall resulting in the wall bending outwards.
  • the fuel tube is bipartite with the joint face located above the back spring guide.
  • the known fuel injectors of the type which has a hollow spindle arranged between a central fuel tube and a bore in the spindle guide provide the advantage that the mass of the movable spindle is substantially smaller than is the case with solid spindles, and the relatively small mass of the movable part of the injector promotes rapid valve movements.
  • hollow spindles suffer from the disadvantage that they slide between two annular surfaces, which entails a risk of the spindle getting caught if the spindle wall becomes deformed.
  • the clearance between the spindle and the adjacent annular surfaces is relatively large, entailing the possibility that the spindle becomes slightly displaced in the transverse direction into a slightly eccentric position in which the clearances between the spindle and the spindle guide bore and the fuel tube, respectively, are larger on one side than on the other side of the longitudinal axis of the injector.
  • the transverse displacements are very small, they result in variations in the volumes of fuel leaking up through the clearances during an injection sequence.
  • the leakage volumes may be from 50 per cent to 70 per cent smaller than at a transversely displaced position of the spindle, and consequently at different injections of fuel with the same valve and unchanged injection parameters, such as the delivery pressure and volume of the fuel to the injector, variations will occur in the volumes of fuel actually injected. Variations will also occur in the injected fuel volumes from several different injectors, although they have identical settings and are supplied with fuel in the same manner.
  • the object of the present invention is, in a fuel injector of the type mentioned in the introduction, to improve the reproducibility of the injected fuel volumes and to achieve a more exact control of the injection sequence.
  • the fuel injector according to the invention is characterized in that the external diameter of the back spring guide of the fuel tube is smaller than the internal diameter of the thrust bushing, that the fuel tube is a separate unit exclusively contacting the valve member located behind it through an abutment surface which is arranged on the back surface of the back spring guide and has an annular surface encircling the central fuel passage and being substantially perpendicular to the longitudinal axis of the injector, and that in the front spindle section inserted in the spindle guide bore, the spindle has an external diameter being at the most 8 ⁇ m smaller than the internal diameter of the spindle guide bore, and an internal diameter being at the most 8 ⁇ m larger than the external diameter of the front section of the fuel tube.
  • the spindle can be inserted in the spindle guide, the fuel tube with the closing spring can be mounted on the spindle, the thrust bushing can be pushed down around the back end of the spindle guide, and then the injector housing with these injector parts can be oriented with a vertical centre axis.
  • the fine fits between the spindle, the spindle guide and the fuel tube mean that at the orientation with a vertical centre axis and no load, the parts will mutually adjust coaxially whereupon the other valve members are inserted into the housing and the mounting flange is clamped on.
  • the valve member located behind the fuel tube is inserted into the thrust bushing before the member is moved forwards close to the fuel tube.
  • the external diameter of the front spindle section is from 2 to 4 ⁇ m smaller than the internal diameter of the spindle guide bore, and the internal diameter of said spindle section is from 2 to 4 ⁇ m larger than the external diameter of the front section of the fuel tube.
  • the back spindle area there may be a clearance between the spindle and the fuel tube which is 0.1 mm larger than the clearance between the two parts in the front spindle section.
  • the invention also provides a number of different measures to reduce the spindle mass. It is possible to form the front spring guide of the spindle with a conical front surface and the smallest thickness at its largest diameter.
  • the front spindle section may further have a smaller wall thickness than the front section of the fuel tube.
  • the mass of the front end of the spindle in the area around the valve needle can be reduced by the length of the oblique bores from the bottom of the central spindle bore to the chamber around the valve needle being smaller than 35 per cent of the external diameter of the front spindle section, which reflects the fact that the front spindle end wall has a small wall thickness.
  • a further reduction of the mass in this area can be achieved by the valve needle having a central bore open to the front in its end surface.
  • the latter possibility only provides a limited reduction in mass.
  • the reduction of the spindle mass provides a further improvement of both the reproducibility of the injected fuel volume and the exact control of the injection sequence. This is because the smaller spindle mass leads to more rapid spindle movements at the opening and closing of the injector and also the spindle and the valve seat become less worn, because the impacts against the valve seat and the limit stop of the opening movement are smaller from the lighter spindle.
  • the rapid valve opening provides an abrupt start to the injection of fuel, which promotes a good and strong atomization of the fuel volume first- injected and thus a well-defined and rapid ignition of the fuel.
  • the external diameter of the abutment surface of the fuel tube on the back surface of the back spring guide is smaller than the external diameter of the front section of the fuel tube.
  • the small external diameter of the abutment surface has the effect that a small angle between the longitudinal axes of the fuel tube and of the valve member behind it does not result in leakages at the abutment surface, because the manufacturing roughnesses of the two compressed surfaces compensate for any small misalignment in that the roughnesses are compressed in the side at which the surfaces are closest to each other and form a sealing abutment at the diametrically opposite side.
  • the small external diameter of the abutment surface results in the fact that the sealing surface pressure between the abutment surfaces always exceeds the current fuel pressure in the fuel passage.
  • the injector is closed, the surface pressure is created between the abutment surfaces by the backward spring force on the back spring guide and by the backward force on the fuel tube originating from the fuel pressure on the front end surface of the fuel tube.
  • the injector is open, the fuel pressure acts on the fuel tube with a larger backward force, because the fuel pressure acts on the whole front end of the spindle, and from the spindle this backward force is transmitted to the fuel tube via the axially facing annular surface on the fuel tube.
  • the external and internal diameters of the backward abutment surface of the fuel tube have substantially the same dimensions as the external and internal diameters, respectively, of the front spindle section, such dimensions providing a completely directly axial flow of forces in the spindle wall.
  • the fuel injector is intended for injection of preheated fuel, such as heavy fuel oil
  • the valve element located behind the fuel tube is a valve housing for a fuel circulation valve
  • the annular back end of the thrust bushing abuts a forward abutment surface at the back end of an annular recess in the front part of the outer valve housing surface when the injector is assembled, whereby the length of the thrust bushing determines the pre-tensioning of the closing spring.
  • the thrust bushing in the mounted valve is located between two annular abutment surfaces on the spindle guide and the valve housing, respectively, and creates a well-defined and predetermined distance between the valve seat in the spindle guide and the front surface of the valve housing abutting the abutment surface on the fuel tube.
  • the valve spindle carries the front spring guide and the fuel tube carries the back spring guide of the closing spring, the latter is pre-tensioned in an unambiguous manner when the injector is assembled, and at the same time the spindle has a well-defined and predetermined travel or lifting height between the closed and the open positions.
  • the pre-tensioning and the spindle lifting height may, for example, be finely adjusted for use of the injector in a specific engine by a change of the length of the thrust bushing, a shorter length, all other things being equal, resulting in a higher pretension and smaller lifting height. It provides a considerable simplification at the assembly of the injector that the injector parts just have to be clamped as much together as possible to obtain the correct spring pre-tensioning and thus correct opening and closing pressures for the injector. This precludes the considerable variation of the spring pre-tensioning and thus the opening pressure from one valve to another, which may occur in valves where the spring pre-tensioning has to be set by screwing the mounting flange more or less down on to the injector housing.
  • a further assembly simplification can be obtained by the spindle guide, the spindle, the closing spring, the fuel tube, the thrust bushing and the valve housing of the circulation valve being assembled into a pre-assembled unit in which the valve housing and the spindle guide are locked to each other via the thrust bushing.
  • the locking may, for example, be carried out by shrinking the thrust bushing on to the spindle guide and the valve housing or, after pressing the thrust bushing on to the two injector parts, by carrying out a position fixing of the thrust bushing in relation to each of the two other parts by means of a pin inserted in transverse, associated bores in the thrust bushing and the part in question.
  • a through-going cavity may be provided in the longitudinal direction of the injector between the inner surface of the injector housing and the outer surfaces of the valve housing, the thrust bushing and the spindle guide.
  • the cavity provides the advantage that the stationary injector parts inside the injector housing are fixed between two points, viz., a forward surface on the inner surface of the mounting flange and a backward surface on the injection nozzle, which promotes a rotationally symmetrical loading condition in the parts of the injector.
  • a further advantage is that the cavity acts as a draining passage for any leaked fuel.
  • the fuel injector generally designated 1 has a mounting flange 2 with an inlet stub 3 to which a highpressure pipe from a fuel source, not shown, can be connected.
  • the fuel source may be, for example, a piston fuel pump, such as of the Bosch type, which is periodically actuated by a cam on a camshaft, or a highpressure reservoir connected periodically via control valves to the inlet stub 3.
  • the fuel may be liquid or gaseous or may be slurries of solid fuels or emulsions containing at least one of these states, and the valve may also be used for injection of liquid or gaseous additive media to the combustion, either alone or in mixtures.
  • a fuel passage 34 extends from a supply opening 7 in the inlet stub centrally through the injector to an injection nozzle 8, from which fuel can be injected via nozzle holes, not shown, into the working chamber of the internal combustion engine.
  • a spindle guide 9 is pressed downwards against the inner surface of the injection nozzle by means of a thrust bushing 10, a valve housing 11 and a thrust piece 12 abutting a forward inner surface of the mounting flange.
  • the thrust bushing has approximately the same external diameter as the valve housing 11 and the back section of the spindle guide 9 and is inserted in an annular recess in each of these parts so that the axially facing annular end surfaces of the thrust bushing 10 abut axially facing abutment surfaces 13, 14 on the spindle guide and the valve housing.
  • a valve body 15 is inserted in bores in the valve housing 11 and is biassed by a relatively weak compression spring 16 to the position shown.
  • a protruding forward abutment surface 17 on the front end of the valve housing abuts a corresponding backward annular abutment surface 18 on a protruding section on the back end of a central fuel tube 19, and the joint face between the two substantially parallel and plane abutment surfaces is located in a plane which is substantially perpendicular to the longitudinal axis of the injector.
  • the fuel tube has a protruding collar 20 constituting a back spring guide for a closing spring 21, which is a mechanical compression spring of a conventional type.
  • a closing spring 21 which is a mechanical compression spring of a conventional type.
  • the fuel tube continues in a circularly cylindrical back section 22, the external diameter of which is slightly smaller than the internal diameter of the spring.
  • the back section ends at the front in an annular surface 23 located in a plane perpendicular to the longitudinal axis of the injector.
  • the surface 23 forms a transition between the back section of the fuel tube and a front section 24, which has a smaller diameter and extends down into a bore 25 open towards the back in a spindle 26 and to the front end of the fuel tube, located a short distance from the bottom of the bore 25. The short distance is larger than the lifting height of the spindle.
  • the spindle guide 9 has a central bore having in one section a circularly cylindrical inner surface 27 constituting a guide surface for the spindle.
  • the spindle guide In front of this section, the spindle guide has a pressure chamber 28 having a conical stationary valve seat that cooperates with a corresponding conical movable valve seat at the front end of a valve needle 29 on the front end of the spindle.
  • the bore of the spindle guide continues to the central bore in the injection nozzle 8.
  • the spindle 26 has a front spring guide 30 in the form of a protruding collar, the back of which is perpendicular to the longitudinal axis of the injector, and the front surface 31 of which is conical.
  • the closing spring is located between the two spring guides 20 and 30 and inside the thrust bushing 10. At assembly of the injector parts, the closing spring is compressed to a pre-tensioned state.
  • the forward closing force produced by the spring on the front spring guide 30 of the spindle is of a very accurate magnitude because the compression of the spring at assembly is determined by the length of the thrust bushing 10 and the length of the unloaded closing spring.
  • the diameter of the inner surface of the spindle is from 2 to 4 ⁇ m larger than the external diameter of the front section 24 of the fuel tube, and the external diameter of the front spindle section 32 inserted in the spindle guide bore is from 2 to 4 ⁇ m smaller than the internal diameter of the bore 27.
  • the wall thickness of the front spindle section is approximately 30 per cent smaller than the wall thickness of the front fuel tube section 24.
  • the front end wall of the spindle at the bottom of the bore 25 has a relatively small wall thickness, the annular end surface encircling the valve needle 29 being almost perpendicular to the longitudinal axis of the injector.
  • the oblique bores 33 connecting the bore 25 with the compression chamber 28 have a length smaller than 35 per cent of the external diameter of the section 32 owing to the small wall thickness.
  • the central fuel passage 34 extends from the supply opening 7 down through the thrust piece 12 to a central bore 35 in the valve body 15, where the passage branches off into several oblique bores 36 opening out into a pressure chamber 38 located about a valve needle 37.
  • the fuel passage continues centrally through the front of the valve housing 11, past the abutment surfaces 17 and 18 and further forwards through the fuel tube 19 opening out at the bottom of the bore 25 in the spindle, from where the fuel passage continues through oblique bores 33, the pressure chamber 28 and to the nozzle holes, not shown, in the injection nozzle 8.
  • Drain holes 39 render it possible for leaked fuel to be drained away from the cavity around the closing spring 21 to a through-going cavity extending in the longitudinal direction of the injector at the inner surface of the injector housing 4.
  • the valve body As soon as the fuel pressure starts rising at the beginning of an injection period, the pressure in the pressure chamber 38 rises, and the valve body is influenced by a backward force that overcomes the force from the compression spring 16, whereupon the valve body is displaced backwards and cuts off the leakage channel 40. Then the fuel pressure spreads through the fuel passage down into the pressure chamber 28.
  • the spindle 26 When the fuel pressure here reaches the opening pressure of the injector, the spindle 26 is actuated by a backward force larger than the force of the closing spring 21, which makes the spindle become displaced backwards until the annular end surface of the spindle hits the annular surface 23 on the fuel tube.
  • the surface 23 thus acts as a limit stop for the spindle movement and determines the lifting height of the spindle.
  • the spindle displacement opens for fuel access to the injection nozzle, which starts the injection.
  • the pressure in the chamber 28 drops suitably so that the closing spring overcomes the backward pressure of the fuel on the spindle, whereupon the spindle is returned to the closed starting position where the valve needle 29 abuts the associated seat and cuts off access to the injection nozzle.
  • the injector can be simplified by omission of the circulation valve.
  • the thrust piece 12 and the valve housing 11 may be formed as an entire thrust-piece-like unit with a central through bore constituting the section of the fuel passage 34 that connects the supply opening 7 with the central passage in the fuel tube.
  • injector for use in connection with injection of several different fluids, for example by applying the injector elements described above in connection with an injector of the type described in the above Danish patent No. 155757.
  • Such an injector may, for example, be used for injection of gas and pilot oil, or for injection of a fuel and another fluid modifying the combustion process, such as water, contributing to reduction of the formation of undesired emission products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (12)

  1. Injecteur de carburant (1) pour un moteur à combustion interne, en particulier un moteur à deux temps à crosse, possédant un carter extérieur (4) pourvu d'une bride de fixation (2) sur son extrémité arrière et un injecteur (8) en saillie depuis le carter au niveau de son extrémité avant, et un passage de carburant (34) s'étendant au centre dans l'injecteur, le passage de carburant débutant au niveau de la bride de fixation, passant par au moins un élément de poussée (12), un tube de carburant central (19), une tige de manoeuvre (26) et un guidage de la tige de manoeuvre (9) et se terminant dans l'injecteur,
    le guidage de la tige de manoeuvre ayant un alésage central (27), dont la surface intérieure cylindrique et circulaire constitue la surface de guidage de la tige de manoeuvre,
    le tube de carburant ayant une section avant (24) s'étendant vers le bas sur plus de la moitié de l'alésage central du guidage de la tige de manoeuvre et ayant un diamètre extérieur plus petit qu'une section arrière (22) et ayant, au niveau de la transition entre les deux sections, une surface annulaire (23) dirigée dans le sens axial dans la direction de l'injecteur, et un guide de ressort arrière (20) pour un ressort de fermeture précontraint (21),
    la tige de manoeuvre comprenant un alésage central (25) ouvert à l'arrière, dans lequel est insérée la section avant du tube de carburant, et une section avant de tige de manoeuvre (32) comportant un pointeau de soupape (29) qui coopère avec une surface de siège fixe située dans l'alésage du guidage de la tige de manoeuvre afin d'ouvrir et de fermer l'injecteur, et un guide de ressort avant (30) pour le ressort de fermeture, le guide de ressort étant situé dans une section arrière de tige de manoeuvre en saillie depuis l'alésage du guidage de la tige de manoeuvre et le ressort de fermeture inclinant la tige de manoeuvre vers l'avant dans la direction de fermeture, et sur l'extrémité arrière de la tige de manoeuvre, une surface d'extrémité annulaire qui est conçue pour buter contre la surface annulaire (23) du tube de carburant du fait du mouvement d'ouverture vers l'arrière de la tige de manoeuvre,
    le guidage de la tige de manoeuvre étant pressé vers l'avant dans le boítier d'injecteur par au moins une douille d'appui (10) touchant une surface annulaire faisant face vers l'arrière au guidage de la tige de manoeuvre et s'étendant vers l'arrière au-delà du ressort de fermeture, et l'élément de poussée (12) étant pressé vers l'avant par la bride de fixation lors de l'assemblage de l'injecteur avec une compression simultanée du ressort de fermeture, caractérisé en ce que le diamètre extérieur du guide de ressort arrière (20) du tube de carburant est inférieur au diamètre intérieur de la douille d'appui (10), en ce que le tube de carburant (19) constitue une unité séparée en contact exclusivement avec un élément de soupape situé derrière lui par l'intermédiaire d'une surface d'appui (18) qui est disposée sur la surface arrière du guide de ressort arrière et possède une surface annulaire entourant le passage de carburant central (34) et étant essentiellement perpendiculaire à l'axe longitudinal de l'injecteur, et en ce que, dans la section avant de tige de manoeuvre (32) insérée dans l'alésage (27) du guidage de la tige de manoeuvre, la tige de manoeuvre (26) a un diamètre extérieur qui est d'au plus 8 µm inférieur au diamètre intérieur de l'alésage du guidage de la tige de manoeuvre, et un diamètre intérieur qui est d'au plus 8 µm supérieur au diamètre extérieur de la section avant (24) du tube de carburant.
  2. Injecteur de carburant selon la revendication 1, caractérisé en ce que le diamètre extérieur de la section avant de tige de manoeuvre est de 2 à 4 µm inférieur au diamètre intérieur de l'alésage du guidage de la tige de manoeuvre et en ce que le diamètre intérieur de ladite section de tige de manoeuvre est de 2 à 4 µm supérieur au diamètre extérieur de la section avant du tube de carburant.
  3. Injecteur de carburant selon la revendication 1 ou 2, caractérisé en ce que, à partir de l'extrémité arrière de la tige de manoeuvre et au moins jusqu'au guide de ressort avant, de préférence jusqu'à la section avant de tige de manoeuvre située dans l'alésage du guidage de la tige de manoeuvre, il y a une différence de diamètres sensiblement plus grande entre la surface intérieure de la tige de manoeuvre et la surface extérieure du tube de carburant que dans la section avant de tige de manoeuvre.
  4. Injecteur de carburant selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le guide de ressort avant (30) de la tige de manoeuvre a une surface avant conique (31) et l'épaisseur la plus fiable au niveau de son diamètre le plus grand.
  5. Injecteur de carburant selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la section avant de tige de manoeuvre (32) a une épaisseur de paroi inférieure à celle de la section avant (24) du tube de carburant.
  6. Injecteur de carburant selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la longueur des alésages obliques (33) partant du fond de l'alésage central (25) de la tige de manoeuvre et atteignant la chambre située autour du pointeau de soupape (29) correspond à moins de 35 pour cent du diamètre extérieur de la section avant de tige de manoeuvre.
  7. Injecteur de carburant selon la revendication 6, caractérisé en ce que le pointeau de soupape (29) possède un alésage central ouvert vers l'avant dans sa surface d'extrémité.
  8. Injecteur de carburant selon l'une quelconque des revendications précédentes, caractérisé en ce que le diamètre extérieur de la surface d'appui (18) du tube de carburant sur la surface arrière du guide de ressort arrière (20) est inférieur au diamètre extérieur de la section avant (24) du tube de carburant.
  9. Injecteur de carburant selon l'une quelconque des revendications précédentes, caractérisé en ce que le diamètre extérieur et le diamètre intérieur de la surface d'appui (18) arrière du tube de carburant ont sensiblement les mêmes dimensions que le diamètre extérieur et le diamètre intérieur, respectivement, de la section avant de tige de manoeuvre (32).
  10. Injecteur de carburant selon l'une quelconque des revendications précédentes, caractérisé en ce que l'injecteur de carburant est conçu pour l'injection de carburant préchauffé, comme du mazout lourd, en ce que l'élément de soupape situé derrière le tube de carburant est un boítier de soupape (11) pour une soupape de circulation de carburant et en ce que l'extrémité arrière annulaire de la douille d'appui (10) touche une surface d'appui avant (14) sur l'extrémité arrière d'un évidement annulaire situé dans la partie avant de la surface extérieure du boítier de soupape lorsque l'injecteur est assemblé, de ce fait la longueur de la douille d'appui détermine la précontrainte du ressort de fermeture (21).
  11. Injecteur de carburant selon la revendication 10, caractérisé en ce que le guidage de la tige de manoeuvre, la tige de manoeuvre, le ressort de fermeture, le tube de carburant, la douille d'appui et le boítier de la soupape de circulation sont assemblés en une unité pré-assemblée dans laquelle le boítier de soupape et le guidage de la tige de manoeuvre sont maintenus ensemble par l'intermédiaire de la douille d'appui.
  12. Injecteur de carburant selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une cavité continue est fournie dans la direction longitudinale de l'injecteur entre la surface intérieure du boítier d'injecteur (4) et les surfaces extérieures du boítier de soupape, de la douille d'appui et du guidage de la tige de manoeuvre.
EP97925918A 1996-06-20 1997-06-18 Injecteur de carburant pour moteur a combustion interne Expired - Lifetime EP0906508B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DK68296 1996-06-20
DK199600682A DK174075B1 (da) 1996-06-20 1996-06-20 Brændselsinjektor til en forbrændingsmotor
PCT/DK1997/000263 WO1997048901A1 (fr) 1996-06-20 1997-06-18 Injecteur de carburant pour moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP0906508A1 EP0906508A1 (fr) 1999-04-07
EP0906508B1 true EP0906508B1 (fr) 2002-04-24

Family

ID=8096343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97925918A Expired - Lifetime EP0906508B1 (fr) 1996-06-20 1997-06-18 Injecteur de carburant pour moteur a combustion interne

Country Status (12)

Country Link
EP (1) EP0906508B1 (fr)
JP (1) JP3301616B2 (fr)
KR (1) KR100427569B1 (fr)
CN (1) CN1074089C (fr)
DE (1) DE69712201T2 (fr)
DK (1) DK174075B1 (fr)
ES (1) ES2176745T3 (fr)
NO (1) NO322670B1 (fr)
PL (1) PL183912B1 (fr)
RU (1) RU2177560C2 (fr)
UA (1) UA41479C2 (fr)
WO (1) WO1997048901A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59814428D1 (de) * 1998-05-29 2010-03-04 Waertsilae Nsd Schweiz Ag Brennstoffeinspritzdüse
DE19902282A1 (de) * 1999-01-21 2000-08-17 Siemens Ag Injektor für eine Einspritzanlage einer Brennkraftmaschine
DE19959304A1 (de) * 1999-12-09 2001-06-13 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmschinen
DE10129308C1 (de) * 2001-06-18 2002-11-28 Man B & W Diesel As Kopenhagen Vorrichtung zur Brennstoffversorgung von Brennkraftmaschinen
KR100444857B1 (ko) * 2001-10-16 2004-08-21 현대자동차주식회사 디젤 엔진용 연료 분사 노즐
FR2911665B1 (fr) * 2007-01-22 2009-04-17 Hispano Suiza Sa Injecteur de carburant a deux etages.
KR20090012056A (ko) * 2007-07-27 2009-02-02 베르트질레 슈바이츠 악티엔게젤샤프트 연료용 분사 노즐
KR200446411Y1 (ko) * 2008-02-28 2009-10-27 두산엔진주식회사 저속 디젤엔진용 연료분사 밸브
KR100940727B1 (ko) 2008-05-30 2010-02-08 두산엔진주식회사 저속 디젤엔진용 연료분사 밸브
CN101592109B (zh) * 2009-06-11 2012-06-06 余姚市舒春机械有限公司 船用柴油机喷油器的双针阀偶件的制造工艺
DK201000309A (en) * 2010-04-15 2011-10-16 Man Diesel & Turbo Filial Tyskland A fuel valve for large two stroke diesel engines
CH702496B1 (de) 2010-05-07 2011-07-15 Liebherr Machines Bulle Sa Hochdruckinjektor.
AU2011274313B2 (en) * 2010-06-30 2015-05-07 Orbital Australia Pty Ltd Fuel injection assembly
CN102748178A (zh) * 2012-07-26 2012-10-24 余姚市舒春机械有限公司 一种船用柴油机喷油器总成
CN102748177B (zh) * 2012-07-26 2015-06-03 余姚市舒春机械有限公司 一种长针式船用柴油机喷油器总成
CN103670859B (zh) * 2012-09-12 2016-08-03 北京亚新科天纬油泵油嘴股份有限公司 喷射器的喷射嘴
CN104265533B (zh) * 2014-07-31 2016-08-24 中国第一汽车股份有限公司无锡油泵油嘴研究所 一种共轨喷油器
CN106321315A (zh) * 2016-11-24 2017-01-11 余姚市舒春机械有限公司 一种船用大功率柴油机喷射装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2030445A1 (de) * 1970-06-20 1972-01-27 Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Einspritzdüse
DE2127460C3 (de) * 1971-06-03 1973-11-22 Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg Rotationssymmetrisch gebaute Brennstoffeinspritzdüse
US4509691A (en) * 1982-07-15 1985-04-09 Lucas Industries Public Limited Company Fuel injection nozzles
DK155757C (da) * 1985-08-01 1989-09-25 Man B & W Diesel As Braendstofinjektor til en dieselmotor, der drives paa gas
DK167502B1 (da) * 1991-10-04 1993-11-08 Man B & W Diesel Gmbh Braendselsinjektor til forbraendingsmotorer
DK171975B1 (da) * 1994-02-07 1997-09-01 Man B & W Diesel Gmbh Brændselsinjektor til en stor totakts forbrændingsmotor

Also Published As

Publication number Publication date
PL330812A1 (en) 1999-06-07
PL183912B1 (pl) 2002-08-30
DK174075B1 (da) 2002-05-21
KR20000016779A (ko) 2000-03-25
CN1074089C (zh) 2001-10-31
DE69712201T2 (de) 2002-10-02
NO986015D0 (no) 1998-12-21
JP3301616B2 (ja) 2002-07-15
CN1222221A (zh) 1999-07-07
NO322670B1 (no) 2006-11-20
JP2000505172A (ja) 2000-04-25
NO986015L (no) 1998-12-21
RU2177560C2 (ru) 2001-12-27
DE69712201D1 (de) 2002-05-29
EP0906508A1 (fr) 1999-04-07
ES2176745T3 (es) 2002-12-01
DK68296A (da) 1997-12-21
WO1997048901A1 (fr) 1997-12-24
UA41479C2 (uk) 2001-09-17
KR100427569B1 (ko) 2004-07-31

Similar Documents

Publication Publication Date Title
EP0906508B1 (fr) Injecteur de carburant pour moteur a combustion interne
US5607106A (en) Low inertia, wear-resistant valve for engine fuel injection systems
RU2280769C2 (ru) Дозирующая система
EP0262539A1 (fr) Soupape d'injection de combustible
EP1621764A1 (fr) Injecteur d'un moteur à combustion interne
US5067658A (en) Diesel engine electromagnetic fuel injector
US6302333B1 (en) Injector for fuel injector systems
US20060033062A1 (en) Valve for controlling fluids
GB2305468A (en) Fuel injection apparatus for internal combustion engines
JP2003510517A (ja) 液体を制御する弁
US4840310A (en) Fuel injection nozzle
US20040069963A1 (en) Valve for controlling fluids
WO2021054006A1 (fr) Vanne d'aspiration électromagnétique et pompe d'alimentation en carburant haute pression
US20160230728A1 (en) Plunger And Fluid-Line System
JP3484206B2 (ja) 内燃機関に用いられる燃料噴射ポンプ
US6543706B1 (en) Fuel injection nozzle for an internal combustion engine
GB2251891A (en) Fuel-injection nozzle for internal-combustion engines
KR20040044404A (ko) 내연기관용 연료분사 펌프
US9624885B2 (en) Valve assembly with a guiding element and fluid injector
EP0821154B1 (fr) Dispositif de pompage de combustible
JP7248783B2 (ja) 電磁弁機構及びそれを備えた高圧燃料供給ポンプ
EP0757175B1 (fr) Injecteur
JP4069767B2 (ja) 燃料噴射ノズル
WO2023222527A1 (fr) Pompe à carburant
GB2303404A (en) I.c. engine fuel-injection valve with spill channel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010613

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69712201

Country of ref document: DE

Date of ref document: 20020529

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176745

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130619

Year of fee payment: 17

Ref country code: CH

Payment date: 20130621

Year of fee payment: 17

Ref country code: DE

Payment date: 20130620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130625

Year of fee payment: 17

Ref country code: FR

Payment date: 20130703

Year of fee payment: 17

Ref country code: NL

Payment date: 20130619

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69712201

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140618

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69712201

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140618

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140618

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140619