EP0900575A1 - Catheter orientable, apte à se déféchir ayant une flexibilité améliorée - Google Patents

Catheter orientable, apte à se déféchir ayant une flexibilité améliorée Download PDF

Info

Publication number
EP0900575A1
EP0900575A1 EP98307167A EP98307167A EP0900575A1 EP 0900575 A1 EP0900575 A1 EP 0900575A1 EP 98307167 A EP98307167 A EP 98307167A EP 98307167 A EP98307167 A EP 98307167A EP 0900575 A1 EP0900575 A1 EP 0900575A1
Authority
EP
European Patent Office
Prior art keywords
catheter
tip section
catheter body
tip
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98307167A
Other languages
German (de)
English (en)
Other versions
EP0900575B1 (fr
Inventor
Dean M. Ponzi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Inc
Original Assignee
Cordis Webster Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cordis Webster Inc filed Critical Cordis Webster Inc
Publication of EP0900575A1 publication Critical patent/EP0900575A1/fr
Application granted granted Critical
Publication of EP0900575B1 publication Critical patent/EP0900575B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • A61B2017/00092Temperature using thermocouples
    • A61B2017/00097Temperature using thermocouples one of the thermometric elements being an electrode or the heating element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • A61M2025/015Details of the distal fixation of the movable mechanical means

Definitions

  • the present invention relates to steerable catheters which are particularly useful in direct myocardial revascularization procedures.
  • Direct myocardial revascularization also referred to as percutaneous myocardial revascularization
  • DMR Direct myocardial revascularization
  • percutaneous myocardial revascularization is a technique that allows physicians to treat patients who have sustained a myocardial infraction by burning channels in the myocardium that has been determined to be ischemic heart tissue.
  • the channels which are burned by a laser, allow for angiogenesis, i.e., the formation of blood vessels.
  • DMR catheters require the physician to have more control and information than other catheters having an optic fiber, such as ablation catheters.
  • Aita et al. generally describes a DMR catheter.
  • the present invention is directed to an improved DMR catheter which allows the physician to have greater control and obtain more information than the catheter described in Aita el al.
  • the present invention provides a steerable catheter particularly useful in DMR procedures used to treat ischemic heart tissue.
  • the steerable DMR catheter comprises a catheter body or shaft, a tip section attached to the distal end of the catheter body and a control handle attached to the proximal end of the catheter body.
  • a puller wire is anchored at its proximal end in the control handle and extends through a lumen in the catheter body and a lumen in the tip section and is anchored at or about the distal end of the tip section.
  • Manipulation of the control handle results in deflection of the tip section.
  • An optic fiber suitable for transmission of laser energy extends through the control handle, catheter body and tip section, the distal end of the optic fiber being generally flush with the distal end surface of the tip section.
  • the proximal end of the optic fiber extends proximally from the control handle to a suitable connector which connects the optic fiber to a source of laser energy.
  • the optic fiber is used to transmit laser energy for creating channels, i.e. blind holes, in the heart tissue which induces revascularization.
  • the tip section of the DMR catheter comprises an electromagnetic sensor.
  • the electromagnetic sensor is connected to a circuit board by means of a sensor cable which extends proximally through the tip section, catheter body, and control handle.
  • the circuit board is preferably housed in the handle. Signals from the circuit board are transmitted through a cable to a computer and monitor.
  • the electromagnetic sensor allows a physician to create a visual representation of the heart chamber and to view the location of the sensor, and therefore the catheter tip, within the chamber.
  • the DMR catheter comprises a tip electrode and one or more ring electrodes spaced proximally from the tip electrode. Each electrode is connected by means of electrode lead wires which extend through the tip section, catheter body and control handle to an appropriate connector, and from there, to a suitable monitor.
  • the tip and ring electrodes allow the electrical activity of the heart tissue to be mapped.
  • the DMR catheter comprises both an electromagnetic sensor within the tip section and a tip electrode and one or more ring electrodes.
  • This combination allows a physician to map the electrical activity of the heart wall of a particular chamber, e.g., the left ventricle, by means of the tip and ring electrodes to determine ischemic areas and simultaneously to record the precise location of the tip section within the heart by means of the electromagnetic sensor to create a three-dimensional representation of the heart chamber which is displayed visually on a monitor.
  • the tip section is moved to that area and deflected to allow the optic fiber to be generally normal to the heart wall, and then laser energy is transmitted onto the heart tissue for creating a channel within the heart tissue.
  • the optic fiber comprises a protective jacket, preferably made out of aluminum.
  • the optic fiber extends through the control handle and catheter body and into the tip section which carries a tip electrode.
  • the optic fiber extends through an optic fiber lumen in the tip electrode, the distal end of the optic fiber being flush with the distal face of the tip electrode.
  • the aluminum jacket is removed from the distal portion of the optic fiber which extends through the tip electrode. This removal avoids the possibility that particles of the aluminum jacket may break free into the heart, especially during laser transmission, which could result in a stroke. This removal also prevents the possibility of an electrical short between the aluminum jacket and the tip electrode, which could result in the patient receiving a lethally high voltage during laser transmission.
  • a DMR catheter having an infusion tube which extends from the proximal end of the catheter body through a lumen in the catheter body and into the tip section.
  • the distal end of the infusion tube is open at the distal end of the tip section at a position adjacent the optic fiber so that fluids, including drugs to induce angiogenesis, may be passed through the catheter to the heart tissue.
  • the DMR catheter comprises an infusion tube and a tip electrode having an infusion passage adjacent the optic fiber lumen.
  • the infusion tube is connected to, preferably inserted into, the infusion passage in the tip electrode so that fluids passing through the infusion tube will enter and pass through the infusion passage in the tip electrode and to the heart tissue.
  • the proximal end of the infusion tube terminates in a luer hub or the like.
  • the catheter body or shaft comprises a construction which exhibits improved torsional stability, resulting in improved tip control while minimizing wall thickness.
  • the catheter body comprises a single central lumen and is formed by a tubular outer wall of polyurethane or nylon with a braided stainless steel mesh imbedded in the outer wall.
  • the inner surface of the outer wall is lined with a stiffening tube, preferably made of polyimide or the like.
  • a polyimide stiffening tube provides improved torsional stability while at the same time minimizing the wall thickness of the catheter. This, in turn, maximizes the diameter of the central lumen.
  • Such a construction is particularly useful in steerable DMR catheters in which an optic fiber, a puller wire, electrode leads, and an electromagnetic sensor cable all extend through the lumen of the catheter body, but is also useful in other steerable catheter constructions.
  • a preferred construction of the DMR catheter also includes a tubular spacer, between the polyimide stiffening tube and the tip section.
  • the spacer is made of a material less stiff than the material of the stiffening tube, e.g., polyimide, but more stiff than the material of the tip section, e.g., polyurethane. Teflon® is the presently preferred material of the spacer.
  • the stiffening tube is inserted into the tubular outer wall until the distal end of the stiffening tube butts against the tubular spacer. Force is applied to the proximal end of the stiffening tube which tube is then fixed in position, e.g., by glue, to the outer wall. The application of force on the proximal end of the stiffening tube assures that no gaps will form between the stiffening tube and tubular spacer or between the spacer and tip section as a result of repeated tip deflection.
  • a puller wire preferably extends through a non-compressible compression coil which is fixed at its proximal end to the proximal end of the catheter body by means of a glue joint and fixed at its distal end to the proximal end of the tip section at a location distal to the spacer by means of a second glue joint.
  • a control handle which can be manipulated to deflect the tip section of the catheter.
  • the control handle has a first member which is attached to the catheter body and a second member movable with respect to the first member, which is attached to the puller wire. In this arrangement, movement of the first member relative to the second member results in deflection of the tip.
  • the handle comprises a guide tube through which the optic fiber extends. The guide tube is fixedly secured to the first or second member. Within this guide, the optic fiber is afforded lengthwise movement with respect to both the first and second members.
  • FIG. 1 is a side cross-sectional view of an embodiment of the catheter of the invention.
  • FIG. 2a is a side cross-sectional view of the catheter tip section showing an embodiment having three lumens and showing the position of the electromagnetic mapping sensor and the optic fiber.
  • FIG. 2b is a side cross-sectional view of the catheter tip section showing an embodiment having three lumens and showing the position of the electromagnetic mapping sensor and the puller wire.
  • FIG. 3 is a side cross-sectional view of the catheter body, including the junction between the catheter body and the tip section.
  • FIG. 4 is a side cross-sectional view of the catheter handle.
  • FIG. 5 is a transverse cross-sectional view of the catheter tip section along line 5-5 showing an embodiment having three lumens.
  • FIG. 6 is a transverse cross-sectional view of the catheter body along line 6-6.
  • FIG. 7 is a side cross-sectional view of the catheter body showing an infusion tube.
  • FIG. 8 is a transverse cross-sectional view of the catheter tip section showing an alternative embodiment having an infusion tube.
  • FIG. 9 is a cross-sectional view of a portion of the catheter tip section showing a preferred means for anchoring the puller wire.
  • FIG. 10 is a top cross-sectional view of a preferred puller wire anchor.
  • FIG. 11 is a side cross-sectional view of a preferred puller wire anchor.
  • catheter 10 for use in direct myocardial revascularization (DMR).
  • catheter 10 comprises an elongated catheter body 12 having proximal and distal ends, a tip section 14 at the distal end of the catheter body 12, and a control handle 16 at the proximal end of the catheter body 12.
  • the catheter body 12 comprises an elongated tubular construction having a single, central or axial lumen 18.
  • the catheter body 12 is flexible, i.e., bendable, but substantially non-compressible along its length.
  • the catheter body 12 can be of any suitable construction and made of any suitable material.
  • a presently preferred construction comprises an outer wall 22 made of a polyurethane or nylon.
  • the outer wall 22 comprises an imbedded braided mesh of stainless steel or the like to increase torsional stiffness of the catheter body 12 so that, when the control handle 16 is rotated, the tip sectionally of the catheter 10 will rotate in a corresponding manner.
  • the outer diameter of the catheter body 12 is not critical, but is preferably no more than about 8 french. Likewise the thickness of the outer wall 22 is not critical.
  • the inner surface of the outer wall 22 is lined with a stiffening tube 20, which can be made of any suitable material, preferably polyimide.
  • the stiffening tube, along with the braided outer wall 22, provides improved torsional stability while at the same time minimizing the wall thickness of the catheter, thus maximizing the diameter of the single lumen.
  • the outer diameter of the stiffening tube 20 is about the same as or slightly smaller than the inner diameter of the outer wall 22. Polyimide tubing is presently preferred because it may be very thin walled while still providing very good stiffness. This maximizes the diameter of the central lumen 18 without sacrificing strength and stiffness.
  • Polyimide material is typically not used for stiffening tubes because of its tendency to kink when bent.
  • an outer wall 22 of polyurethane, nylon or other similar material, particularly having a stainless steel braided mesh the tendency for the polyimide stiffening tube 20 to kink when bent is essentially eliminated with respect to the applications for which the catheter is used.
  • a particularly preferred catheter has an outer wall 22 with an outer diameter of about 0.092 inch and an inner diameter of about 0.063 inch and a polyimide stiffening tube having an outer diameter of about 0.0615 inch and an inner diameter of about 0.052 inch.
  • the tip section 14 comprises a short section of tubing 19 having three lumens.
  • the tubing 19 is made of a suitable non-toxic material which is preferably more flexible than the catheter body 12.
  • a presently preferred material for the tubing 19 is braided polyurethane, i.e., polyurethane with an embedded mesh of braided stainless steel or the like.
  • the outer diameter of the tip section 14, like that of the catheter body 12, is preferably no greater than about 8 french. The size of the lumens is not critical.
  • the tip section has an outer diameter of about 7 french (.092 inch) and the first lumen 30 and second lumen 32 are generally about the same size, having a diameter of about 0.022 inch, with the third lumen 34 having a slightly larger diameter of about 0.036 inch.
  • FIG. 3 A preferred means for attaching the catheter body 12 to the tip section 14 is illustrated in FIG. 3.
  • the proximal end of the tip section 14 comprises an outer circumferential notch 24 that receives the inner surface of the outer wall 22 of the catheter body 12.
  • the tip section 14 and catheter body 12 are attached by glue or the like.
  • a spacer 52 lies within the catheter body 12 between the distal end of the stiffening tube 20 and the proximal end of the tip section 14.
  • the spacer 52 is preferably made of a material which is stiffer than the material of the tip section 14, e.g., polyurethane, but not as stiff as the material of the stiffening tube 20, e.g., polyimide.
  • a spacer made of Teflon® is presently preferred.
  • a preferred spacer 52 has a length of from about 0.25 inch to about 0.75 inch, more preferably about 0.5 inch.
  • the spacer 52 has an outer and inner diameter about the same as the outer and inner diameters of the stiffening tube 20.
  • the spacer 52 provides a transition in flexibility at the junction of the catheter body 12 and catheter tip 14, which allows the junction of the catheter body 12 and tip section 14 to bend smoothly without folding or kinking.
  • the spacer 52 is held in place by the stiffening tube 20.
  • the stiffening tube 20 in turn, is held in place relative to the outer wall 22 by glue joints 23 and 25 at the proximal end of the catheter body 12.
  • a force is applied to the proximal end of the stiffening tube 20 which causes the distal end of the stiffening tube 20 to firmly butt up against and compress the spacer 52.
  • a first glue joint is made between the stiffening tube 20 and the outer wall 22 by a fast drying glue, e.g. Super Glue®.
  • a second glue joint is formed between the proximal ends of the stiffening tube 20 and outer wall 22 using a slower drying but stronger glue, e.g., polyurethane.
  • Construction of the catheter body 12 whereby the stiffening tube 20 and spacer 58 are under compression has been found to be advantageous to prevent the formation of gaps between the stiffening tube 20 and spacer 58 or between spacer 58 and the tip section 14 which might otherwise occur after repeated tip deflections. Such gaps are undesirable because they cause the catheter to crease or fold over, hindering the catheter's ability to roll.
  • Extending through the single lumen 18 of the catheter body 12 are lead wires 40, an optic fiber 46, a sensor cable 74, and a compression coil 44 through which a puller wire 42 extends.
  • a single lumen 18 catheter body is preferred over a multi-lumen body because it has been found that the single lumen 18 body permits better tip control when rotating the catheter 10.
  • the single lumen 18 permits the lead wires 40, the optic fiber 46, the sensor cable 74, and the puller wire 42 surrounded by the compression coil 44 to float freely within the catheter body.
  • the puller wire 42 is anchored at its proximal end to the control handle 16 and anchored at its distal end to the tip section 14.
  • the puller wire 42 is made of any suitable metal, such as stainless steel or Nitinol, and is preferably coated with Teflon® or the like. The coating imparts lubricity to the puller wire 42.
  • the puller wire 42 preferably has a diameter ranging from about 0.006 to about 0.010 inches.
  • the compression coil 44 extends from the proximal end of the catheter body 12 to the proximal end of the tip section 14.
  • the compression coil 44 is made of any suitable metal, preferably stainless steel.
  • the compression coil 44 is tightly wound on itself to provide flexibility, i.e., bending, but to resist compression.
  • the inner diameter of the compression coil 44 is preferably slightly larger than the diameter of the puller wire 42. For example, when the puller wire 42 has a diameter of about 0.007 inches, the compression coil 44 preferably has an inner diameter of about 0.008 inches.
  • the Teflon® coating on the puller wire 42 allows it to slide freely within the compression coil 44.
  • a flexible, non-conductive sheath 26 to prevent contact between the compression coil 44 and any of the lead wires 40, optic fiber 46 or sensor cable 74.
  • a non-conductive sheath 26 made of polyimide tubing is presently preferred.
  • the compression coil 44 is anchored at its proximal end to the proximal end of the stiffening tube 20 in the catheter body 12 by glue joint 29 and at its distal end to the tip section 14 at a location distal to the spacer 52 by glue joint 50.
  • Both glue joints 29 and 50 preferably comprise polyurethane glue or the like.
  • the glue may be applied by means of a syringe or the like through a hole made between the outer surface of the catheter body 12 and the single lumen 18. Such a hole may be formed, for example, by a needle or the like that punctures the wall of the catheter body 12 and the stiffening tube 20 which is heated sufficiently to form a permanent hole.
  • the glue is then introduced through the hole to the outer surface of the compression coil 44 and wicks around the outer circumference to form a glue joint about the entire circumference of the compression coil 44.
  • the puller wire 42 extends into the second lumen 32 of the tip section 14.
  • the puller wire 42 is anchored to a tip electrode 36 or to the side of the catheter tip section 14.
  • the turns of the compression coil are expanded longitudinally.
  • Such expanded turns 47 are both bendable and compressible and preferably extend for a length of about 0.5 inch.
  • the puller wire 42 extends through the expanded turns 47 then into a plastic, preferably Teflon®, sheath 81, which prevents the puller wire 42 from cutting into the wall of the tip section 14 when the tip section 14 is deflected.
  • the distal end of the puller wire 42 may be anchored to the tip electrode 36 by solder or the like, as shown in FIG. 2b or to the side wall of the tip section 14. If attached to the side wall, an embodiment comprising an anchor 80 fixedly attached to the distal end of the puller wire 42 is preferred, as illustrated in FIGs. 9-11.
  • the anchor is formed by a metal tube 82, e.g., a short segment of hypodermic stock, which is fixedly attached, e.g., by crimping, to the distal end of the puller wire 42.
  • the tube 82 has a section which extends a short distance beyond the distal end of the puller wire 42.
  • a cross-piece 84 made of a small section of stainless steel ribbon or the like is soldered or welded in a transverse arrangement to the distal end of the tube 82, which is flattened during the operation. This creates a T-bar anchor 80.
  • a notch 86 is created in the side of the catheter tip section 14 resulting in an opening into the second lumen 32 carrying the puller wire 42.
  • the anchor 80 lies within the notch 86. Because the length of the ribbon forming the cross-piece 84 is longer than the diameter of the opening into the second lumen 32, the anchor 80 cannot be pulled completely into the second lumen 32.
  • the notch 86 is then sealed with polyurethane or the like to give a smooth outer surface.
  • a tip electrode 36 At the distal end of the tip section 14 is a tip electrode 36.
  • the tip electrode 36 has a diameter about the same as the outer diameter of the tubing 19.
  • the tip electrode 36 is connected to the tubing 19 by means of a plastic housing 21, preferably made of polyetheretherketone (PEEK).
  • PEEK polyetheretherketone
  • the proximal end of the tip electrode 36 is notched circumferentially and fits inside the distal end of the plastic housing 21 and is bonded to the housing 21 by polyurethane glue or the like.
  • the proximal end of the plastic housing 21 is bonded with polyurethane glue or the like to the distal end of the tubing 19 of the tip section 14.
  • a ring electrode 38 mounted on the distal end of the plastic housing 21 is a ring electrode 38.
  • the ring electrode 38 is slid over the plastic housing 21 and fixed in place by glue or the like. If desired, additional ring electrodes may be used and can be positioned over the plastic housing 21 or over the flexible tubing 19 of the tip section 14.
  • the tip electrode 36 and ring electrode 38 are each connected to separate lead wires 40.
  • the lead wires 40 extend through the third lumen 34 of tip section 14, the catheter body 12, and the control handle 16, and terminate at their proximal end in an input jack (not shown) that may be plugged into an appropriate monitor (not shown). If desired, the portion of the lead wires 40 extending through the catheter body 12, control handle 16 and proximal end of the tip section 14 may be enclosed or bundled within a protective tube or sheath.
  • the lead wires 40 are attached to the tip electrode 36 and ring electrode 38 by any conventional technique. Connection of lead wire 40 to the tip electrode 36 is preferably accomplished by weld 43, as shown in FIG. 2b. Connection of a lead wire 40 to a ring electrode 38 is preferably accomplished by first making a small hole through the plastic housing 21. Such a hole can be created, for example, by inserting a needle through the plastic housing 21 and heating the needle sufficiently to form a permanent hole. A lead wire 40 is then drawn through the hole by using a microhook or the like. The ends of the lead wire 40 are then stripped of any coating and soldered or welded to the underside of the ring electrode 38, which is then slid into position over the hole and fixed in place with polyurethane glue or the like.
  • a temperature sensing means is provided for the tip electrode 36 and, if desired, the ring electrode 38.
  • Any conventional temperature sensing means e.g., a thermocouple or thermistor, may be used.
  • a preferred temperature sensing means for the tip electrode 36 comprises a thermocouple formed by an enameled wire pair.
  • One wire of the wire pair is a copper wire 41, e.g., a number 40 copper wire which acts not only as part of the thermocouple, but as the electrode lead.
  • the other wire of the wire pair is a construction wire 45, e.g., a number 40 construction wire, which gives support and strength to the wire pair.
  • the wires 41 and 45 of the wire pair are electrically isolated from each other except at their distal ends where they contact and are welded or soldered to the tip electrode 36. Because it is desirable to monitor the temperature of the tip electrode 36 at a site adjacent the distal end of the optic fiber 46, the thermocouple with a blind hole in the tip electrode 36 is fixed to the tip electrode 36 at the distal end of the blind hole as shown.
  • An optic fiber 46 for transmitting laser energy to create channels in the heart tissue slidably extends through the control handle 16 and catheter body 12 and into the first lumen 30 of the tip section 14.
  • channels refers to percutaneous myocardial channels that are formed in the heart tissue when the laser is fired. Preferred channels are approximately 1.0 millimeter in diameter and up to about 5.0 millimeters deep.
  • the distal end of the optic fiber 46 extends through an optic fiber lumen in the tip electrode 36 and is fixed to the tip electrode 36 by glue or the like. The distal end of the optic fiber 46 is flush with the distal surface of the tip electrode.
  • a connector (not shown) at the proximal end of the optic fiber 46 can be used to connect the proximal end of the optic fiber 46 to a laser (not shown). Any suitable laser can be used.
  • a presently preferred laser is a Shaplan Ho: YAG 2040 Laser.
  • the optic fiber 46 comprises a quartz core 48, a cladding made of doped silica or the like and a surrounding jacket 45.
  • the jacket 45 can be of any suitable material, preferably aluminum, but materials such as such as nylon and polyimide may also be used.
  • An aluminum jacket 45 is preferred as it tends to maximize the strength of the optic fiber 46 so that when the optic fiber is bent, e.g., when the catheter tip 14 is deflected, the quartz core does not break.
  • the aluminum jacket 45 is stripped from the core 48. There are two principle reasons for this. The first is to prevent material from the aluminum jacket (or any other type of jacket) from breaking off into the heart chamber, particularly during laser transmission, which could lead to a stroke. The second is to electrically isolate the aluminum jacket 45 from the tip electrode 36. This is a safety measure to assure that a short circuit does not occur between the jacket 45 and tip electrode 36 that could deliver a potentially lethal burst of high voltage to the patient during laser transmission.
  • a plastic, preferably polyimide, protective tube 47 is placed in surrounding relation to the portion of the optic fiber 46 covered by the jacket 45 that is situated within the tip electrode 36. The protective tube 47 prevents electrical contact between the jacket 45 and the tip electrode 36.
  • the protective tube 47 extends beyond the distal end of the aluminum jacket 45 to help support the core 48.
  • the protective tube 47 cannot extend too close to the distal tip of the optic fiber 46, however, because it would melt when the laser is fired.
  • the protective tube 47 is fixed to the tip electrode 36 by glue or the like.
  • An electromagnetic sensor 72 is contained within the distal end of the tip section 14.
  • the electromagnetic sensor 72 is connected by means of electromagnetic sensor cable 74, which extends through the third lumen 34 of the tip section 14 through the catheter body 12 into the control handle 16.
  • the electromagnetic sensor cable 74 comprises multiple wires encased within a plastic covered sheath.
  • the wires of the sensor cable 74 are connected to a circuit board 64.
  • the circuit board 64 amplifies the signal received from the electromagnetic sensor and transmits it to a computer in a form understandable by the computer.
  • the circuit board contains an EPROM chip which shuts down the circuit board after the catheter has been used. This prevents the catheter, or at least the electromagnetic sensor, from being used twice.
  • a suitable electromagnetic sensor is described, for example, in U.S. Patent No. 4,391,199, which is incorporated herein by reference.
  • a preferred electromagnetic mapping sensor 72 is manufactured by Biosense Ltd. Israel and marketed under the trade designation NOGA.
  • NOGA nuclear magnetic index
  • To use the electromagnetic sensor 72 the patient is placed in a magnetic field generated, for example, by situating under the patient a pad containing coils for generating a magnetic field.
  • a reference electromagnetic sensor is fixed relative to the patient, e.g., taped to the patient's back, and the DMR catheter containing a second electromagnetic sensor is advanced into the patient's heart.
  • Each sensor comprises three small coils which in the magnetic field generate weak electrical signals indicative of their position in the magnetic field.
  • Signals generated by both the fixed reference sensor and the second sensor in the heart are amplified and transmitted to a computer which analyzes the signals and then displays the signals on a monitor.
  • a computer which analyzes the signals and then displays the signals on a monitor.
  • the physician can visually map a heart chamber. This mapping is done by advancing the catheter tip into a heart chamber until contact is made with the heart wall. This position is recorded and saved. The catheter tip is then moved to another position in contact with the heart wall and again the position is recorded and saved.
  • the electromagnetic mapping sensor 72 can be used alone or more preferably in combination with the tip electrode 36 and ring electrode 38. By combining the electromagnetic sensor 72 and electrodes 36 and 38, a physician can simultaneously map the contours or shape of the heart chamber, the electrical activity of the heart, and the extent of displacement of the catheter and hence identify the presence and location of the ischemic tissue. Specifically, the electromagnetic mapping sensor 72 is used to monitor the precise location of the tip electrode in the heart and the extent of catheter displacement. The tip electrode 36 and ring electrode 38 are used to monitor the strength of the electrical signals at that location. Healthy heart tissue is identified by strong electrical signals in combination with strong displacement. Dead or diseased heart tissue is identified by weak electrical signals in combination with dysfunctional displacement, i.e. displacement in a direction opposite that of healthy tissue.
  • the combination of the electromagnetic mapping sensor 72 and tip and ring electrodes 36 and 38 is used as a diagnostic catheter to determine whether and where use of the laser is appropriate.
  • the DMR catheter can be deflected so that the optic fiber is normal, i.e., at a right angle, to the ischemic tissue, and laser energy is fired through the optic fiber in coordination with the heart activity, e.g. during systole, to create a channel in the ischemic tissue, for example, as described in U.S. Patent Nos. 5,554,152, 5,389,096, and 5,380,316, the disclosures of which are incorporated herein by reference. This procedure is repeated to create multiple channels.
  • a preferred mapping system includes a catheter comprising multiple electrodes and an electromagnetic sensor, such as the NOGA-STAR catheter marketed by Cordis Webster, Inc., and means for monitoring and displaying the signals received from the electrodes and electromagnetic sensor, such as the Biosense-NOGA system, also marketed by Cordis Webster, Inc.
  • the electrode lead wires 40, optic fiber 46 and electromagnetic sensor cable 74 must be allowed some longitudinal movement within the catheter body so that they do not break when the tip section 14 is deflected.
  • the tunnels are formed by transfer tubes 27, preferably made of short segments of polyimide tubing.
  • transfer tubes 27 preferably made of short segments of polyimide tubing.
  • Each transfer tube is approximately 60 mm long and has an outer diameter of about .021 inch and an inner diameter of about .019 inch.
  • Extending through one transfer tube 27 are the lead wires 40 and the electromagnetic sensor cable 74.
  • Extending through the other transfer tube 27 is the optic fiber 46.
  • An additional transfer tube 29 is located at the joint between the tip section 14 and the catheter body 12. Extending through this transfer tube is the optic fiber 46. This transfer tube 29 provides a tunnel through the glue joint formed when the tip section 14 is glued to the catheter body 12. It is understood that the number of transfer tubes may vary as desired.
  • the distal end of the control handle 16 comprises a piston 54 with a thumb control 56 for manipulating the puller wire 42.
  • the proximal end of the catheter body 12 is connected to the piston 54 by means of a shrink sleeve 28.
  • the optic fiber 46, puller wire 42, lead wires 40 and electromagnetic sensor cable 74 extend through the piston 54.
  • the puller wire 42 is anchored to an anchor pin 36, located proximal to the piston 54.
  • the lead wires 40 and electromagnetic sensor cable 74 extend though a first tunnel 58, located near the side of the control handle 16.
  • the electromagnetic sensor cable 74 connects to the circuit board 64 in the proximal end of the control handle 16.
  • Wires 80 connect the circuit board 64 to a computer and imaging monitor (not shown).
  • the optic fiber 46 extends through a guide tube 66, preferably made of polyurethane, and is afforded longitudinal movement therein.
  • the polyurethane guide tube 66 is anchored to the piston 54, preferably by glue at glue joint 53. This allows the optic fiber 46 longitudinal movement within the control handle 16 so that it does not break when the piston 54 is adjusted to manipulate the puller wire 42.
  • the puller wire 42 is situated within a transfer tube 27, and the electromagnetic sensor cable 74 and lead wires 40 are situated within another transfer tube 27 to allow longitudinal movement of the wires and cable near the glue joint 53.
  • the optic fiber 46 and guide tube 66 extend through a second tunnel 60 situated near the side of the control handle 16 opposite the anchor pin 36.
  • a space 62 is provided between the proximal end of the piston 54 and the distal end of the second tunnel 60.
  • the space 62 has a length of at least 0.50 inch and more preferably about from about 0.60 inch to about 0.90 inch.
  • the optic fiber 46 and the polyurethane guide tube 66 extend through a second larger plastic guide tube 68, preferably made of Teflon®, which affords the guide tube 66 and optic fiber 46 longitudinal slidable movement.
  • the second guide tube 68 is anchored to the inside of the control handle 16 by glue or the like and extends proximally beyond the control handle 16.
  • the second guide tube 68 protects the fiber 46 both from contact with the circuit board 64 and from any sharp bends as the guide tube 66 and optic fiber 46 emerge from the control handle 16.
  • an infusion tube 76 for infusing fluids including drugs such as fibroblast growth factor (FGP), vascular endothelial growth factor (VEGP), thromboxane-A2 or protein kinase-C.
  • FGP fibroblast growth factor
  • VEGP vascular endothelial growth factor
  • thromboxane-A2 or protein kinase-C drugs that initiate or promote angiogenesis.
  • FGP and VEGP work directly to initiate the formation of new blood vessels.
  • Thromboxane-A2 and protein kinase-C work indirectly to form new blood vessels. They are released by blood platelets during clot formation and have specific receptor sites which release FGF and VEGF.
  • drugs that may be infused include those which minimize the effect of foreign body reaction and extend the potency of the created channels.
  • Drugs such as dexamethasone in various forms e.g., dexamethasone sodium phosphate and dexamethasone acetate, can be delivered to sites to reduce inflammation associated with trauma and foreign body reaction which lead to the formation of fibrosis and collagen capsules which, in turn, close the created channels.
  • the infusion tube 76 may even be used for collecting tissue or fluid samples.
  • the infusion tube 76 may be made of any suitable material, and is preferably made of polyimide tubing.
  • the catheter 10 having an infusion tube 76.
  • the catheter 10 comprises a single lumen catheter body 12 as described above and a catheter tip section 14 comprising four lumens. To accommodate four lumens in the tip section, the diameter of the catheter may need to be increased slightly.
  • the infusion tube 76 extends through the catheter body 12 and into the fourth lumen 77 of the tip section 14.
  • the distal end of the infusion tube 76 extends into an opening or passage through the tip electrode 36 and is fixed, e.g., by glue, to the tip electrode 36.
  • the passage in the tip electrode 36 may be straight or branched as desired.
  • the infusion tube 76 can replace the optic fiber 46 in the first lumen 30 of the triple lumen tip section 14 in the embodiment described above.
  • the proximal end of the infusion tube 76 extends out of a sealed opening in the side wall of the catheter body and terminates in a luer hub or the like.
  • the infusion tube 76 may extend through the control handle and terminate in a luer hub or the like at a location proximal to the handle.
  • fluids including drugs to promote revascularization, may be infused into the heart at the precise location of the revascularization procedure.
  • a guide wire hole 78 is provided at the distal end of the tip section 14.
  • the guide wire hole 78 extends from the side of the tip electrode 36 to the distal end of the tip electrode at an angle of about 30° to the longitudinal axis of the tip electrode.
  • the guide wire hole 78 allows a guide wire (not shown) to be introduced into the heart and the catheter 10 to be passed over the guide wire until it is in the proper location within the heart.
  • an introducing sheath is passed into the heart and then the guide wire is introduced into the heart from the introducing sheath.
  • two or more puller wires are provided to enhance the ability to manipulate the tip section.
  • a second puller wire and a surrounding second compression coil extend through the catheter body and into separate off-axis lumens in the tip section.
  • the lumens of the tip section receiving the puller wires may be in adjacent quadrants.
  • the first puller wire is preferably anchored proximal to the anchor location of the second puller wire.
  • the second puller wire may be anchored to the tip electrode or may be anchored to the wall of the tip section adjacent the distal end of tip section.
  • the distance between the distal end of the compression coils and the anchor sites of each puller wire in the tip section determines the curvature of the tip section 14 in the direction of the puller wires.
  • an arrangement wherein the two puller wires are anchored at different distances from the distal ends of the compression coils allows a long reach curve in a first plane and a short reach curve in a plane 90° from the first, i.e., a first curve in one plane generally along the axis of the tip section before it is deflected and a second curve distal to the first curve in a plane transverse, and preferably normal to the first plane.
  • the high torque characteristic of the catheter tip section 12 reduces the tendency for the deflection in one direction to deform the deflection in the other direction.
  • the puller wires may extend into diametrically opposed off-axis lumens in the tip section.
  • each of the puller wires may be anchored at the same location along the length of the tip section, in which case the curvatures of the tip section in opposing directions are the same and the tip section can be made to deflect in either direction without rotation of the catheter body.
  • a particularly preferred catheter construction comprising multiple puller wires including control handle construction is disclosed in pending European patent application entitled Omni-Directional Steerable Catheter, naming as inventor Wilton W. Webster, Jr. (attorney docket number P19810EP, claiming priority from USSN 08/924611 filed concurrently herewith and incorporated hereby by reference.
  • Such application describes a suitable control handle for manipulating two or more puller wires.
  • the described control handle includes a central passage that may be expanded to accommodate the electrode lead wires, electromagnetic sensor cable, optic fiber and even infusion tube. Further, an extension of the handle may be provided to house the circuit bound for the electromagnetic sensor, e.g., in the same manner as shown in FIG. 4 herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
EP98307167A 1997-09-05 1998-09-04 Catheter orientable, apte à se déféchir ayant une flexibilité améliorée Expired - Lifetime EP0900575B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US924623 1997-09-05
US08/924,623 US5897529A (en) 1997-09-05 1997-09-05 Steerable deflectable catheter having improved flexibility

Publications (2)

Publication Number Publication Date
EP0900575A1 true EP0900575A1 (fr) 1999-03-10
EP0900575B1 EP0900575B1 (fr) 2005-06-08

Family

ID=25450454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98307167A Expired - Lifetime EP0900575B1 (fr) 1997-09-05 1998-09-04 Catheter orientable, apte à se déféchir ayant une flexibilité améliorée

Country Status (4)

Country Link
US (1) US5897529A (fr)
EP (1) EP0900575B1 (fr)
JP (1) JP4226117B2 (fr)
DE (1) DE69830449T2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965302A2 (fr) * 1998-06-18 1999-12-22 Cordis Webster, Inc. Cathéter de cartographie à plusieurs éléments d'embout d'électrode
WO2002015972A2 (fr) * 2000-08-21 2002-02-28 Counter Clockwise, Inc. Catheter d'apport manipulable pour dispositifs occlusifs
US6726700B1 (en) 2000-08-21 2004-04-27 Counter Clockwise, Inc. Manipulatable delivery catheter for occlusive devices
US6875170B2 (en) 2000-04-21 2005-04-05 Universite Pierre Et Marie Curie Positioning, exploration, and/or intervention device, in particular in the field of endoscopy and/or mini-invasive surgery
EP3673944A1 (fr) * 2018-12-29 2020-07-01 Biosense Webster (Israel) Ltd. Améliorations apportées à la barre en t d'un fil de traction pour cathéter médical

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221229A (ja) 1997-09-24 1999-08-17 Eclipse Surgical Technol Inc カテーテル
US6554794B1 (en) 1997-09-24 2003-04-29 Richard L. Mueller Non-deforming deflectable multi-lumen catheter
US6251092B1 (en) * 1997-12-30 2001-06-26 Medtronic, Inc. Deflectable guiding catheter
US7972323B1 (en) 1998-10-02 2011-07-05 Boston Scientific Scimed, Inc. Steerable device for introducing diagnostic and therapeutic apparatus into the body
US6544215B1 (en) 1998-10-02 2003-04-08 Scimed Life Systems, Inc. Steerable device for introducing diagnostic and therapeutic apparatus into the body
US7070595B2 (en) * 1998-12-14 2006-07-04 Medwaves, Inc. Radio-frequency based catheter system and method for ablating biological tissues
US20070066972A1 (en) * 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US6371955B1 (en) 1999-08-10 2002-04-16 Biosense Webster, Inc. Atrial branding iron catheter and a method for treating atrial fibrillation
US6332881B1 (en) 1999-09-01 2001-12-25 Cardima, Inc. Surgical ablation tool
US6628976B1 (en) 2000-01-27 2003-09-30 Biosense Webster, Inc. Catheter having mapping assembly
US7570982B2 (en) * 2000-01-27 2009-08-04 Biosense Webster, Inc. Catheter having mapping assembly
US6892091B1 (en) 2000-02-18 2005-05-10 Biosense, Inc. Catheter, method and apparatus for generating an electrical map of a chamber of the heart
US6725080B2 (en) 2000-03-01 2004-04-20 Surgical Navigation Technologies, Inc. Multiple cannula image guided tool for image guided procedures
US6464693B1 (en) 2000-03-06 2002-10-15 Plc Medical Systems, Inc. Myocardial revascularization
US6475214B1 (en) 2000-05-01 2002-11-05 Biosense Webster, Inc. Catheter with enhanced ablation electrode
US6456890B2 (en) 2000-05-15 2002-09-24 Pacesetter, Inc. Lead with polymeric tubular liner for guidewire and stylet insertion
US6456889B2 (en) 2000-05-15 2002-09-24 Pacesetter, Inc. Lead with polymeric tubular liner for guidewire and stylet insertion
US6400981B1 (en) 2000-06-21 2002-06-04 Biosense, Inc. Rapid mapping of electrical activity in the heart
US6746446B1 (en) 2000-08-04 2004-06-08 Cardima, Inc. Electrophysiological device for the isthmus
US6926669B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Heart wall ablation/mapping catheter and method
US7740623B2 (en) * 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20020103430A1 (en) * 2001-01-29 2002-08-01 Hastings Roger N. Catheter navigation within an MR imaging device
US6551271B2 (en) 2001-04-30 2003-04-22 Biosense Webster, Inc. Asymmetrical bidirectional steerable catheter
US20020169444A1 (en) 2001-05-08 2002-11-14 Mest Robert A. Catheter having continuous braided electrode
US6716207B2 (en) * 2001-05-22 2004-04-06 Scimed Life Systems, Inc. Torqueable and deflectable medical device shaft
EP1460954B1 (fr) * 2001-11-29 2007-10-10 Medwaves, Inc. Systeme de catheter a radiofrequence avec mecanismes de deviation et de guidage ameliores
US20030105505A1 (en) * 2001-12-05 2003-06-05 Pianca Anne M. Medical leads with superior handling characteristics
US6980858B2 (en) 2001-12-31 2005-12-27 Biosense Webster, Inc. Method and system for atrial defibrillation
US6733499B2 (en) 2002-02-28 2004-05-11 Biosense Webster, Inc. Catheter having circular ablation assembly
US7588568B2 (en) * 2002-07-19 2009-09-15 Biosense Webster, Inc. Atrial ablation catheter and method for treating atrial fibrillation
US7560269B2 (en) * 2002-12-20 2009-07-14 Acea Biosciences, Inc. Real time electronic cell sensing system and applications for cytotoxicity profiling and compound assays
US7115134B2 (en) 2002-07-22 2006-10-03 Chambers Technology, Llc. Catheter with flexible tip and shape retention
US6957101B2 (en) 2002-08-21 2005-10-18 Joshua Porath Transient event mapping in the heart
US7039450B2 (en) * 2002-11-15 2006-05-02 Biosense Webster, Inc. Telescoping catheter
US7881769B2 (en) * 2002-11-18 2011-02-01 Mediguide Ltd. Method and system for mounting an MPS sensor on a catheter
US8862204B2 (en) 2002-11-18 2014-10-14 Mediguide Ltd. Reducing mechanical stress on conductors and connection points in a position determinable interventional medical device
US7819866B2 (en) 2003-01-21 2010-10-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter and electrode
US7276062B2 (en) 2003-03-12 2007-10-02 Biosence Webster, Inc. Deflectable catheter with hinge
US8256428B2 (en) * 2003-03-12 2012-09-04 Biosense Webster, Inc. Method for treating tissue
US7163537B2 (en) * 2003-06-02 2007-01-16 Biosense Webster, Inc. Enhanced ablation and mapping catheter and method for treating atrial fibrillation
US7235070B2 (en) * 2003-07-02 2007-06-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation fluid manifold for ablation catheter
US7101362B2 (en) * 2003-07-02 2006-09-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable and shapable catheter employing fluid force
US7678104B2 (en) * 2003-07-17 2010-03-16 Biosense Webster, Inc. Ultrasound ablation catheter and method for its use
US10182734B2 (en) * 2003-07-18 2019-01-22 Biosense Webster, Inc. Enhanced ablation and mapping catheter and method for treating atrial fibrillation
US7766868B2 (en) * 2003-09-05 2010-08-03 Medtronic, Inc. Deflectable medical therapy delivery device having common lumen profile
US7207989B2 (en) * 2003-10-27 2007-04-24 Biosense Webster, Inc. Method for ablating with needle electrode
US7366557B2 (en) * 2003-11-07 2008-04-29 Biosense Webster, Inc. Flower catheter
DE102004008368B4 (de) * 2004-02-20 2006-05-24 Siemens Ag Katheter zur Durchführung und Überwachung von Rotablation
DE102004008370B4 (de) * 2004-02-20 2006-06-01 Siemens Ag Katheter zur Durchführung und Überwachung von Rotablation
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
US7250049B2 (en) * 2004-05-27 2007-07-31 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with suspension system incorporating rigid and flexible components
US20050273096A1 (en) * 2004-05-27 2005-12-08 Roop John A Anchoring introducer sheath with distal slots for catheter delivery and translation
US7122034B2 (en) * 2004-05-27 2006-10-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Curved ablation catheter
US7717875B2 (en) * 2004-07-20 2010-05-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable catheter with hydraulic or pneumatic actuator
US7761170B2 (en) * 2004-10-21 2010-07-20 Medtronic, Inc. Implantable medical lead with axially oriented coiled wire conductors
US7831311B2 (en) 2004-10-21 2010-11-09 Medtronic, Inc. Reduced axial stiffness implantable medical lead
US20060089692A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with stylet guide tube
US7519432B2 (en) 2004-10-21 2009-04-14 Medtronic, Inc. Implantable medical lead with helical reinforcement
DE102005045071A1 (de) * 2005-09-21 2007-04-12 Siemens Ag Kathetervorrichtung mit einem Positionssensorsystem zur Behandlung eines teilweisen und/oder vollständigen Gefäßverschlusses unter Bildüberwachung
US7691095B2 (en) 2004-12-28 2010-04-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Bi-directional steerable catheter control handle
US8583260B2 (en) 2004-12-28 2013-11-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Long travel steerable catheter actuator
US8858495B2 (en) 2004-12-28 2014-10-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Five degree of freedom ultrasound catheter and catheter control handle
US8273285B2 (en) 2005-01-10 2012-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable catheter and methods of making the same
US7959601B2 (en) 2005-02-14 2011-06-14 Biosense Webster, Inc. Steerable catheter with in-plane deflection
US7591784B2 (en) 2005-04-26 2009-09-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Bi-directional handle for a catheter
US7553305B2 (en) * 2005-06-09 2009-06-30 Enpath Medical, Inc. Push-pull wire anchor
US7819868B2 (en) * 2005-06-21 2010-10-26 St. Jude Medical, Atrial Fibrilation Division, Inc. Ablation catheter with fluid distribution structures
US8777929B2 (en) 2005-06-28 2014-07-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Auto lock for catheter handle
US7465288B2 (en) * 2005-06-28 2008-12-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Actuation handle for a catheter
DE102005048892B4 (de) * 2005-09-22 2009-01-15 Siemens Ag Vorrichtung zur Durchführung von Rotablation sowie medizinische Behandlungseinrichtung
US8355801B2 (en) * 2005-09-26 2013-01-15 Biosense Webster, Inc. System and method for measuring esophagus proximity
US20070156114A1 (en) * 2005-12-29 2007-07-05 Worley Seth J Deflectable catheter with a flexibly attached tip section
EP1971272A2 (fr) 2006-01-09 2008-09-24 VANCE PRODUCTS INCORPORATED d/b/a COOK UROLOGICAL INCORPORATED Gaine d accès à pointe orientable
US8273016B2 (en) * 2006-03-10 2012-09-25 Biosense Webster, Inc. Esophagus isolation device
US20070270679A1 (en) * 2006-05-17 2007-11-22 Duy Nguyen Deflectable variable radius catheters
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
WO2007136754A2 (fr) 2006-05-19 2007-11-29 Boston Scientific Limited Mécanisme de commande pour dispositif médical orientable
US20080058765A1 (en) * 2006-08-31 2008-03-06 Pierri Jais Catheter for linear and circular mapping
US8118803B1 (en) * 2006-12-19 2012-02-21 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly
US8444637B2 (en) * 2006-12-29 2013-05-21 St. Jude Medical, Atrial Filbrillation Division, Inc. Steerable ablation device
US20090299352A1 (en) * 2007-12-21 2009-12-03 Boston Scientific Scimed, Inc. Steerable laser-energy delivery device
US8137336B2 (en) * 2008-06-27 2012-03-20 Boston Scientific Scimed, Inc. Steerable medical device
US7780648B2 (en) * 2007-12-28 2010-08-24 Boston Scientific Scimed, Inc. Controlling movement of distal portion of medical device
US8048024B2 (en) * 2008-03-17 2011-11-01 Boston Scientific Scimed, Inc. Steering mechanism
US20100004642A1 (en) * 2008-07-02 2010-01-07 Lumpkin Christopher F Selectively bendable laser fiber for surgical laser probe
US8048025B2 (en) 2008-07-07 2011-11-01 Boston Scientific Scimed, Inc. Multi-plane motion control mechanism
US8834357B2 (en) 2008-11-12 2014-09-16 Boston Scientific Scimed, Inc. Steering mechanism
US8808345B2 (en) * 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US8372033B2 (en) 2008-12-31 2013-02-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter having proximal heat sensitive deflection mechanism and related methods of use and manufacturing
WO2010083527A2 (fr) 2009-01-16 2010-07-22 Claret Medical, Inc. Filtre sanguin intravasculaire
US9326843B2 (en) 2009-01-16 2016-05-03 Claret Medical, Inc. Intravascular blood filters and methods of use
US20170202657A1 (en) 2009-01-16 2017-07-20 Claret Medical, Inc. Intravascular blood filters and methods of use
EP2429427B1 (fr) 2009-05-14 2017-10-11 Cook Medical Technologies LLC Gaine d'accès avec déflexion active
US8974489B2 (en) 2009-07-27 2015-03-10 Claret Medical, Inc. Dual endovascular filter and methods of use
EP2480165B1 (fr) * 2009-09-21 2017-08-23 Claret Medical, Inc. Filtres sanguins intravasculaires
US9101733B2 (en) 2009-09-29 2015-08-11 Biosense Webster, Inc. Catheter with biased planar deflection
EP2457491B1 (fr) * 2010-03-15 2014-10-15 Olympus Medical Systems Corp. Endoscope
US20110238041A1 (en) * 2010-03-24 2011-09-29 Chestnut Medical Technologies, Inc. Variable flexibility catheter
US9795765B2 (en) 2010-04-09 2017-10-24 St. Jude Medical International Holding S.À R.L. Variable stiffness steering mechanism for catheters
US8906013B2 (en) 2010-04-09 2014-12-09 Endosense Sa Control handle for a contact force ablation catheter
US8794830B2 (en) 2010-10-13 2014-08-05 Biosense Webster, Inc. Catheter with digitized temperature measurement in control handle
US8986303B2 (en) 2010-11-09 2015-03-24 Biosense Webster, Inc. Catheter with liquid-cooled control handle
US9259306B2 (en) 2010-12-30 2016-02-16 Claret Medical, Inc. Aortic embolic protection device
US9592091B2 (en) 2011-08-30 2017-03-14 Biosense Webster (Israel) Ltd. Ablation catheter for vein anatomies
US9821143B2 (en) 2011-12-15 2017-11-21 Imricor Medical Systems, Inc. Steerable sheath including elastomeric member
US9757538B2 (en) 2011-12-15 2017-09-12 Imricor Medical Systems, Inc. MRI compatible control handle for steerable sheath with audible, tactile and/or visual means
WO2013090558A1 (fr) 2011-12-15 2013-06-20 Imricor Medical Systems, Inc. Poignée compatible avec l'irm et gaine orientable
US9072624B2 (en) 2012-02-23 2015-07-07 Covidien Lp Luminal stenting
US10537706B2 (en) * 2012-02-28 2020-01-21 Sumitomo Bakelite Co., Ltd. Method for manufacturing medical instrument, and medical instrument
US9314299B2 (en) 2012-03-21 2016-04-19 Biosense Webster (Israel) Ltd. Flower catheter for mapping and ablating veinous and other tubular locations
US9717554B2 (en) 2012-03-26 2017-08-01 Biosense Webster (Israel) Ltd. Catheter with composite construction
US10639099B2 (en) 2012-05-25 2020-05-05 Biosense Webster (Israel), Ltd. Catheter having a distal section with spring sections for biased deflection
US9855404B2 (en) 2013-05-03 2018-01-02 St. Jude Medical International Holding S.À R.L. Dual bend radii steering catheter
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
US10045867B2 (en) 2013-08-27 2018-08-14 Covidien Lp Delivery of medical devices
US20150157405A1 (en) * 2013-12-05 2015-06-11 Biosense Webster (Israel) Ltd. Needle catheter utilizing optical spectroscopy for tumor identification and ablation
US10278775B2 (en) 2013-12-31 2019-05-07 Biosense Webster (Israel) Ltd. Catheter utilizing optical spectroscopy for measuring tissue contact area
US9848943B2 (en) 2014-04-18 2017-12-26 Biosense Webster (Israel) Ltd. Ablation catheter with dedicated fluid paths and needle centering insert
US9468407B2 (en) 2014-05-30 2016-10-18 Biosense Webster (Israel) Ltd. Catheter with distal section having side-by-side loops
US9566144B2 (en) 2015-04-22 2017-02-14 Claret Medical, Inc. Vascular filters, deflectors, and methods
US10675443B2 (en) 2016-03-07 2020-06-09 St. Jude Medical, Cardiology Division, Inc. Medical device including an actuator restraining assembly
CN105617509A (zh) * 2016-03-29 2016-06-01 中国人民解放军第二军医大学 可调节型单弯导管
US9918705B2 (en) 2016-07-07 2018-03-20 Brian Giles Medical devices with distal control
US10391274B2 (en) 2016-07-07 2019-08-27 Brian Giles Medical device with distal torque control
US11350981B2 (en) * 2016-11-30 2022-06-07 Encision Inc. Indication system for surgical device
US10376396B2 (en) 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
JP7032446B2 (ja) 2017-02-22 2022-03-08 ボストン サイエンティフィック サイムド,インコーポレイテッド 脳血管系を保護するための保護システム
CN107280714A (zh) * 2017-06-27 2017-10-24 李毅刚 血管介入诊疗系统
US11191630B2 (en) 2017-10-27 2021-12-07 Claret Medical, Inc. Systems and methods for protecting the cerebral vasculature
WO2019126271A1 (fr) 2017-12-19 2019-06-27 Claret Medical, Inc. Systèmes de protection du système vasculaire cérébral
US11071637B2 (en) 2018-04-12 2021-07-27 Covidien Lp Medical device delivery
US11413176B2 (en) 2018-04-12 2022-08-16 Covidien Lp Medical device delivery
US10786377B2 (en) 2018-04-12 2020-09-29 Covidien Lp Medical device delivery
US11123209B2 (en) 2018-04-12 2021-09-21 Covidien Lp Medical device delivery
US11439491B2 (en) 2018-04-26 2022-09-13 Claret Medical, Inc. Systems and methods for protecting the cerebral vasculature
EP3840691A1 (fr) 2018-08-21 2021-06-30 Boston Scientific Scimed, Inc. Systèmes de protection du système vasculaire cérébral
US11413174B2 (en) 2019-06-26 2022-08-16 Covidien Lp Core assembly for medical device delivery systems
US11471650B2 (en) 2019-09-20 2022-10-18 Biosense Webster (Israel) Ltd. Mechanism for manipulating a puller wire
US11944558B2 (en) 2021-08-05 2024-04-02 Covidien Lp Medical device delivery devices, systems, and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391199A (en) 1979-08-10 1983-07-05 Lionel Morin Safe ammunition for exhibition and target shooting
US5380316A (en) 1990-12-18 1995-01-10 Advanced Cardiovascular Systems, Inc. Method for intra-operative myocardial device revascularization
US5383852A (en) * 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US5389096A (en) 1990-12-18 1995-02-14 Advanced Cardiovascular Systems System and method for percutaneous myocardial revascularization
US5431168A (en) * 1993-08-23 1995-07-11 Cordis-Webster, Inc. Steerable open-lumen catheter
WO1996041654A1 (fr) * 1995-06-12 1996-12-27 Cordis Webster, Inc. Catheter pourvu d'un capteur de guidage electromagnetique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34502A (en) * 1862-02-25 Improvement in bakers ovens
US4753223A (en) * 1986-11-07 1988-06-28 Bremer Paul W System for controlling shape and direction of a catheter, cannula, electrode, endoscope or similar article
US5203772A (en) * 1989-01-09 1993-04-20 Pilot Cardiovascular Systems, Inc. Steerable medical device
US4998916A (en) * 1989-01-09 1991-03-12 Hammerslag Julius G Steerable medical device
US5184621A (en) * 1991-05-29 1993-02-09 C. R. Bard, Inc. Steerable guidewire having electrodes for measuring vessel cross-section and blood flow
US5318525A (en) * 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
US5549542A (en) * 1992-11-17 1996-08-27 Life Medical Technologies, Inc. Deflectable endoscope
ATE151615T1 (de) * 1992-11-18 1997-05-15 Spectrascience Inc Diagnosebildgerät
CA2109980A1 (fr) * 1992-12-01 1994-06-02 Mir A. Imran Catheter orientable avec courbure et/ou rayon de courbure ajustables et methode
US5368564A (en) * 1992-12-23 1994-11-29 Angeion Corporation Steerable catheter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391199A (en) 1979-08-10 1983-07-05 Lionel Morin Safe ammunition for exhibition and target shooting
US5380316A (en) 1990-12-18 1995-01-10 Advanced Cardiovascular Systems, Inc. Method for intra-operative myocardial device revascularization
US5389096A (en) 1990-12-18 1995-02-14 Advanced Cardiovascular Systems System and method for percutaneous myocardial revascularization
US5554152A (en) 1990-12-18 1996-09-10 Cardiogenesis Corporation Method for intra-operative myocardial revascularization
US5383852A (en) * 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US5431168A (en) * 1993-08-23 1995-07-11 Cordis-Webster, Inc. Steerable open-lumen catheter
WO1996041654A1 (fr) * 1995-06-12 1996-12-27 Cordis Webster, Inc. Catheter pourvu d'un capteur de guidage electromagnetique

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965302A2 (fr) * 1998-06-18 1999-12-22 Cordis Webster, Inc. Cathéter de cartographie à plusieurs éléments d'embout d'électrode
EP0965302A3 (fr) * 1998-06-18 2000-10-04 Cordis Webster, Inc. Cathéter de cartographie à plusieurs éléments d'embout d'électrode
US6875170B2 (en) 2000-04-21 2005-04-05 Universite Pierre Et Marie Curie Positioning, exploration, and/or intervention device, in particular in the field of endoscopy and/or mini-invasive surgery
US6793667B2 (en) 2000-08-21 2004-09-21 Counter Clockwise, Inc. Manipulatable delivery catheter for occlusive devices (II)
US6482221B1 (en) 2000-08-21 2002-11-19 Counter Clockwise, Inc. Manipulatable delivery catheter for occlusive devices (II)
US6726700B1 (en) 2000-08-21 2004-04-27 Counter Clockwise, Inc. Manipulatable delivery catheter for occlusive devices
WO2002015972A3 (fr) * 2000-08-21 2002-08-22 Counter Clockwise Inc Catheter d'apport manipulable pour dispositifs occlusifs
WO2002015972A2 (fr) * 2000-08-21 2002-02-28 Counter Clockwise, Inc. Catheter d'apport manipulable pour dispositifs occlusifs
US6976991B2 (en) 2000-08-21 2005-12-20 Stephen Hebert Manipulatable delivery catheter for occlusive devices (LL)
US7137990B2 (en) 2000-08-21 2006-11-21 Micrus Endovascular Corporation Manipulatable delivery catheter for occlusive devices (II)
EP3673944A1 (fr) * 2018-12-29 2020-07-01 Biosense Webster (Israel) Ltd. Améliorations apportées à la barre en t d'un fil de traction pour cathéter médical
US11517716B2 (en) 2018-12-29 2022-12-06 Biosense Webster (Israel) Ltd. Puller wire t-bar for medical catheter
US11717648B2 (en) 2018-12-29 2023-08-08 Biosense Webster (Israel) Ltd. Puller wire t-bar for medical catheter

Also Published As

Publication number Publication date
DE69830449D1 (de) 2005-07-14
DE69830449T2 (de) 2006-03-23
US5897529A (en) 1999-04-27
JP4226117B2 (ja) 2009-02-18
JPH11188104A (ja) 1999-07-13
EP0900575B1 (fr) 2005-06-08

Similar Documents

Publication Publication Date Title
US5897529A (en) Steerable deflectable catheter having improved flexibility
US6027473A (en) Handle for steerable DMR catheter
US5964757A (en) Steerable direct myocardial revascularization catheter
EP0900548B1 (fr) Cathéter pour DMR avec tube de perfusion
US6210362B1 (en) Steerable catheter for detecting and revascularing ischemic myocardial tissue
US6024739A (en) Method for detecting and revascularizing ischemic myocardial tissue
US6602242B1 (en) Irrigated tip catheter
EP0985423B1 (fr) Poignée de commande bidirectionnelle pour un catheter orientable
US6183463B1 (en) Bidirectional steerable cathether with bidirectional control handle
EP0928600B1 (fr) Cathéter orientable avec capteur électromagnétique
US8977344B2 (en) Injection catheter with needle electrode
US7806872B2 (en) Injection catheter with needle stop
EP0962191B1 (fr) Catheter pour injecter des agents therapeutiques et diagnostiques
EP0904795A1 (fr) Catheter à parois minces à rigidité en torsion élevée
US20010009986A1 (en) Steerable catheter for detecting and revascularizing ischemic myocardial tissue

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IE IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990819

AKX Designation fees paid

Free format text: BE DE FR GB IE IT NL

17Q First examination report despatched

Effective date: 20030115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BIOSENSE WEBSTER, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IE IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69830449

Country of ref document: DE

Date of ref document: 20050714

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060309

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170814

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170810

Year of fee payment: 20

Ref country code: DE

Payment date: 20170830

Year of fee payment: 20

Ref country code: GB

Payment date: 20170830

Year of fee payment: 20

Ref country code: IT

Payment date: 20170925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170814

Year of fee payment: 20

Ref country code: IE

Payment date: 20170912

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69830449

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180903

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180903

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20180904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180904