EP0902192B1 - Spiralgehäusepumpe - Google Patents

Spiralgehäusepumpe Download PDF

Info

Publication number
EP0902192B1
EP0902192B1 EP98115674A EP98115674A EP0902192B1 EP 0902192 B1 EP0902192 B1 EP 0902192B1 EP 98115674 A EP98115674 A EP 98115674A EP 98115674 A EP98115674 A EP 98115674A EP 0902192 B1 EP0902192 B1 EP 0902192B1
Authority
EP
European Patent Office
Prior art keywords
rib
housing
centrifugal pump
casing
rib parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98115674A
Other languages
English (en)
French (fr)
Other versions
EP0902192A2 (de
EP0902192A3 (de
Inventor
Stephan Dr. Bross
Peter Hergt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB AG
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB AG filed Critical KSB AG
Publication of EP0902192A2 publication Critical patent/EP0902192A2/de
Publication of EP0902192A3 publication Critical patent/EP0902192A3/de
Application granted granted Critical
Publication of EP0902192B1 publication Critical patent/EP0902192B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers

Definitions

  • the invention relates to a centrifugal pump with a housing of the type Double spiral and with a rib arranged therein as a partition, the rib is formed at least in two parts, with between the rib parts one or more stomata are formed, and a housing spur opposite rib part is for this purpose with a gap opening Distance arranged.
  • a double spiral housing consists of two staggered by 180 ° Spiral halves in which a fluid flowing out of the impeller is collected and is supplied to a common pressure port. Because of the quasi mirror-image arrangement of the two spiral halves arises along one Impeller circumference an approximately symmetrical pressure distribution, the resulting force components cancel each other out.
  • a double spiral casing is created in that a simple spiral housing So-called rib is used as a partition, which is in the direction of rotation of the impeller seen about 180 ° after a spur forms a second spiral half. The Side of the rib facing away from the impeller, the back, limits one Bypass channel through which a fluid collected in the first spiral half in the pressure port is directed.
  • CH-A 219 739 is a rotary conveyor with a spiral housing known, in which the problem was to be solved by inside the housing cross currents to avoid the resulting losses.
  • several partition walls are used in the spiral housing, so Form constant pressure channels.
  • the dimensions of such as constant pressure channels trained guide channels are such that the cross section only in the ratio the loss of speed is changed by the friction. With such Equal pressure channels can, however, have the radial force effect of a double spiral housing not be improved.
  • the invention is therefore based on the problem of developing a double spiral housing which has a good spiral force profile with simple, in particular casting technology, production.
  • the solution to this problem provides that the wrap angle ⁇ of a rib part depending on the number n of rib parts used in the range of 0.7 ⁇ 360 ° 2 * n ⁇ 1.1 ⁇ 360 ° 2 * n lies.
  • the rib parts used can therefore be of the same length or of different lengths.
  • This solution allows for spiral casings, the rib of which is at least in two parts is formed, wherein one or more stomata between the rib parts are trained, a problem-free manufacture of a double spiral housing, the cross section of which can be of any design.
  • the well-known Rectangular, trapezoidal, pear spirals etc. can be used without any problems.
  • the rib By forming the rib as a multi-part component, which is made of at least two spaced apart, one gap opening forming rib parts is a simple placement of the rib parts possible within the spiral and there remains a balanced pressure distribution preserved along the circumference of the impeller. Furthermore, this results in opposite a simple spiral housing an improved radial force curve.
  • Accessibility is improved if the one facing the housing spur Rib part with a gap forming a gap opening is arranged. This measure improves in the area of the double spiral rib parts forming the accessibility to the flow channels created therefrom.
  • One embodiment of the invention provides that the angular position ⁇ of the first rib part, viewed in the direction of flow, relative to the housing spur in the range of 0.8 360 ° n ⁇ 360 ° n ⁇ 1.2 lies. It is then sufficient that the distance and the position of the rib parts from one another is set such that access to the flow channels delimited by the rib parts is ensured by the gap openings existing between the rib parts and between the rib part and the housing current. For this purpose, the distance between the leading edges of the rib parts is set so that sufficiently large stomata are formed in the area of the rib parts.
  • the angular difference of the rib parts ⁇ corresponds to the condition 0.8 ⁇ ⁇ 1.5 ⁇ ⁇
  • the profiles of the rib parts can have the same or different shapes, the rib length having no influence due to the reference to the blade leading edges. It has proven to be advantageous for a further reduction in the radial forces if the leading edges of the rib parts are arranged on circles with diameters D r , the ratios of which to the impeller diameter D 2 are in the range from 1.03 ⁇ D r D 2 ⁇ 1.15 lies.
  • the diameters on which the leading edges of the individual rib parts are arranged do not have to be identical, but the leading edges of the rib parts can be located on different diameters.
  • the radial forces are also reduced in that the leading edge is one of the Rib parts are always arranged on a smaller diameter than one end a rib part in front of it in the direction of flow.
  • the spiral casing is of course designed so that the limited by a rib part Bypass channel does not hinder the outflow of the fluid from the first spiral part or adversely affected.
  • the profile of the rib parts is not subject to any restrictions. It can Rib parts with a constant thickness or a predetermined thickness distribution Find use. It is also possible that the rib parts are different Can have profile shapes. Such a formation of a rib is one Very easy casting production of a double spiral housing possible. It also offers the advantage that such rib parts in a simple manner can be retrofitted. One sees an additional possibility adjustable arrangement of the rib parts in front. Depending on the arrangement of the axis of rotation on the double rib part, these can be used in their angle of attack compared to that from the Impeller emerging flow can be changed.
  • the reduction in radial force has a positive effect the invention also the measure, according to which in the from the housing spur outgoing first quadrant of the double spiral housing compared to one normal spiral development there is an increase in cross-sectional area.
  • the housing 1 shows a housing 1 of a centrifugal pump, in which the outer diameter D 2 is represented by an impeller.
  • the housing 1 is designed here in the manner of a double spiral housing, the first spiral part 3, seen in the direction of flow, starting at the housing spur 4.
  • the housing spur 4 is in the first quadrant, in which a pressure port 5 is also located.
  • the first spiral part 3 has an increasing cross-sectional enlargement, which in this example reaches its maximum at the end of the II. Quadrant. From here, a fluid is led through a bypass channel 6, 7 to the pressure port 5.
  • the bypass duct 6, 7 is delimited by the wall surface of the housing 1 and the wall surface of the rib parts 8, 9 used here. Similar to a double spiral housing, these rib parts 8, 9 form the other or second spiral part.
  • a gap opening 10 located between the rib parts 8, 9 and a gap opening 11 located between the housing spur 4 and the end of the rib part 9 enable access to the bypass channels 6, 7 during the manufacture of the housing can be easily removed and the cast surface plastered.
  • the flow-bearing surfaces can thus be given a roughness, with the aid of which the efficiency of such a pump housing can be improved.
  • the rib parts 8, 9 shown here can have a constant thickness d or, as shown, can be provided with a blade profile the same or different.
  • the rib part 8 is shown longer than the rib part 9.
  • the position of the first rib part 8 seen in the flow direction in relation to the housing spur 4 lying in the first housing quadrant is determined by the angle ⁇ .
  • This angular position ⁇ results according to formula (2).
  • the distance ⁇ shown in FIG. 1 between the leading edges 12, 13 of the rib parts 8, 9 is defined by the formula (3) listed above.
  • the leading edges 12, 13 of the rib parts 8, 9 lie on circles with a diameter D r , the ratio of which to the impeller diameter D 2 according to Formula 4 is in the range of 1.03 ⁇ D r D 2 ⁇ 1.15 lies.
  • Quadrant of the housing 1 arranged rib part 8 is shorter here, while the rib part 9 located in the fourth quadrant has a greater overall length.
  • a measure, which is shown here in the first quadrant of the housing 1, also has a positive effect on a reduction in the radial force.
  • An enlargement of the spiral cross section in this area, which increases compared to normal spiral development, is shown here by a broken line.
  • the housing spur 4 is also at a greater distance from the outer diameter D 2 of an impeller.
  • the cross-sectional area enlargement 14 in the first quadrant of the spiral housing and the position of the rib parts 8, 9 in relation to one another and on the housing spur 4 are adapted to the hydraulics of an impeller used in each case and the respective spiral shape. This allows radial force reductions to be achieved which correspond to the radial force curve of a traditional double spiral design. With the aid of variations in relation to the position of the leading edges 12, 13, the shape and the size of the rib parts 8, 9, it is possible to influence the course of the radial force.

Description

Die Erfindung betrifft eine Kreiselpumpe mit einem Gehäuse nach Art einer Doppelspirale und mit darin angeordneten, als Trennwand ausgebildeten Rippe, die Rippe ist mindestens zweiteilig ausgebildet, wobei zwischen den Rippenteilen ein oder mehrere Spaltöffnungen ausgebildet sind, und ein einem Gehäusesporn gegenüberliegender Rippenteil ist dazu mit einem eine Spaltöffnung bildenden Abstand angeordnet.
Bei Kreiselpumpen ist eine durch Wechselwirkung von Laufrad und Pumpengehäuse bzw. Leitrad erzeugte hydraulische Radialkraft bekannt, die in der Ebene des Laufrades liegt. Solche Radialkräfte sind diversen Einflüssen unterworfen, wie sie beispielsweise im KSB-Kreiselpumpenlexikon, 3. Auflage, 1989, Seiten 242 und 243 beschrieben sind. Einfache Spiralgehäusepumpen besitzen im Auslegepunkt entlang des Laufradumfanges eine nahezu konstante Druck- oder Geschwindigkeitsverteilung. In diesem Punkt kann eine Spiralgehäusepumpe nahezu radialkraftfrei betrieben werden. Wird jedoch eine einfache Spiralgehäusepumpe aufgrund geänderter Betriebsbedingungen im Teillast- oder Überlastbereich gefahren, dann führt dies zu ansteigenden Radialkräften infolge sich ändernder Druck- bzw. Geschwindigkeitsverteilungen entlang des Laufradumfanges.
Dieser Nachteil führte zur Entwicklung von Doppelspiralgehäusen, wie sie beispielsweise durch die US-A-2 955 540 bekannt sind, und bei denen die Radialkräfte über den gesamten Betriebsbereich auf einem niedrigen Niveau liegen. Ein Doppelspiralgehäuse besteht aus zwei um 180° versetzte Spiralhälften, in denen ein aus dem Laufrad ausströmendes Fluid gesammelt und einem gemeinsamen Druckstutzen zugeführt wird. Aufgrund der quasi spiegelbildlichen Anordnung der zwei Spiralhälften entsteht entlang eines Laufradumfanges eine annähernd symmetrische Druckverteilung, deren resultierende Kraftkomponenten sich gegenseitig aufheben. Ein Doppelspiralgehäuse wird dadurch geschaffen, daß in einem einfachen Spiralgehäuse eine sogenannte Rippe als Trennwand eingesetzt ist, die in Laufraddrehrichtung gesehen ca. 180° nach einem Gehäusesporn eine zweite Spiralhälfte bildet. Die vom Laufrad abgekehrte Seite der Rippe, die Rückseite, begrenzt einen Umführungskanal, durch den ein in der ersten Spiralhälfte gesammeltes Fluid in den Druckstutzen geleitet wird.
Die fertigungstechnische Herstellung von Doppelspiralgehäusen ist aufwendig und kostenintensiv, da die für einen Abguß notwendigen langen Gehäusekerne aufwendig gesichert werden müssen, um während des Gußvorganges nicht aufzuschwimmen. Nach der Fertigstellung des Gußes bereitet die Entfernung der Kerne erhebliche Schwierigkeiten beim Gußputzen. Aus diesem Grunde werden häufig zusätzliche Löcher in der Pumpengehäusewand vorgesehen, die nach der Entfernung der Gußkerne in aufwendiger Weise drucksicher verschweißt werden müssen. Trotz dieser Maßnahmen kann in den schwer zugänglichen Bereichen des Doppelspiralgehäuses nur eine unvollständige Oberflächenbearbeitung erfolgen, wodurch Wirkungsgradeinbußen die Folge sind. Zur Vermeidung dieser Nachteile ist es durch die US-A-2 955 540 bekannt, die Rippe als separates Einzelteil auszubilden und nachträglich in ein gegossenes Spiralgehäuse einzusetzen. Diese Maßnahme erleichtert zwar die Oberflächenbearbeitung des Gußteiles beim Putzen, sie erfordert jedoch einen hohen mechanischen Aufwand bei der Herstellung eines Doppelspiralgehäuses, wodurch sich kein Kostenvorteil ergibt.
Aus diesem Grunde erfolgten Forschungstätigkeiten, die sich mit der Geometrie der Rippen von Doppelspiralgehäusen auseinandersetzen und deren Radialkraftverlauf untersuchten. So ist es beispielsweise durch die US-A-3 289 598 bekannt, daß durch Variation der Länge der Rippe bzw. der Variation des Umschlingungswinkels dieser Rippe eine Änderung im Radialkraftverlauf eintreten kann. In Fig. 7 der US-A-3 289 598 sind die Radialkraftverläufe von veränderten Rippen gezeigt. Eine Verkürzung bringt nur eine unwesentliche fertigungstechnische Verbesserung und hat den zusätzlichen Nachteil, daß die Verkürzung mit einem Ansteigen der Radialkräfte im Teillast- und Überlastbereich verbunden ist.
Durch die CH-A 219 739 ist eine Kreiselfördermaschine mit Spiralgehäuse bekannt, bei der das Problem zu lösen war, durch innerhalb des Gehäuses entstehende Querströmungen die dadurch bedingten Verluste zu vermeiden. Dazu werden in dem Spiralgehäuse mehrere Trennungswände eingesetzt, um so Gleichdruckkanäle auszubilden. Die Abmessungen solcher als Gleichdruckkanäle ausgebildeten Führungskanäle sind derart, daß der Querschnitt nur im Verhältnis des Geschwindigkeitsverlustes durch die Reibung verändert wird. Mit solchen Gleichdruckkanälen kann jedoch die Radialkraftauswirkung eines Doppelspiralgehäuses nicht verbessert werden.
Der Erfindung liegt daher das Problem zugrunde, ein Doppelspiralgehäuse zu entwickeln, das bei einfacher, insbesondere gußtechnischer, Herstellung einen guten Spiralkraftverlauf aufweist. Die Lösung dieses Problems sieht vor, daß der Umschlingungswinkel ϕ eines Rippenteiles in Abhängigkeit von der Anzahl n der verwendeten Rippenteile im Bereich von 0.7·360°2·n ≤ϕ≤1.1·360°2·n liegt. Die Verwendung findenden Rippenteile können also gleich lang oder unterschiedlich lang ausgebildet sein.
Diese Lösung ermöglicht bei Spiralgehäusen, deren Rippe mindestens zweiteilig ausgebildet ist, wobei zwischen den Rippenteilen ein oder mehrere Spaltöffnungen ausgebildet sind, eine problemlose Herstellung eines Doppelspiralgehäuses, dessen Querschnitt beliebig ausgebildet sein kann. Die bekannten Rechteck-, Trapez-, Birnenspiralen usw. können problemlos Anwendung finden. Durch die Ausbildung der Rippe als ein mehrteiliges Bauteil, welches aus mindestens zwei mit Abstand zueinander angeordneten, eine Spaltöffnung bildenden Rippenteilen besteht, ist eine einfache Plazierung der Rippenteile innerhalb der Spirale möglich und es bleibt eine ausgeglichene Druckverteilung entlang des Laufradumfanges erhalten. Weiterhin ergibt sich dadurch gegenüber einem einfachen Spiralgehäuse ein verbesserter Radialkraftverlauf. Dadurch kann die Radialkraft im gesamten Lastbereich der Pumpe reduziert werden. Durch die mit Abstand zueinander erfolgende Anordnung der Rippenteile ist zwischen diesen eine Spaltöffnung ausgebildet, die aufwendige zusätzliche Stützen für einen Gußkern entbehrlich macht. Diese hat den Vorteil, daß damit die Strömungswege im Bereich der Rippenteile beim Gußputzen wesentlich leichter zugänglich sind.
Die Zugänglichkeit wird verbessert, wenn der einem Gehäusesporn gegenüberliegende Rippenteil dazu mit einem eine Spaltöffnung bildenden Abstand angeordnet ist. Diese Maßnahme verbessert im Bereich der die Doppelspirale bildenden Rippenteile die Zugänglichkeit zu den davon geschaffenen Strömungskanälen.
Eine Ausgestaltung der Erfindung sieht vor, daß die Winkellage τ des in Strömungsrichtung gesehen ersten Rippenteil bezogen auf den Gehäusesporn im Bereich von 0.8 ·360°n ≤τ≤360°n ·1.2 liegt. Es genügt dann, daß der Abstand und die Lage der Rippenteile zueinander so eingestellt wird, daß durch die zwischen den Rippenteilen sowie zwischen Rippenteil und Gehäusespom bestehenden Spaltöffnungen ein Zugang zu den von den Rippenteilen begrenzten Strömungskanälen sichergestellt wird. Dazu wird der Abstand zwischen den Anströmkanten der Rippenteile so eingestellt, daß im Bereich der Rippenteile genügend große Spaltöffnungen entstehen. Die Winkeldifferenz der Rippenteile Δτ entspricht der Bedingung 0.8·ϕ≤Δτ≤1.5·ϕ
Die Profile der Rippenteile können gleiche oder ungleiche Formen aufweisen, wobei durch den Bezug auf die Schaufelanströmkanten die Rippenlänge ohne Einfluß bleibt. Es hat sich als vorteilhaft für eine weitere Absenkung der Radialkräfte herausgestellt, wenn die Anströmkanten der Rippenteile auf Kreisen mit Durchmessern Dr angeordnet sind, deren Verhältnisse zum Laufraddurchmesser D2 im Bereich von 1.03≤ Dr D 2 ≤1.15 liegt. Die Durchmesser, auf denen die Anströmkanten der einzelnen Rippenteile angeordnet sind, müssen nicht identisch sein, sondern die Anströmkanten der Rippenteile können auf verschiedenen Durchmessern befindlich sein.
Die Radialkräfte werden auch dadurch reduziert, daß die Anströmkante eines der Rippenteile immer auf einem kleineren Durchmesser angeordnet ist, als ein Ende eines in Strömungsrichtung davor befindlichen Rippenteiles. Das Spiralgehäuse ist selbstverständlich so ausgebildet, daß der von einem Rippenteil begrenzte Umführungskanal den Abfluß des Fluid aus dem ersten Spiralteil nicht behindert oder nachteilig beeinflußt.
Das Profil der Rippenteile unterliegt keinen Beschränkungen. Es können Rippenteile mit konstanter Dicke oder auch einer vorgegebenen Dickenverteilung Verwendung finden. Ebenso ist es möglich, daß die Rippenteile unterschiedliche Profilformen aufweisen können. Durch eine solche Ausbildung einer Rippe ist eine sehr leichte gußtechnische Herstellung eines Doppelspiralgehäuses möglich. Es bietet gleichzeitig den Vorteil, daß solche Rippenteile in einfacher Weise auch nachträglich montiert werden können. Eine zusätzliche Möglichkeit sieht eine verstellbare Anordnung der Rippenteile vor. Je nach Anordnung der Drehachse am Doppelrippenteil, können diese in ihrem Anstellwinkel gegenüber der aus dem Laufrad austretenden Strömung verändert werden.
Positiv auf die Radialkraftabsenkung wirkt sich nach einer weiteren Ausgestaltung der Erfindung auch die Maßnahme aus, wonach in dem vom Gehäusesporn ausgehenden ersten Quadranten des Doppelspiralgehäuses gegenüber einer normalen Spiralentwicklung eine Querschnittsflächenvergrößerung erfolgt.
Es hat sich gezeigt, daß mit solchen Maßnahmen ein Radialkraftverlauf erreichbar ist, der annähernd dem Radialkraftverlauf eines konventionellen Doppelspiralgehäuses entspricht. Die geringfügigen Unterschiede sind aber vernachlässigbar, da die durch die einfachere Fertigung erzielbaren Vorteile dieses bei weitem aufwiegen.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen die
  • Fig. 1 und 2 verschiedene Ausführungsformen der mehrteiligen Doppelspiralrippe.
  • In der Fig. 1 ist ein Gehäuse 1 einer Kreiselpumpe gezeigt, in dem von einem Laufrad der Außendurchmesser D2 dargestellt ist. Das Gehäuse 1 ist hier nach Art eines Doppelspiralgehäuses ausgebildet, wobei der in Strömungsrichtung gesehen erste Spiralteil 3 am Gehäusesporn 4 beginnt. Der Gehäusesporn 4 liegt hierbei im I. Quadranten, in dem auch ein Druckstutzen 5 befindlich ist. Der erste Spiralteil 3 weist eine zunehmende Querschnittsvergrößerung auf, die in diesem Beispiel am Ende des II. Quadranten ihr Maximum erreicht. Von hier aus wird ein Fluid durch einen Umführungskanal 6, 7 zum Druckstutzen 5 geführt. Der Umführungskanal 6, 7 wird begrenzt von der Wandfläche des Gehäuses 1 sowie der Wandfläche der hier Verwendung findenden Rippenteile 8, 9. Diese Rippenteile 8, 9 bilden, ähnlich wie bei einem Doppelspiralgehäuse, den anderen oder zweiten Spiralteil. Eine zwischen den Rippenteilen 8, 9 befindliche Spaltöffnung 10 sowie eine zwischen dem Gehäusesporn 4 und dem Ende des Rippenteiles 9 befindliche Spaltöffnung 11 ermöglichen bei der Gehäuseherstellung einen Zugang zu den Umführungskanälen 6, 7. Somit kann beispielsweise bei einem gegossenen Gehäuse ein dort Verwendung findender Gehäusekern leicht entfernt werden und die Gußoberfläche verputzt werden. Damit können die strömungsführenden Oberflächen eine Rauhigkeit erhalten, mit deren Hilfe der Wirkungsgrad eines solchen Pumpengehäuses verbessert werden kann.
    Die hier dargestellten Rippenteile 8, 9 können eine konstante Dicke d aufweisen oder, wie gezeigt, mit einem Schaufelprofil versehen gleich oder unterschiedlich sein. Das Rippenteil 8 ist bei diesem Ausführungsbeispiel länger dargestellt als das Rippenteil 9. Die Lage des in Strömungsrichtung gesehen ersten Rippenteiles 8 in Bezug auf den im I. Gehäusequadranten liegenden Gehäusesporn 4 wird durch den Winkel τ bestimmt. Diese Winkellage τ ergibt sich gemäß Formel (2). Mit Hilfe der oben aufgeführten Formel (1) kann in Abhängigkeit von der Anwendung findenden Anzahl (n) der verwendeten Rippenteile 8, 9 deren Umschlingungswinkel ϕ bestimmt werden. Der in Fig. 1 dargestellte Abstand Δτ zwischen den Anströmkanten 12, 13 der Rippenteile 8, 9 wird durch die oben aufgeführte Formel (3) definiert. Die Anströmkanten 12, 13 der Rippenteile 8, 9 liegen auf Kreisen mit einem Durchmesser Dr, deren Verhältnisse zum Laufraddurchmesser D2 gemäß Formel 4 im Bereich von 1.03 ≤ Dr D 2 ≤1.15 liegt.
    Die Fig. 2 zeigt gegenüber der Fig. 1 eine andere Art der Anordnung der Rippenteile 8, 9. Das im III. Quadranten des Gehäuse 1 angeordnete Rippenteil 8 ist hier kürzer ausgebildet, während das im IV. Quadranten befindliche Rippenteil 9 eine größere Baulänge aufweist. Positiv auf eine Radialkraftabsenkung wirkt sich auch eine Maßnahme aus, die hier im I. Quadranten des Gehäuses 1 dargestellt ist. Eine in diesem Bereich erfolgende Vergrößerung des Spiralquerschnitts, der gegenüber einer normalen Spiralentwicklung zunimmt, ist hier durch eine gestrichelte Darstellung gezeigt. Auch der Gehäusesporn 4 weist einen größeren Abstand gegenüber dem Außendurchmesser D2 eines Laufrades auf. Die Querschnitts-flächenvergrößerung 14 im I. Quadranten des Spiralgehäuses sowie die Lage der Rippenteile 8, 9 im Bezug zueinander und auf den Gehäusesporn 4 wird an die jeweils Anwendung findende Hydraulik eines Laufrades und der jeweilige Spiralform angepaßt. Damit sind Radialkraftabsenkungen erreichbar, die dem Radialkraftverlauf einer traditionellen Doppelspiralausbildung entsprechen. Auch mit Hilfe von Variationen in Bezug auf die Lage der Anströmkanten 12, 13, der die Form und die Größe der Rippenteile 8, 9 ist eine Einflußnahme auf den Verlauf der Radialkraft möglich.

    Claims (6)

    1. Kreiselpumpe mit einem Gehäuse nach Art einer Doppelspirale und mit darin angeordneten, als Trennwand ausgebildeten Rippe, die Rippe ist mindestens zweiteilig ausgebildet, wobei zwischen den Rippenteilen (8, 9) ein oder mehrere Spaltöffnungen (10) ausgebildet sind, und ein einem Gehäusesporn (4) gegenüberliegender Rippenteil (9) ist dazu mit einem eine Spaltöffnung (11) bildenden Abstand angeordnet, dadurch gekennzeichnet, daß der Umschlingungswinkel (4) eines Rippenteiles (8, 9) in Abhängigkeit von der Anzahl n der verwendeten Rippenteile (8, 9) im Bereich von 0.7·360°n ≤ϕ≤1.1·360°n liegt.
    2. Kreiselpumpe nach Anspruch 1, dadurch gekennzeichnet, daß die Winkellage (τ) des in Strömungsrichtung gesehen ersten Rippenteil (8) bezogen auf den Gehäusesporn (4) im Bereich von 0.8·360°n ≤τ≤360°n ·1.2 liegt.
    3. Kreiselpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine die Größe der Spaltöffnungen (10, 11) definierende Winkeldifferenz Δτ zwischen den Anströmkanten (12, 13) der Rippenteile (8, 9) der Bedingung 0.8·ϕ≤Δτ≤1.5·ϕ entspricht.
    4. Kreiselpumpe nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß die Anströmkanten (12, 13) der Rippenteile (8, 9) auf Kreisen mit an sich bekannten gleichen oder unterschiedlichen Durchmessern (Dr) angeordnet sind, wobei das Verhältnis der Durchmesser Dr zum Laufraddurchmesser D2 im Bereich von 1.03≤ Dr D 2 ≤1.15 liegt.
    5. Kreiselpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Rippenteile (8, 9) im Doppelspiralgehäuse verstellbar angeordnet sind.
    6. Kreiselpumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß in dem vom Gehäusesporn (4) ausgehenden ersten Quadranten I des Doppelspiralgehäuses gegenüber einer normalen Spiralentwicklung eine Querschnittsflächenvergrößerung (14) erfolgt.
    EP98115674A 1997-09-15 1998-08-20 Spiralgehäusepumpe Expired - Lifetime EP0902192B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19740590A DE19740590A1 (de) 1997-09-15 1997-09-15 Spiralgehäusepumpe
    DE19740590 1997-09-15

    Publications (3)

    Publication Number Publication Date
    EP0902192A2 EP0902192A2 (de) 1999-03-17
    EP0902192A3 EP0902192A3 (de) 1999-07-14
    EP0902192B1 true EP0902192B1 (de) 2003-06-11

    Family

    ID=7842447

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98115674A Expired - Lifetime EP0902192B1 (de) 1997-09-15 1998-08-20 Spiralgehäusepumpe

    Country Status (5)

    Country Link
    US (1) US6146095A (de)
    EP (1) EP0902192B1 (de)
    AT (1) ATE242845T1 (de)
    BR (1) BR9803538A (de)
    DE (2) DE19740590A1 (de)

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB0415301D0 (en) * 2004-07-08 2004-08-11 Weir Pumps Ltd Pump casing
    DE202005004180U1 (de) * 2005-03-14 2006-07-27 Ebm-Papst Landshut Gmbh Radialgebläse
    CA2716117C (en) * 2008-02-22 2016-07-12 Horton, Inc. Fan manufacturing and assembly
    CA2703855C (en) * 2009-07-31 2018-12-11 Rem Enterprises Inc. Improved air vacuum pump for a particulate loader and transfer apparatus
    CN102080671B (zh) * 2009-11-27 2015-05-13 德昌电机(深圳)有限公司 离心泵
    ES2584632T3 (es) * 2010-05-07 2016-09-28 Sulzer Management Ag Caja de bomba en forma de voluta con nervio divisor
    CA2871451C (en) 2012-04-27 2019-09-24 Weir Minerals Australia, Ltd. Centrifugal pump casing with offset discharge
    BR112015016909A2 (pt) * 2013-02-08 2017-07-11 Sulzer Management Ag turbomáquina, bem como elemento condutor de fluxo para uma turbomáquina
    US20170067481A1 (en) * 2015-09-03 2017-03-09 Fluid Handling Llc Volute Design For Lower Manufacturing Cost and Radial Load Reduction
    CN105243222B (zh) * 2015-10-27 2018-08-31 湖南湘电长沙水泵有限公司 将铸造导叶改成焊接导叶的设计方法、焊接导叶及导叶体
    CN108843619B (zh) * 2018-06-28 2020-05-22 西安交通大学 一种离心泵的双蜗壳结构
    CN112483417B (zh) * 2020-12-14 2022-12-27 万载志成实业有限公司 一种用于硒银金生产工艺的循环泵
    US11873837B1 (en) * 2021-08-02 2024-01-16 W.S. Darley & Co. Centrifugal pumps, casings and vehicles using the same

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR323504A (fr) * 1902-08-05 1903-03-07 Schaaf Wilhelm Perfectionnements aux pompes centrifuges et ventilateurs
    CH219739A (de) * 1941-01-16 1942-02-28 Oerlikon Maschf Kreiselfördermaschine mit Spiralgehäuse.
    US2399548A (en) * 1944-05-05 1946-04-30 Kalasign Company Centrifugal pump
    FR1076154A (fr) * 1951-12-15 1954-10-25 Corps de pompe centrifuge établi en tôle
    US2955540A (en) * 1957-05-27 1960-10-11 Worthington Corp Twin volute pump
    US3289598A (en) * 1965-10-21 1966-12-06 Ingersoll Rand Co Centrifugal pumps
    FR2102520A5 (de) * 1970-08-06 1972-04-07 Unelec
    SU623006A1 (ru) * 1977-04-21 1978-09-05 Предприятие П/Я А-7075 Центробежный нагнетатель
    DE3001598C2 (de) * 1980-01-17 1983-03-17 Dietrich Dr.-Ing. 5440 Mayen Haase Radialventilator
    DE3001868C2 (de) * 1980-01-19 1984-01-19 Klein, Schanzlin & Becker Ag, 6710 Frankenthal Kreiselpumpe mit Doppelspiralgehäuse
    EP0212834B1 (de) * 1985-07-17 1990-11-14 Geoffrey Light Wilde Variabler Einlass für eine Radialturbine

    Also Published As

    Publication number Publication date
    DE59808677D1 (de) 2003-07-17
    BR9803538A (pt) 1999-11-23
    ATE242845T1 (de) 2003-06-15
    EP0902192A2 (de) 1999-03-17
    US6146095A (en) 2000-11-14
    EP0902192A3 (de) 1999-07-14
    DE19740590A1 (de) 1999-03-18

    Similar Documents

    Publication Publication Date Title
    EP0902192B1 (de) Spiralgehäusepumpe
    DE102007037924A1 (de) Strömungsarbeitsmaschine mit Ringkanalwandausnehmung
    CH643631A5 (de) Gehaeuse mit einem von ihm umschlossenen turbinenrad.
    DE1203842B (de) Kupplung zwischen zwei Wellenleiterabschnitten
    DE2602499A1 (de) Mehrstufige pumpe
    DE102005015821A1 (de) Laufrad und Kraftstoffpumpe, die dieses verwendet
    EP0752066B1 (de) Einrichtung zur geräuschreduzierung bei kreiselpumpen
    WO2005012732A1 (de) Laufrad für pumpen
    DE2251517C2 (de) Schaufelrad-Durchflußmesser
    EP2714229B1 (de) Filtriervorrichtung für hochviskose fluide
    DE1403853A1 (de) Rotierende Einrichtung zum Bewegen eines fluessigen oder gasfoermigen Mediums
    DE3844158A1 (de) Kaskadenpumpenmechanismus
    DE2458595A1 (de) Vierrad-zahnradausgleichsgetriebe
    WO2016082979A1 (de) Verdichter mit einem dichtkanal
    EP0443354B1 (de) Kreiselpumpe
    DE102014110703A1 (de) Ventil
    EP0449861A1 (de) Kreiselpumpenlaufrad geringer spezifischer drehzahl.
    DE102019124256A1 (de) Elektrische Maschine mit einer bestimmten Positionierung verschiedener Vertiefungen an einem nass laufenden Stator
    EP3120410A1 (de) Mehrstufiger breitband-richtkoppler
    CH317623A (de) Schaufelung für mit Fliehkraft wirkende Fördermaschinen
    DE3209736C2 (de) Peripheralpumpe
    EP0511517B1 (de) Geteilte Leitvorrichtung
    EP1747379A1 (de) Rotations-druckaustauscher
    EP0511518B1 (de) Geteiltes Laufrad
    WO2000066893A1 (de) Offenes laufrad für kreiselpumpen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT DE FR GB IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19991221

    AKX Designation fees paid

    Free format text: AT DE FR GB IT NL

    17Q First examination report despatched

    Effective date: 20020731

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT DE FR GB IT NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030611

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20030611

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59808677

    Country of ref document: DE

    Date of ref document: 20030717

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030820

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040312

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160907

    Year of fee payment: 19

    Ref country code: GB

    Payment date: 20160830

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20160825

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59808677

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20170820

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20180430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180301

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170820

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170831