EP0905447B1 - Vorrichtung zum Verdampfen von flüssigen Brennstoffen - Google Patents

Vorrichtung zum Verdampfen von flüssigen Brennstoffen Download PDF

Info

Publication number
EP0905447B1
EP0905447B1 EP98117444A EP98117444A EP0905447B1 EP 0905447 B1 EP0905447 B1 EP 0905447B1 EP 98117444 A EP98117444 A EP 98117444A EP 98117444 A EP98117444 A EP 98117444A EP 0905447 B1 EP0905447 B1 EP 0905447B1
Authority
EP
European Patent Office
Prior art keywords
capillary tube
tube
heating
fuel
inside diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98117444A
Other languages
English (en)
French (fr)
Other versions
EP0905447A3 (de
EP0905447A2 (de
Inventor
Siegfried W. Schilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0905447A2 publication Critical patent/EP0905447A2/de
Publication of EP0905447A3 publication Critical patent/EP0905447A3/de
Application granted granted Critical
Publication of EP0905447B1 publication Critical patent/EP0905447B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/22Vaporising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/408Flow influencing devices in the air tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices
    • F23D11/441Vaporising devices incorporated with burners
    • F23D11/448Vaporising devices incorporated with burners heated by electrical means

Definitions

  • the invention relates to a device for vaporizing liquid fuels according to the preamble of claim 1.
  • the residue-free evaporation of liquid hydrocarbon fuels such as. Heating oil and diesel fuel in the Gram range represents a previously unsatisfactorily solved technical problem.
  • the evaporation of such fuels runs in a temperature range of 160 to 380 ° C, what a complete evaporation temperatures of the heat transfer surfaces of more than 200 to 450 ° C is required.
  • whisker threads e.g. H. Schladitz "Fuel Processing and Environmental Protection” in “Oil and gas firing", 1973, Issue 3, page 164 to 168.
  • the whisker mesh forms a structure with a high Porosity and thus a large pore volume and a large one Heat transfer surface.
  • the metallic whisker threads can be used directly as electrical resistance heating become.
  • the flow through the fine-pored structure leads to Connection with the relatively large volume to long dwell times of fuel, which in turn is the deposit of higher-boiling or solid components and cracked macromolecules in the porous whisker skeleton.
  • DE-A-3 403 471 and DE-A-3 516 410 an evaporator known in the liquid fuel through an indirectly heated capillary tube in which the fuel is either is preheated or partially evaporated.
  • the invention has for its object a device for To provide vaporization of liquid fuels the most residue-free evaporation smaller and smallest quantities of liquid fuels in the gram range allows.
  • the main idea of the invention is the liquid Vaporizing fuel in a heatable capillary tube where the inside diameter of the capillary tube as possible is kept small. To the necessary heat transfer area to get the length of the capillary tube accordingly large size. To despite the great length of the capillary tube produce an evaporator with small dimensions To be able to, the capillary tube is preferably in turns arranged to a large length of the capillary tube in one to accommodate small volumes.
  • the heating of the capillary tube can either be done directly by the capillary tube itself is used as a heating conductor, or indirectly by using the Capillary tube is in contact with a heating cartridge.
  • the capillary tube has an inner diameter from about 0.3 to 2.0 mm, preferably from 0.5 to 1.3 mm.
  • the ratio of the length of the capillary tube to its inside diameter is in the range of about 500 to 3000, preferably from 900 to 2300. Given this dimensioning the residence times of the fuel in the capillary tube are in the millisecond range.
  • the low-boiling fractions evaporate first and form an axial steam flow in the capillary. Die Abursiedenden Fractions are thereby against the wall of the Capillary tube pushed so that they are heated more intensely. The entrainment of the high-boiling fractions at speeds up to 160 m / s prevent deposits of residual fractions.
  • the capillary tube has an overheating length, in which also the required minimum system pressure from about 1 to 2 bar.
  • the capillary tube evaporator according to the invention can in all Use cases are used in which one if possible residue-free evaporation of hydrocarbon mixtures is sought.
  • the device can be used as a heating oil evaporator for aerosol formation with the combustion air in Premix burners are used.
  • the capillary tube evaporator can be used for firing larger outputs can be used as pilot and pilot burners. Finally it can also be used as a preheater for heating oil Installation in pressure atomizer nozzle shafts.
  • Fig. 1 shows a capillary tube as it is according to the invention for the Device for vaporizing hydrocarbon fuels, such as heating oil and diesel oil in a mass flow range of 0.1 up to 4.0 kg / h, preferably from 0.2 to 2.4 kg / h becomes.
  • hydrocarbon fuels such as heating oil and diesel oil in a mass flow range of 0.1 up to 4.0 kg / h, preferably from 0.2 to 2.4 kg / h becomes.
  • the capillary tube 10 has an inner diameter d that between 0.3 and 2.0 mm, preferably between 0.5 and 1.3 mm lies.
  • the ratio of the wall thickness of the capillary tube 10 to the inside diameter is 0.2 to 0.5.
  • the length L of the Capillary tube 10 is 500 to 3000 times the inner diameter d, preferably 900 to 2300 times.
  • the wall of the capillary tube 10 is described in later Way heated.
  • the liquid fuel Mf is in the capillary 10 initiated, flows through the capillary tube 10 and emerges from the capillary tube 10 as vapor MD.
  • a first length section L1 on the entry side the liquid fuel supplied through the heated wall of the Capillary tube 10 heated to its boiling point.
  • the fuel evaporates starting with the low boiling fractions.
  • the last outlet-side length section L3 is the liquid one Fuel evaporates completely and is additionally overheated.
  • the heating of the wall of the capillary tube 10 leads to a temporally fluctuating heat generation over the length the capillary tube 10.
  • the temperature of the supplied liquid fuel This results in a axial position of the evaporation zone L2 which fluctuates over time.
  • the the superheating zone L3 downstream of the evaporation zone L2 ensures that despite the fluctuations in the evaporation zone L2 the fuel reliably exits the capillary tube 10 is completely evaporated.
  • the Overheating zone L3 ensures that the fuel vapor with stable flow and the required minimum system pressure from the capillary tube 10 exits from 1 to 2 bar.
  • Figures 2 and 3 show a first embodiment of the device.
  • the capillary tube 10 is helical bent into a spiral.
  • the exit end the capillary tube 10 is bent so that it is in the The central axis of the spiral runs.
  • the entry end of the Capillary tube 10 is also in the central axis of the coil bent.
  • a transition tube piece closes at the inlet end 12, which serves to cross-section the Fuel supply line to the small cross section of the capillary tube 10 to reduce.
  • the transition pipe section 12 goes on the entry side into a threaded sleeve 14, which with a Collar 16 and one on the external thread of the threaded sleeve 14 seated lock nut 18 for screwing the device in the bulkhead of a burner is used.
  • FIG. 3 shows how the capillary tube 10 shown in FIG. 2 is installed in a complete evaporator.
  • the coiled capillary tube 10 inserted into a protective sleeve 20, whose inner wall is insulated by an insulating sleeve 22.
  • an insulating insert 24 used, the axis of the outlet side End of the capillary tube 10 is penetrated.
  • the transition pipe piece 12 with the subsequent threaded sleeve 14 is centered held in an insulating body 26. Is on the entry side the protective sleeve 20 between the collar 16 and the lock nut 18th fixed on the threaded sleeve 14.
  • the connector connection contact 28 is with a electrical guided axially parallel in the insulating body 26 Conductor 32 connected.
  • This conductor 32 carries out axially parallel the coil of the capillary tube 10 and is with its front End set in the insulating insert 24.
  • the front end of the Conductor 32 is directly behind the insulating insert 24 a terminal 34 electrically conductive with the outlet end of the capillary tube 10 connected.
  • the second connector connector 30 leads radially through the insulating body 26 and contacts the transition tube piece in an electrically conductive manner 12th
  • Capillary tube 10 can be connected to a power supply.
  • the connector connector 28 the phase and to the connector terminal contact 30 the Ground of a low-voltage network of up to 42 V.
  • the capillary tube 10 consists of a Heating conductor metal, e.g. made of a chrome-nickel steel.
  • the capillary tube 10 is executed by the capillary tube 10 flowing current directly heated.
  • FIG 4 shows the installation of the device of Figures 2 and 3 into a burner tube.
  • the device is with its protective sleeve 20 coaxially inserted into the hub of an air nozzle 36, and by means of a clamping ring 38 set in the air nozzle 36.
  • the Air nozzle 36 also has a hub coaxially surrounding the hub Swirl body 40.
  • the air nozzle 36 is centered in one Schott 42 used, which in turn in a burner stem 44 sits and closes this except for the air nozzle 36.
  • the burner main pipe 44 is connected to a burner blower socket 46 scheduled.
  • a flame tube 48 is attached, which for generation an injector effect lateral recirculation openings having.
  • a flame monitoring probe is also in the bulkhead 42 50 and a pair of ignition electrodes 52 are used.
  • the structure of the burner tube is apart from the evaporator device known per se.
  • FIG. 5 shows a modification of the installation situation in FIG. 4, in which the evaporator device is axially downstream extends beyond the air nozzle 36, with the air nozzle 36 axially a catch tube 54 is placed.
  • the combustion air is Air nozzle 36 conical and by means of the swirl body 40 with swirl acted upon in the emerging from the capillary tube 10
  • Fuel steam jet initiated to intensive mixing of combustion air and fuel vapor.
  • the swirl is over combustion air supplied to the air nozzle 36 in the trap 54 steered so that it swirls over the widening downstream Catch pipe 54 emerges and with the fuel vapor mixed forms an expanding flame cone.
  • Figures 6 and 7 show a modification of the first embodiment the device, the connection and installation of the helically bent capillary tube 10 are modified.
  • the helically curved capillary tube sits 10 in an electrically conductive protective sleeve 56.
  • Die Protective sleeve 56 is at its downstream end through a electrically conductive cap 58 completed, the centric Exit end of the capillary tube 10 receives, fixed and contacted electrically conductive. That on the entry side Transition tube piece 12 adjoining the end of the capillary tube 10 is inserted into an insulating bush 60.
  • the insulating bush 60 with the transition pipe piece 12 is with the threaded sleeve 14th screwed.
  • the threaded sleeve 14 has a connecting nipple 62 on which a union nut 64 with a conical clamping ring 66 is screwed on.
  • An electric one Terminal contact 68 insulates the protective sleeve 56 and is conductive with the transition pipe section 12 and thus the Capillary tube 10 in connection.
  • the connection contact 68 serves to connect the phase of the power supply while the Protective sleeve 56 establishes the ground connection.
  • FIG. 8 shows a second embodiment of the capillary tube 10.
  • the capillary tube 10 is not in the form of a Spiral but bent in the form of a spiral.
  • the transition pipe piece 12 to supply the liquid fuel is there arranged at the outer end of the spiral, while the outlet end is arranged in the middle.
  • FIG. 9 shows a third embodiment of the capillary tube 10.
  • the capillary tube 10 is in several hairpin bends bent so that going back and forth parallel sections of the capillary tube 10 result.
  • the hairpin bends can be bent so tight that you Radius of curvature R only three times the inner diameter d of the capillary tube is 10.
  • FIG. 10 shows a fourth embodiment of the capillary tube 10, which differs in the electrical contact.
  • the casing tube 70 has only one small outer diameter of e.g. 2 to 3 mm and is from the capillary tube 10 separated by insulation 72 which e.g. is designed as a thin film or varnish.
  • insulation 72 which e.g. is designed as a thin film or varnish.
  • the jacket tube 70 conductively connected to the capillary tube 10.
  • An insulating plug 74 is provided at the end, one Connection contact 76 of the jacket tube 70 against the transition tube piece 12 electrically isolated, which is the second electrical Has contact.
  • the capillary tube 10 with the jacket tube 70 can be bent and installed in any shape without that additional measures for electrical contacting and Power supply to the exit end of the capillary tube 10 are necessary.
  • the capillary tube 10 is designed as a heating conductor and heated directly 11 shows an embodiment in which the capillary tube 10 is indirectly heated.
  • the material of the capillary tube 10 can therefore regardless of its electrical conductivity to get voted.
  • the capillary tube 10 is helical on the outer surface of a cylindrical heat-conducting Sleeve 78 wrapped.
  • a heating cartridge 80 with the electrical line connections 82 and 84 used.
  • the heating cartridge 80 is heated via the thermally conductive sleeve 78, the capillary tube 10 indirectly.
  • the heating cartridge 80 can in a manner known per se for high voltage or low voltage.

Description

Die Erfindung betrifft eine Vorrichtung zum Verdampfen von flüssigen Brennstoffen gemäß dem Oberbegriff des Anspruchs 1.
Die rückstandslose Verdampfung von flüssigen Kohlenwasserstoff-Brennstoffen, wie z.B. Heizöl und Dieselkraftstoff im Gramm-Bereich stellt ein bisher nicht zufriedenstellend gelöstes technisches Problem dar. Die Verdampfung solcher Brennstoffe verläuft in einem Temperaturbereich von 160 bis 380° C, was für eine vollständige Verdampfung Temperaturen der Wärmeübertragungsflächen von mehr als 200 bis 450° C erfordert. Um bei den Verdampfern die Wandtemperatur niedrig zu halten, werden geringe Temperaturdifferenzen verwendet und die Wärmeübertrager werden großflächig und/oder großvolumig ausgebildet.
Die thermische Belastung von Heiz- und Dieselöl führt bei längeren Einwirkungszeiten zu Polymerisationen und Verklumpungen der Makromoleküle, die sich auf den Wärmeübertragungsflächen absetzen. Am Ende der Siedezone lagern sich zusätzlich die nichtverdampften Restfraktionen ab. Diese Ablagerungen können eine Wärmeisolation bewirken, die eine weitere Temperaturerhöhung zur Folge hat. Dadurch treten Verkokungen auf und ein verstärktes Ablagern der Verklumpungen, was zur Verstopfung der Strömungskanäle führen kann.
Großvolumige Verdampfer finden als sogenannte Schalenbrenner in Ölöfen der Haustechnik Verwendung. Hier erfolgt die Verdampfung an der freien Oberfläche der flüssigen Brennstoff-Phase. Die entstehenden Ablagerungen setzen sich am Boden ab und werden periodisch entsorgt.
Aus der DE 32 43 395 A1 ist eine Vorrichtung der eingangs genannten Gattung bekannt. Der Brennstoff wird in einem Rohr verdampft, welches direkt oder indirekt elektrisch beheizt wird. Das Rohr ist großvolumig mit einem relativ großen Innendurchmesser ausgebildet. Es sind Wandtemperaturen von mehr als 1000°C vorgesehen, dementsprechend werden über die Rohrwandung sehr hohe Wärmestromdichten übertragen. Aufgrund der relativ langen Verweilzeit des Brennstoffes in dem Rohr und aufgrund der hohen Wandtemperaturen treten Ablagerungen an der Rohrwand auf. Das als Verdampfungskammer dienende Rohr weist starke Querschnittsänderungen auf, die ungünstige Strömungsverhältnisse mit toten Winkeln verursachen, was weiter die Bildung von Ablagerungen begünstigt. Es ist daher vorgesehen, das Rohr periodisch in einer Reinigungsphase stark aufzuheizen, um die Ablagerungen zu Asche zu verbrennen und dann aus dem Rohr in den Brennraum auszublasen.
Weiter ist es bekannt, Verdampfer mit einer großen Wärmeübertragungsfläche und kleinen Abmessungen dadurch zu bilden, daß der Brennstoff durch ein Geflecht von Whisker-Fäden geführt wird (z.B. H. Schladitz "Brennstoffaufbereitung und Umweltschutz" in "Öl- und Gasfeuerung", 1973, Heft 3, Seite 164 bis 168). Das Whisker-Geflecht bildet eine Struktur mit hoher Porosität und somit einem großen Porenvolumen und einer großen Wärmeübertragungs-Oberfläche. Die metallischen Whisker-Fäden können direkt als elektrische Widerstandsheizung verwendet werden. Das Durchströmen der feinporigen Struktur führt in Verbindung mit dem relativ großen Volumen zu langen Verweilzeiten des Brennstoffes, was wiederum die Ablagerung von höhersiedenden oder festen Bestandteilen und vercrackten Makromolekülen in dem porösen Whiskerskelett zur Folge hat.
Darüber hinaus ist aus DE-A-3 403 471 und DE-A-3 516 410 ein Verdampfer bekannt, in dem flüssiger Brennstoff durch ein indirekt beheiztes Kapillarrohr geführt wird, in dem der Brennstoff entweder vorgewärmt oder teilweise verdampft wird.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Verdampfen von flüssigen Brennstoffen zur Verfügung zu stellen, die eine möglichst rückstandslose Verdampfung kleiner und kleinster Mengen von flüssigen Brennstoffen im Gramm-Bereich ermöglicht.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den Merkmalen des Anspruchs 1.
Vorteilhafte Ausführungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Der wesentliche Gedanke der Erfindung besteht darin, den flüssigen Brennstoff in einem beheizbaren Kapillarrohr zu verdampfen, wobei der Innendurchmesser des Kapillarrohres möglichst klein gehalten wird. Um die notwendige Wärmeübertragungsfläche zu erhalten, wird die Länge des Kapillarrohres entsprechend groß dimensioniert. Um trotz der großen Länge des Kapillarrohres einen Verdampfer mit geringen Bauabmessungen herstellen zu können, wird das Kapillarrohr vorzugsweise in Windungen angeordnet, um eine große Länge des Kapillarrohres in einem kleinen Volumen unterzubringen. Die Beheizung des Kapillarrohres kann entweder direkt erfolgen, indem das Kapillarrohr selbst als Heizleiter verwendet wird, oder indirekt, indem das Kapillarrohr mit einer Heizpatrone in Berührung steht.
Die Verringerung des Innendurchmessers des Rohres, durch welches der Brennstoff zur Verdampfung durchgeleitet wird, zu einem Kapillarrohr führt überraschenderweise nicht zu einem schnellen Zusetzen und Verstopfen des Kapillarrohres, wie dies nach dem Stand der Technik zu erwarten gewesen wäre. Es hat sich vielmehr gezeigt, daß eine weitgehend rückstandslose Verdampfung erreicht werden kann und auch über längere Betriebsdauern keine Ablagerungen auftreten, die den engen Querschnitt des Kapillarrohres zusetzen. Es wird angenommen, daß dies darauf beruht, daß durch die Verengung des Innendurchmessers die Durchlaufzeiten wesentlich verkürzt werden, wobei außerdem das lange Kapillarrohr keinerlei Querschnittssprünge aufweist, welche zu Strömungsablösungen und Strömungsschatten führen könnten. Die große Länge und der kleine Querschnitt des Kapillarrohres sowie periodisch geringe Änderungen der Heizleistung und des Massenstromes führen zu zeitlichen Schwankungen der Verteilung der Wärmestromdichte über die Länge des Kapillarrohres, was wiederum zur Folge hat, daß die kritische Zone, in welcher die flüssige Phase des Brennstoffs in die Dampfphase übergeht zeitlich stromauf und stromab in dem Kapillarrohr wandert. Ablagerungen in einem bestimmten Längenbereich werden dadurch vermieden.
Erfindungsgemäß weist das Kapillarrohr einen Innendurchmesser von etwa 0,3 bis 2,0 mm, vorzugsweise von 0,5 bis 1,3 mm auf. Das Verhältnis der Länge des Kapillarrohres zu seinem Innendurchmesser liegt im Bereich von etwa 500 bis 3000, vorzugsweise von 900 bis 2300. Bei dieser Dimensionierung ergeben sich Verweilzeiten des Brennstoffes in dem Kapillarrohr, die im Bereich von Millisekunden liegen.
In der Zone, in welcher die flüssige Phase in die Dampfphase übergeht, verdampfen zunächst die niedrigsiedenden Fraktionen und bilden eine achsnahe Dampfströmung in der Kapillare. Diehöhersiedenden Fraktionen werden dadurch gegen die Wand des Kapillarrohres gedrängt, so daß diese verstärkt erhitzt werden. Die Mitnahme der hochsiedenden Fraktionen bei Geschwindigkeiten bis zu 160 m/s verhindern Ablagerungen von Restfraktionen. Im Hinblick auf die Schwankung der Verdampfungszone und zur Sicherstellung der Strömungsstabilität ist am Austrittsende des Kapillarrohres eine Überhitzungs-Länge vorgesehen, in der außerdem auch der erforderliche Mindest-System-Druck von ca. 1 bis 2 bar erzeugt wird.
Der erfindungsgemäße Kapillarrohr-Verdampfer kann in allen Anwendungsfällen eingesetzt werden, in welchen eine möglichst rückstandslose Verdampfung von Kohlenwasserstoff-Gemischen angestrebt wird. Beispielsweise kann die Vorrichtung als Heizölverdampfer zur Aerosolbildung mit der Verbrennungsluft in Vorgemisch-Brennern eingesetzt werden. Ebenso ist ein Einsatz als Heizölverdampfer zur Brennstoff-Luft-Gemischbildung in Brennerköpfen mit und ohne Injektor oder in Kombination mit Luftdüsen mit integrierter Drallerzeugung möglich. Da der Verdampfer insbesondere in einem Massenstrom-Bereich von 0,1 bis 4,0 kg/h wirksam arbeitet, eignet er sich insbesondere für den Einsatz in Feuerungen mit einer Wärmeleistung unter 10 kW. Bei Feuerungen größerer Leistungen kann der Kapillarrohr-Verdampfer als Zünd- und Pilotbrenner eingesetzt werden. Schließlich ist auch ein Einsatz möglich als Heizölvorwärmer zum Einbau in Druckzerstäuber-Düsenschäften.
Im folgenden wird die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1
schematisch ein Kapillarrohr, wie es erfindungsgemäß verwendet wird,
Fig. 2
das Kapillarrohr in einer ersten Ausführung,
Fig. 3
die komplette Vorrichtung in der ersten Ausführung,
Fig. 4
die Vorrichtung in der ersten Ausführung in einen Brenner eingebaut,
Fig. 5
die Vorrichtung in der ersten Ausführung in einer modifizierten Einbausituation,
Fig. 6
eine Abwandlung der ersten Ausführung der Vorrichtung,
Fig. 7
eine vergrößerte Detaildarstellung der Fig. 6,
Fig. 8
eine zweite Ausführung des Kapillarrohres,
Fig. 9
eine dritte Ausführung des Kapillarrohres,
Fig. 10
eine vierte Ausführung des Kapillarrohres und
Fig. 11
eine fünfte Ausführung des Kapillarrohres.
Fig. 1 zeigt ein Kapillarrohr, wie es erfindungsgemäß für die Vorrichtung zum Verdampfen von Kohlenwasserstoff-Brennstoffen, wie Heizöl und Dieselöl in einem Massenstrom-Bereich von 0,1 bis 4,0 kg/h, vorzugsweise von 0,2 bis 2,4 kg/h verwendet wird.
Das Kapillarrohr 10 weist einen Innendurchmesser d auf, der zwischen 0,3 und 2,0 mm vorzugsweise zwischen 0,5 und 1,3 mm liegt. Das Verhältnis von Wandstärke des Kapillarrohres 10 zu dessen Innendurchmesser beträgt 0,2 bis 0,5. Die Länge L des Kapillarrohres 10 beträgt das 500- bis 3000-fache des Innendurchmessers d, vorzugsweise das 900- bis 2300-fache.
Die Wandung des Kapillarrohres 10 wird in später beschriebener Weise beheizt. Der flüssige Brennstoff Mf wird in das Kapillarrohr 10 eingeleitet, durchströmt das Kapillarrohr 10 und tritt als Dampf MD aus dem Kapillarrohr 10 aus.
In einem ersten eintrittsseitigen Längenabschnitt L1 wird der zugeführte flüssige Brennstoff durch die beheizte Wand des Kapillarrohres 10 bis zu seinem Siedepunkt aufgeheizt. In einem anschließenden Längenabschnitt L 2 verdampft der Brennstoff beginnend mit den niedrigsiedenden Fraktionen. In einem letzten austrittsseitigen Längenabschnitt L3 ist der flüssige Brennstoff vollständig verdampft und wird zusätzlich überhitzt. Die Beheizung der Wandung des Kapillarrohres 10 führt zu einer zeitlich schwankenden Wärmeerzeugung über die Länge des Kapillarrohres 10. Außerdem schwankt die Temperatur des zugeführten flüssigen Brennstoffs. Dadurch ergibt sich eine zeitlich schankende axiale Lage der Verdampfungszone L2. Die der Verdampfungszone L2 nachgeschaltete Überhitzungszone L3 stellt sicher, daß trotz der Schwankungen der Verdampfungszone L2 der Brennstoff beim Austritt aus dem Kapillarrohr 10 zuverlässig vollständig verdampft ist. Außerdem wird durch die Überhitzungszone L3 gewährleistet, daß der Brennstoffdampf mit stabiler Strömung und dem erforderlichen Mindest-System-Druck von 1 bis 2 bar aus dem Kapillarrohr 10 austritt.
Die Figuren 2 und 3 zeigen eine erste Ausführung der Vorrichtung.
Um das lange Kapillarrohr 10 platzsparend in einem Brenner unterbringen zu können, ist das Kapillarrohr 10 schraubenlinienförmig zu einer Wendel gebogen. Das austrittseitige Ende des Kapillarrohres 10 ist dabei so gebogen, daß es in der Mittelachse der Wendel verläuft. Das eintrittseitige Ende des Kapillarrohres 10 ist ebenfalls in die Mittelachse der Wendel gebogen. An das eintrittseitige Ende schließt sich ein Übergangsrohrstück 12 an, welches dazu dient, den Querschnitt der Brennstoffzuführleitung auf den kleinen Querschnitt des Kapillarrohres 10 zu reduzieren. Das Übergangsrohrstück 12 geht eintrittsseitig in eine Gewindemuffe 14 über, die mit einem Bund 16 und einer auf dem Außengewinde der Gewindemuffe 14 sitzenden Gegenmutter 18 zum Einschrauben der Vorrichtung in das Schott eines Brenners dient.
Figur 3 zeigt, wie das in Figur 2 dargestellte Kapillarrohr 10 in einen kompletten Verdampfer eingebaut wird. Hierzu wird das gewendelte Kapillarrohr 10 in eine Schutzhülse 20 eingesetzt, deren Innenwandung durch eine Isolierhülse 22 isoliert ist. In das austrittsseitige Ende der Schutzhülse 20 ist ein Isoliereinsatz 24 eingesetzt, der achsmittig von dem austrittsseitigen Ende des Kapillarrohres 10 durchsetzt wird. Das Übergangsrohrstück 12 mit der anschließenden Gewindemuffe 14 wird zentriert in einem Isolierkörper 26 gehalten. Eintrittsseitig ist die Schutzhülse 20 zwischen dem Bund 16 und der Gegenmutter 18 auf der Gewindemuffe 14 festgelegt. In den Isolierkörper 26 sind radial Steckverbinder-Anschlußkontakte 28 und 30 eingesetzt. Der Steckverbinder-Anschlußkontakt 28 ist mit einem achsparallel in den Isolierkörper 26 geführten elektrischen Leiter 32 verbunden. Dieser Leiter 32 führt achsparallel durch die Wendel des Kapillarrohres 10 und ist mit seinem vorderen Ende in dem Isoliereinsatz 24 festgelegt. Das vordere Ende des Leiters 32 ist unmittelbar hinter dem Isoliereinsatz 24 mittels einer Anschlußklemme 34 elektrisch leitend mit dem Austrittsende des Kapillarrohres 10 verbunden. Der zweite Steckverbinder-Anschlußkontakt 30 führt radial durch den Isolierkörper 26 und kontaktiert elektrisch leitend das Übergangsrohrstück 12.
Über die Steckverbinder-Anschlußkontakte 28 und 30 kann das Kapillarrohr 10 an eine Stromversorgung angeschlossen werden.
Beispielsweise wird an den Steckverbinder-Anschlußkontakt 28 die Phase und an den Steckverbinder-Anschlußkontakt 30 die Masse eines Niederspannungsnetzes von bis zu 42 V angelegt.
Das Kapillarrohr 10 besteht in dieser Ausführung aus einem Heizleiter-Metall, z.B. aus einem Chrom-Nickel-Stahl. In dieser Ausführung wird das Kapillarrohr 10 durch den das Kapillarrohr 10 durchfließenden Strom direkt beheizt.
Figur 4 zeigt den Einbau der Vorrichtung der Figuren 2 und 3 in ein Brennerrohr. Die Vorrichtung ist mit ihrer Schutzhülse 20 koaxial in die Nabe einer Luftdüse 36 eingesetzt, und mittels eines Klemmringes 38 in der Luftdüse 36 festgelegt. Die Luftdüse 36 weist außerdem einen die Nabe koaxial umschließenden Drallkörper 40 auf. Die Luftdüse 36 ist zentrisch in ein Schott 42 eingesetzt, welches wiederum in einem Brenner-Stammrohr 44 sitzt und dieses bis auf die Luftdüse 36 verschließt. Das Brenner-Stammrohr 44 ist an einen Brenner-Gebläsestutzen 46 angesetzt. An das stromabliegende Ende des Brenner-Stammrohres 44 ist ein Flammrohr 48 angesetzt, welches zur Erzeugung einer Injektor-Wirkung seitliche Rezirkulationsöffnungen aufweist. In das Schott 42 sind außerdem eine Flammen-Überwachungssonde 50 und ein Zündelektrodenpaar 52 eingesetzt. Von der Verdampfer-Vorrichtung abgesehen ist der Aufbau des Brennerrohres an sich bekannt.
Figur 5 zeigt eine Abwandlung der Einbausituation der Figur 4, in welcher die Verdampfer-Vorrichtung stromabgerichtet axial über die Luftdüse 36 hinausragt, wobei auf die Luftdüse 36 axial ein Fangrohr 54 aufgesetzt ist.
In dem Aufbau der Figur 4 wird die Verbrennungsluft über die Luftdüse 36 konisch und mittels des Drallkörpers 40 mit Drall beaufschlagt in den aus dem Kapillarrohr 10 austretenden Brennstoff-Dampfstrahl eingeleitet, um eine intensive Durchmischung von Verbrennungsluft und Brennstoffdampf zu erzielen. Im Ausführungsbeispiel der Figur 5 wird die drallbehaftet über die Luftdüse 36 zugeführte Verbrennungsluft in dem Fangrohr 54 so gelenkt, daß sie drallbehaftet über das sich stromab erweiternde Fangrohr 54 austritt und mit dem Brennstoffdampf vermischt einen sich erweiternden Flammkegel bildet.
Die Figuren 6 und 7 zeigen eine Abwandlung der ersten Ausführung der Vorrichtung, wobei der Anschluß und Einbau des wendelförmig gebogenen Kapillarrohres 10 modifiziert sind.
In dieser Ausführung sitzt das wendelförmig gebogene Kapillarrohr 10 in einer elektrisch leitenden Schutzhülse 56. Die Schutzhülse 56 ist an ihrem stromabliegenden Ende durch eine elektrisch leitende Kappe 58 abgeschlossen, die zentrisch das Austrittsende des Kapillarrohres 10 aufnimmt, fixiert und elektrisch leitend kontaktiert. Das an das eintrittsseitige Ende des Kapillarrohres 10 anschließende Übergangsrohrstück 12 ist in eine Isolierbuchse 60 eingesetzt. Die Isolierbuchse 60 mit dem Übergangsrohrstück 12 ist mit der Gewindemuffe 14 verschraubt. Hierzu weist die Gewindemuffe 14 einen Anschlußnippel 62 auf, auf welchen eine Überwurfmutter 64 mit einem konischen Klemmring 66 aufgeschraubt wird. Ein elektrischer Anschlußkontakt 68 durchsetzt isoliert die Schutzhülse 56 und steht leitend mit dem Übergangsrohrstück 12 und damit dem Kapillarrohr 10 in Verbindung. Der Anschlußkontakt 68 dient zum Anschließen der Phase der Stromversorgung, während die Schutzhülse 56 die Masseverbindung herstellt.
Figur 8 zeigt eine zweite Ausführung des Kapillarrohres 10. In dieser Ausführung ist das Kapillarrohr 10 nicht in Form einer Wendel sondern in Form einer Spirale gebogen. Das Übergangsrohrstück 12 zum zuführen des flüssigen Brennstoffes ist dabei am Außenende der Spirale angeordnet, während das Austrittsende mittig angeordnet ist.
Figur 9 zeigt eine dritte Ausführung des Kapillarrohres 10. In dieser Ausführung ist das Kapillarrohr 10 in mehreren Haarnadelkrümmungen gebogen, so daß sich vor- und zurücklaufende parallele Abschnitte des Kapillarrohres 10 ergeben. Die Haarnadelkrümmungen können dabei so eng gebogen werden, daß ihr Krümmungsradius R nur das dreifache des Innendurchmessers d des Kapillarrohres 10 beträgt.
Figur 10 zeigt eine vierte Ausführung des Kapillarrohres 10, die sich in der elektrischen Kontaktierung unterscheidet. Auf das Kapillarrohr 10 ist koaxial ein elektrisch leitendes Mantelrohr 70 aufgeschoben. Das Mantelrohr 70 weist nur einen geringen Außendurchmesser von z.B. 2 bis 3 mm auf und ist von dem Kapillarrohr 10 durch eine Isolierung 72 getrennt, die z.B. als Folie oder Lack mit geringer Stärke ausgebildet ist. An dem Austrittsende des Kapillarrohres 10 ist das Mantelrohr 70 mit dem Kapillarrohr 10 leitend verbunden. Am eintrittsseitigen Ende ist ein Isolierstopfen 74 vorgesehen, der einen Anschlußkontakt 76 des Mantelrohres 70 gegen das Übergangsrohrstück 12 elektrisch isoliert, welches den zweiten elektrischen Kontakt aufweist.
In dieser Ausführung kann das Kapillarrohr 10 mit dem Mantelrohr 70 in beliebiger Form gebogen und eingebaut werden, ohne daß zusätzliche Maßnahmen zur elektrischen Kontaktierung und Stromzuführung zu dem austrittsseitigen Ende des Kapillarrohres 10 notwendig sind.
Während in den bisher beschriebenen Ausführungen das Kapillarrohr 10 als Heizleiter ausgebildet ist und direkt beheizt wird, zeigt Figur 11 eine Ausführung, bei welcher das Kapillarrohr 10 indirekt beheizt wird. Das Material des Kapilarrohres 10 kann daher unabhängig von seinen elektrischen Leiteigenschaften gewählt werden.
In diesem Ausführungsbeispiel ist das Kapillarrohr 10 schraubenlinienförmig auf die Mantelfläche einer zylindrischen wärmeleitenden Hülse 78 gewickelt. In die Hülse 78 wird koaxial eine Heizpatrone 80 mit den elektrischen Leitungsanschlüssen 82 und 84 eingesetzt. Die Heizpatrone 80 beheizt über die wärmeleitende Hülse 78 das Kapillarrohr 10 indirekt. Die Heizpatrone 80 kann in an sich bekannter Weise für Hochspannung oder Niederspannung ausgelegt sein.
Bezugszeichenliste
10
Kapillarrohr
12
Übergangsrohrstück
14
Gewindemuffe
16
Bund
18
Gegenmutter
20
Schutzhülse
22
Isolierhülse
24
Isoliereinsatz
26
Isolierkörper
28
Steckverbinder-Anschlußkontakt-Phase
30
Steckverbinder-Anschlußkontakt-Masse
32
Leiter
34
Anschlußklemme
36
Luftdüse
38
Klemmring
40
Drallkörper
42
Schott
44'
Brenner-Stammrohr
46
Brenner-Gebläsestutzen
48
Flammrohr
50
Flammen-Überwachungssonde
52
Zündelektroden
54
Fangrohr
56
Schutzhülse
58
Kappe
60
Isolierbuchse
62
Anschlußnippel
64
Überwurfmutter
66
Klemmring
68
Anschlußkontakt
70
Mantelrohr
72
Isolierung
74
Isolierstopfen
76
Anschlußkontakt
78
Hülse
80
Heizpatrone
82
Anschluß
84
Anschluß
d
Innendurchmesser
L
Länge
L1
Aufheizlänge
L2
Verdampfungslänge
L3
Überhitzungslänge

Claims (20)

  1. Vorrichtung zum Verdampfen von flüssigen Brennstoffen, mit einem Rohr, durch welches der Brennstoff hindurchgeleitet wird und dessen Wandung elektrisch beheizbar ist, um dem Brennstoff die Verdampfungswärme zuzuführen, dadurch gekennzeichnet, daß das Rohr ein Kapillarrohr (10) ist, dessen Innendurchmesser (d) 0,3 bis 2,0 mm beträgt und desse Länge (L) das 500- bis 3000-fache des Innendurchmessers (d) beträgt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Innendurchmesser (d) des Kapillarrohres (10) 0,5 bis 1,3 mm beträgt.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Länge (L) des Kapillarrohres (10) das 900-bis 2300-fache des Innendurchmesser (d) beträgt.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wandstärke des Kapillarrohres (10) das 0,2- bis 0,5-fache des Innendurchmessers (d) beträgt.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kapillarrohr (10) als Heizleiter ausgebildet ist und zur direkten Beheizung ein elektrischer Strom durch das Kapillarrohr (10) geleitet wird.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das Kapillarrohr (10) aus einem CrNi-Stahl besteht.
  7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß an die Enden des Kapillarrohres (10) eine Niederspannung von weniger als etwa 50 V angelegt wird.
  8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet daß das austrittsseitige Ende des Kapillarrohres (10) über einen separaten Leiter (32) an die Spannung gelegt wird.
  9. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß das austrittsseitige Ende des Kapillarrohres (10) über eine Schutzhülse (56, 58) an Massepotential gelegt wird.
  10. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß das Kapillarrohr (10) von einem elektrisch leitenden Mantelrohr (70) umschlossen und durch eine Isolierung (72) gegen das Mantelrohr (70) isoliert ist, daß das Mantelrohr (70) am austrittsseitigen Ende des Kapillarrohres (10) mit diesem elektrisch leitend in Verbindung steht und daß das Mantelrohr (70) als elektrischer Anschluß des austrittsseitigen Endes des Kapillarrohres (10) dient.
  11. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Wandung des Kapillarrohres (10) durch eine elektrische Widerstandsheizung indirekt beheizt wird.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß das Kapillarrohr (10) mit der Außenmantelfläche einer Heizpatrone (80) in Berührung steht oder mit der Außenfläche einer wärmeleitenden Hülse (78), in welche die Heizpatrone (80) eingesetzt wird.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Kapillarrohr (10) als schraubenförmige Wendel gebogen ist.
  14. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Kapillarrohr (10) als Spirale gebogen ist.
  15. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Kapillarrohr (10) mit Haarnadelkrümmungen in parallel zueinander verlaufende Abschnitte gebogen ist.
  16. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 15 als Heizölverdampfer zur Aerosolbildung mit der Verbrennungsluft in Vorgemisch-Brennern.
  17. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 15 als Heizölverdampfer zur Brennstoff-Luft-Gemischbildung in Brennerköpfen für Wärmeleistungen unter 10 KW.
  18. Verwendung einer Vorrichtung nach Anspruch 17 mit einer Luftdüse (36), die eine Einrichtung (40) zur Beaufschlagung der Verbrennungsluft mit Drall aufweist.
  19. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 15 als Zünd- und Pilotbrenner in Feuerungen größerer Leistungen oder in mehrstufigen Modulbrennern.
  20. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 15 als Heizölvorwärmer zum Einbau in Druckzerstäuber-Düsenschäften.
EP98117444A 1997-09-30 1998-09-15 Vorrichtung zum Verdampfen von flüssigen Brennstoffen Expired - Lifetime EP0905447B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19743087A DE19743087A1 (de) 1997-09-30 1997-09-30 Vorrichtung zum Verdampfen von flüssigen Brennstoffen
DE19743087 1997-09-30

Publications (3)

Publication Number Publication Date
EP0905447A2 EP0905447A2 (de) 1999-03-31
EP0905447A3 EP0905447A3 (de) 1999-11-24
EP0905447B1 true EP0905447B1 (de) 2002-11-27

Family

ID=7844071

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98117444A Expired - Lifetime EP0905447B1 (de) 1997-09-30 1998-09-15 Vorrichtung zum Verdampfen von flüssigen Brennstoffen

Country Status (4)

Country Link
EP (1) EP0905447B1 (de)
AT (1) ATE228631T1 (de)
DE (2) DE19743087A1 (de)
DK (1) DK0905447T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313916B2 (en) * 2002-03-22 2008-01-01 Philip Morris Usa Inc. Method and apparatus for generating power by combustion of vaporized fuel
JP4489600B2 (ja) * 2003-01-23 2010-06-23 フィリップ・モリス・ユーエスエイ・インコーポレイテッド 動力を発生させるためのハイブリッドシステム
US7177535B2 (en) 2003-07-01 2007-02-13 Philip Morris Usa Inc. Apparatus for generating power and hybrid fuel vaporization system
TWI341901B (en) * 2003-07-01 2011-05-11 Philip Morris Usa Inc Apparatus for generating power and hybrid fuel vaporization system therefor
US8502064B2 (en) 2003-12-11 2013-08-06 Philip Morris Usa Inc. Hybrid system for generating power
DE102004014441B4 (de) * 2004-03-24 2007-09-13 Webasto Ag Brennstoffverdampfer für ein Fahrzeug-Heizgerät
EP2278223A1 (de) * 2004-05-19 2011-01-26 Innovative Energy, Inc. Verbrennungsverfahren und Verbrennungsvorrichtung
DE102008046471B4 (de) * 2008-09-09 2013-01-10 VLM GmbH - Innovative Korrosionsprüftechnik, Labortechnik und Dienstleistungen Dampfgenerator
CN113925208B (zh) * 2021-11-25 2024-01-16 深圳市汉清达科技有限公司 一种电子烟用发热装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH630266A5 (en) * 1980-02-19 1982-06-15 Jakob Kamm Evaporation appliance and use thereof
DE3243395C2 (de) 1982-11-24 1985-07-25 Danfoss A/S, Nordborg Verdampfungsbrenner für flüssigen Brennstoff
DE3403471A1 (de) * 1984-02-01 1985-08-08 BERU Ruprecht GmbH & Co KG, 7140 Ludwigsburg Brennerelement fuer fluessige brennstoffe
DE3516410A1 (de) * 1985-05-07 1986-11-13 BERU Ruprecht GmbH & Co KG, 7140 Ludwigsburg Verdampferelement

Also Published As

Publication number Publication date
ATE228631T1 (de) 2002-12-15
EP0905447A3 (de) 1999-11-24
DK0905447T3 (da) 2003-04-07
DE59806423D1 (de) 2003-01-09
DE19743087A1 (de) 1999-05-27
EP0905447A2 (de) 1999-03-31

Similar Documents

Publication Publication Date Title
AT391543B (de) Verfahren zum betrieb eines verdampfungsbrenners
EP0905447B1 (de) Vorrichtung zum Verdampfen von flüssigen Brennstoffen
CH628133A5 (de) Oelbrenner mit druckzerstaeuberduese fuer heizoel.
DE3010078A1 (de) Mit fluessigem brennstoff betriebener brenner fuer heizvorrichtungen
EP0543323B1 (de) Brenner für Industrieöfen
EP0843083B1 (de) Brennstoffvorverdampfer
DE19506950C2 (de) Glühstiftkerze für Dieselmotoren
DE3716411C2 (de)
EP0309723B1 (de) Zündbrenner in einer Vorrichtung zum Verbrennen von Festkörperpartikeln im Abgas von Brennkraftmaschinen
DE3243397C2 (de) Hocherhitzbares Brennstoffaufbereitungselement für einen Brenner, insbesondere einen mit flüssigem Brennstoff gespeisten Verdampfungsbrenner, und Verfahren zu dessen Herstellung
DE10239414B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10239409B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
EP1555482A2 (de) Vorrichtung zur Erzeugung eines Luft/Kohlenwasserstoff-Gemischs
DE2750080C2 (de)
DE3309133A1 (de) Flammgluehstiftkerze zum vorwaermen der ansaugluft von brennkraftmaschinen
CH662640A5 (de) Vergasungsbrenner fuer fluessigen brennstoff.
DE2846282C2 (de) Ölvorwärmeinrichtung für einen Druckzerstäuberbrenner
EP1432497A1 (de) Einrichtung zur abgasnachbehandlung
EP1291079B1 (de) Vorrichtung zum Einbringen eines Brennstoff/Luft-Gemisches in einen Brenner und Verfahren zur Montage einer solchen Vorrichtung
DE3516410A1 (de) Verdampferelement
EP0495402B1 (de) Ölvorwärmeeinrichtung für einen Druckzerstäuberbrenner
DE3419210C2 (de) Verdampfungsbrenner für flüssigen Brennstoff
DE102004055436B4 (de) Vorrichtung zur Vorwärmung von flüssigem Brennstoff
DE10059846C2 (de) Zündelement zur Zündung von Kraftstoff in Zerstäuberbrennern
DE19903766C1 (de) Brenner mit einem Zündfunkengeber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 6F 23K 5/22 A, 6F 23K 5/20 B, 6F 23D 11/44 B, 6B 01D 1/00 B, 6F 23D 11/40 B

AKX Designation fees paid
17P Request for examination filed

Effective date: 20000506

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE DK FR IT LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK FR IT LI

REF Corresponds to:

Ref document number: 228631

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

REF Corresponds to:

Ref document number: 59806423

Country of ref document: DE

Date of ref document: 20030109

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20040123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040311

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040312

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040316

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060328

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403