EP0898511A1 - Panneau composite thermoformable et procede pour sa fabrication - Google Patents

Panneau composite thermoformable et procede pour sa fabrication

Info

Publication number
EP0898511A1
EP0898511A1 EP97923062A EP97923062A EP0898511A1 EP 0898511 A1 EP0898511 A1 EP 0898511A1 EP 97923062 A EP97923062 A EP 97923062A EP 97923062 A EP97923062 A EP 97923062A EP 0898511 A1 EP0898511 A1 EP 0898511A1
Authority
EP
European Patent Office
Prior art keywords
layers
panel
thermoplastic material
thermoforming
fabrics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97923062A
Other languages
German (de)
English (en)
Inventor
Adriano Odino
Marco Colatarci
Didier Delimoy
Claude Dehennau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IT96SV000015A external-priority patent/IT1288133B1/it
Application filed by Solvay SA filed Critical Solvay SA
Publication of EP0898511A1 publication Critical patent/EP0898511A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • B29C51/145Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets having at least one layer of textile or fibrous material combined with at least one plastics layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/10Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/24Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20
    • E04C2/246Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20 combinations of materials fully covered by E04C2/16 and E04C2/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • B29C51/082Deep drawing or matched-mould forming, i.e. using mechanical means only by shaping between complementary mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/001Layered products the layers being loose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/06Vegetal particles
    • B32B2264/062Cellulose particles, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels

Definitions

  • the present invention relates to a composite panel based on thermoplastic material as well as a thermoforming method for manufacturing it.
  • composite panels which are light and inexpensive while having good mechanical properties, in particular as regards their impact and flexural strength.
  • these mechanical properties should not be excessively affected by temperatures of the order of 60 to 100 ° C., which are commonly reached near propulsion or heating devices, or even when a non-ventilated vehicle is exposed to the sun
  • thermoplastic material loaded with wood particles which are widely used in the automotive industry. Although these plates can in certain cases pose problems if they are subjected to an extremely deep thermoforming, it would be advantageous, given their low cost and their low density, to be able to use them as starting material for manufacturing composite panels presenting the desired properties.
  • thermoplastic material comprising reinforcing fibers dispersed within them.
  • these fibers generally increase the risk of tearing in the case of deep thermoforming, and these plates have a high density.
  • document DE 204831 1 describes a composite panel based on a thermoplastic material, comprising one or more felts (mats) or fabrics of reinforcing fibers, preferably textiles, as well as wood fibers uniformly dispersed throughout its thickness.
  • This last characteristic is disadvantageous: in particular, it reduces the mechanical strength of the panel and increases the risk of tearing during its thermoforming. Without this explanation being limiting, it is suspected that the proximity, and a fortiori the contact, of the wood fibers with the reinforcing fibers could moreover harm the anchoring of the latter within the thermoplastic material, thus increasing the risk of tearing during deep thermoforming.
  • thermoforming is also absolutely not mentioned.
  • thermoplastic material is used for the entire panel, which notably excludes the use of an optimized material, for example less expensive, in the central area.
  • the manufacturing process used in this document does not guarantee the uniformity of the thickness of each of the layers of the panel obtained.
  • the present invention therefore aims to provide a lightweight composite panel, simple to manufacture, inexpensive, having good resistance to bending and impact, and capable of withstanding without tearing a thermoforming, even deep. It is further desirable that this panel can be manufactured in a simple manner from a plate of thermoplastic material reinforced with cellulosic particles, such as a WOOD-STOCK® plate.
  • the invention relates to a composite panel comprising at least three layers based on thermoplastic material, among which an internal layer (A) containing cellulose particles dispersed therein, as well as two lateral layers (B), arranged on either side of said internal layer, reinforced with fabrics of reinforcing fibers and substantially free of cellulosic particles.
  • thermoplastic material among which an internal layer (A) containing cellulose particles dispersed therein, as well as two lateral layers (B), arranged on either side of said internal layer, reinforced with fabrics of reinforcing fibers and substantially free of cellulosic particles.
  • thermoplastic material constituting each of the layers (A) and (B) essentially comprises one or more thermoplastic polymers, such as for example polyolefins, polyamides, fluorinated polymers or vinyl polymers.
  • thermoplastic polymers such as for example polyolefins, polyamides, fluorinated polymers or vinyl polymers.
  • polyolefins such as homo- and copolymers of ⁇ -olefins, and in particular propylene.
  • the copolymers optionally used advantageously comprise at least 70% by mass of propylene.
  • Excellent results have been obtained with polypropylene (PP) homopolymer, that is to say comprising at least 99% by mass of propylene.
  • the thermoplastic material may also comprise one or more usual additives such as stabilizers, lubricants, antioxidants, pigments, antistatic agents, compatibilizers, coupling agents, etc.
  • additives such as stabilizers, lubricants, antioxidants, pigments, antistatic agents, compatibilizers, coupling agents, etc.
  • the amounts of such additives can be any; they are generally moderate.
  • no additive is present in amounts exceeding 10% relative to the mass of the thermoplastic material.
  • thermoplastics constituting the internal layer (A) and each of the two lateral layers (B) can be identical or different.
  • a different thermoplastic material is used for the inner layer (A), in particular having less homogeneous or lower mechanical properties than the one or more thermoplastic materials constituting the side layers (B). It may in particular be a foam or, more advantageously, a less expensive recycled thermoplastic material.
  • the polymers included in these thermoplastic materials have sufficient mutual compatibility, so that it is not necessary to interpose an adhesive layer between these two layers. It can advantageously be different polyolefins.
  • the thermoplastic material constituting each of the layers (A) and (B) comprises at least 50% by mass of one or more polyolefins (relative to the total mass of the polymers of the layer in question).
  • one or more propylene polymers are used as polyolefin (s).
  • the thermoplastic material constituting each of the layers (A) and (B) comprises at least 70% by mass of propylene, which may as well be contained in a homopolymer, in a copolymer or in a mixture of several homo - And / or copolymers.
  • cellulosic particle can be used in the internal layer (A), in particular sawdust, wood flour, wood fibers, particles of paper or cardboard, or vegetable fibers such as fibers. flax, cotton or bamboo, straw waste, and mixtures thereof. These particles preferably have average dimensions of about 0.1 to 3 mm. It is desirable that their water content does not exceed 15% by mass.
  • compatibilizing agents such as unsaturated organosilanes (vinyltriethoxysilane, gamrnamethacryloxypropyltrimethoxysilane, etc.), as well as possibly one or peroxides.
  • the effect of such compatibilizers can be further increased by the joint use of small amounts of suitable crosslinking agents, for example poly- tri-, tetra- or penta-acrylates.
  • Another compatibilization method consists in using a thermoplastic material comprising one or more polymers modified so as to exhibit an increased affinity with respect to cellulosic particles, such as a polyolefin grafted with maleic anhydride.
  • the concentration of the cellulosic particles within the internal layer (A) is generally at least 30 parts by mass (relative to 100 parts by mass of thermoplastic material), preferably at least 70 parts. Furthermore, this concentration is generally at most 250 parts, and preferably at most 150 parts.
  • each of the two lateral layers (B) comprises one or more fabrics of reinforcing fibers, which can be of any known type. It is preferred to use inorganic fibers, for example carbon, glass or metal fibers. Very good results have been obtained with glass fiber fabrics. These fibers have a long length, generally several decimeters; their length often corresponds at least to the length or width of the panel. These fibers are advantageously compatible, or made compatible, with the thermoplastic material; to this end, they can in particular be provided with an appropriate size, for example based on silanes.
  • the fiber fabrics used have a structure favoring their anchoring within the thermoplastic material.
  • the side layers (B) can also be made from fabrics of reinforcing fibers and fibers of thermally plastics material. Further details on the fabrication of layers (A) and (B) are provided below, in relation to the process.
  • their constituent thermoplastic material is preferably homogeneous; in particular, it does not have a fibrous structure, even in the case of layers (B) made from fabrics co-mixed with reinforcing fibers and thermoplastic fibers.
  • reinforcement fiber fabrics leads to higher mechanical performance than other types of fiber-based reinforcement such as uniformly dispersed short fibers or felts (mats). In addition, it greatly reduces the risk of tearing the panel in the event of deep thermoforming. This result is surprising insofar as the deformability of an article based on thermoplastic material reinforced with a fiber fabric is a priori considered to be lower than if this article was reinforced with short fibers, for example.
  • the concentration of reinforcing fibers within each of the side layers (B) is generally of the order of 10 to 70% (relative to the total weight of each of the layers (B)).
  • concentration is expressed relative to the mass of the entire panel, we arrive at significantly lower values than in panels uniformly loaded with fibers, for comparable mechanical properties, which leads to a specific mass and a lower material costs.
  • the two lateral layers (B) are substantially free of cellulosic particles, that is to say that they contain less than 5% by mass thereof. Ideally, these layers are completely free of cellulosic particles.
  • the layers (A) and / or (B) can optionally contain one or more conventional inorganic fillers such as calcium carbonate, talc, etc.
  • the thicknesses of the layers (A) and (B) can be freely chosen according to the requirements imposed on the composite panel.
  • the thickness of the inner layer (A) is generally at least 1 mm. It is generally at most 4 mm.
  • the thickness of each of the lateral layers (B) is generally at least 0.1 mm. It is also generally at most 0.5 mm.
  • the ratio between the thickness of the central layer (A) and that of each of the lateral layers (B) is between 2 and 40.
  • the composite panel of the invention may possibly comprise one or more other layers of any material, provided that their presence does not disturb the thermoforming of the panel.
  • additional layers are however preferably also based on thermoplastic material.
  • It may in particular be a thin decorative layer of thermoplastic material applied to at least part of the outer surface of one of the side layers (B), or of each of the two side layers (B).
  • Such decorative layers can for example be made from PVC or polyolefins, optionally in the form of a foam layer with a closed surface, and can optionally be grained or textured.
  • a layer of adhesive can be interposed between a side layer (B) and any adjacent surface decorative layer.
  • the lateral layers (B) are not necessarily immediately adjacent to the internal layer (A). Furthermore, one or more other layers may optionally be arranged on the side of a side layer (B) opposite the side where the inner layer (A) is located, that is to say closer to one of the two exterior surfaces of the panel.
  • composite panels having the following structures could meet the definition of the invention B / A / B, D / B / A / B / D, D / B / A / B, B / D / A / B, B / D / A / D / B, D / B / D / A / B (D representing any layer, or even several layers whatever).
  • the side layers (B), and in particular the reinforcing fiber fabrics which they contain are not too far from the exterior surfaces of the panel. It is preferred that the distance (measured perpendicular to the thickness of the panel) separating the center of the thickness of each side layer (B) from the nearest outer surface of the panel does not exceed the distance separating the centers of the thickness of layers (A) and (B).
  • the composite panels of the invention can in particular be used in the interior trim of vehicles, for example for manufacturing dashboards, rear panels, door trim, bodywork elements, etc.
  • the panels can be manufactured by any known process, continuous or discontinuous, in particular by rolling or hot pressing of the different layers
  • the manufacture of the composite panels of the invention can advantageously be carried out in line with the manufacture of said plates, which avoids having to heat them. Another particularly advantageous method of manufacturing the panels is described below. Because of the advantages offered by the panels of the invention when thermoformed, the invention also relates to a panel as described above, thermoformed.
  • thermoformed panel is intended to denote a panel which has been shaped so that at least one of its parts undergoes a deformation which, measured perpendicular to the mean plane of the panel, is at least 2 times its thickness, and in particular at least 10 times its thickness.
  • Another aspect of the present invention relates to a particular method allowing the manufacture of a composite panel as described above. According to the previously known methods, a first manufacturing step makes it possible to obtain a flat composite panel, for example by rolling or hot pressing of different layers. This panel can then be thermoformed in a second step. Thermoforming is therefore applied to a monolithic composite panel, sometimes thick, which generally leads to tearing in the event of deep thermoforming.
  • thermoforming consists in placing the panel between two half-molds each having the shape of the article which it is desired to obtain, and applying by means of these a high pressure to the panel, after having heated it.
  • the two half-molds are generally qualified as male and female half-molds respectively, according to their shape.
  • the present invention also aims to provide a simple method of manufacturing composite panels as defined above, which makes it possible to assemble their different layers and to thermoform them, even deeply, simultaneously, without causing tearing.
  • another object of the present invention relates to a process for thermoforming a composite panel comprising at least three layers based on thermoplastic material, among which an internal layer (A) containing cellulosic particles dispersed therein, as well as two lateral layers (B), arranged on either side of said internal layer, reinforced with fabrics of reinforcing fibers and substantially free of cellulosic particles, according to which these different layers are assembled and thermoformed simultaneously, without prior assembly layers (A) and (B).
  • This process combines assembly and thermoforming, which leads to saving time and energy, since only one heating is enough to assemble the different layers and simultaneously thermoform the composite panel thus obtained.
  • thermoforming a thermoforming such that at least part of the panel undergoes during thermoforming a deformation which, measured perpendicular to the mean plane of the panel, is at least 5 times its thickness, and in particular at least 15 times its thickness.
  • the method is especially advantageous when the slope of at least one zone of the edge of the deformed part forms an angle of at least 30 ° relative to the mean plane of the panel.
  • the various layers are placed in a metal frame, in such a way, however, that their relative sliding is possible.
  • a frame comprising two similar parts which are placed on either side of the different layers stacked on top of each other, so as to pinch and stretch them while subjecting them to a definite pressure on their periphery.
  • This pressure must be high enough so that the different layers are taut and substantially flat, but low enough to allow displacement of the layers or of some of their parts if necessary, to avoid any tearing.
  • One can in particular use a frame provided springs or cylinders arranged at regular intervals on its periphery, so as to exert a determined pressure on the periphery of the stack of layers.
  • the different layers have dimensions greater than those of this frame, and are arranged therein so as to extend beyond it, so that they always remain pinched by the frame even after a slight lateral movement, if any. It is moreover obvious that the frame used must have dimensions greater than those of the mold, so as not to prevent its closing.
  • the different layers can be preheated together, after having been superimposed, or else separately, before being superimposed.
  • the stacking of the different layers, secured by a frame as described above or by any equivalent device is then placed in an oven, for example infrared, in which it is heated beyond of the processing temperature of the thermoplastic which has the highest processing temperature.
  • an oven for example infrared, in which it is heated beyond of the processing temperature of the thermoplastic which has the highest processing temperature.
  • Tf melting temperature
  • PVC amorphous thermoplastic material
  • the stack is heated to a temperature of about 190 ° C ( ⁇ 20 ° C).
  • the different layers are not assembled before their thermoforming, they are stacked on top of each other, and their simple contact is generally sufficient to ensure the heating of the internal layer through the external layers
  • the choice of infrared radiation the appropriate wavelength also makes it possible to influence its penetration into the layers of thermoplastic material. It can also be useful to confer on the different layers different absorption powers by means of pigments and / or of suitable charges. Thus, for example, very good results have been obtained using non-pigmented side layers and an inner layer (A) of dark color.
  • the preheated stack is quickly introduced into a mold thermoforming, where the layers are simultaneously assembled and thermoformed by applying high pressure to them.
  • the mold is cooled, and the panel is allowed to cool therein under pressure to a determined temperature, for example up to 50 ° C., before extracting it.
  • the duration of this pressing depends in particular on the thickness of the panel.
  • the heating and the thermoforming can both take place in the mold.
  • the stack of different layers can be placed directly, without preheating, between two half-molds fixed to the two jaws of a heating press. These jaws, and therefore the mold, are first partially closed, so that the two half-molds come into contact with the stack. The mold is not completely closed until the stack has reached the temperature necessary for thermoforming.
  • the residence time in the heating press will require in this case a much longer duration than in the previous case, generally of the order of several minutes, in order to allow each of the layers to reach the necessary temperature. thermoforming.
  • thermoforming the panel can possibly be cooled in the same press, this particular variant would require the press to alternate heating and cooling, which would increase the duration of the process. It is therefore preferable, when this variant is chosen, to use a heating press and a cooled press.
  • the mold is detached from the jaws of the heating press, without opening it, and it is installed in the cooled press, where the panel it contains can cool under pressure.
  • the layers (A) and (B) are not joined before their thermoforming, neither directly nor indirectly, but are simply stacked on top of each other. Regarding any additional layers, they can either be pre-assembled with one of the layers (A) and (B), or else be previously joined to any other layer.
  • the method is carried out in a thermoforming mold comprising a male half-mold and a female half-mold, and a vacuum is created in the female half-mold during at least part of the thermoforming; preferably, the pressure is reduced to a value of 0.05 to 0.02 MPa.
  • the stack of layers is deposited on the female half-mold, in contact with its entire periphery, which defines a closed volume as far as the shape of the female half-mold lends itself to it. We then put this volume in depression.
  • the vacuum thus applied generally does not in itself cause the application of the stack of layers against the entire surface of the female half-mold.
  • both the internal layer (A) and the lateral layers (B) are manufactured separately, in steps prior to thermoforming, and are each in the form of homogeneous sheets of thermoplastic material comprising different reinforcements or fillers .
  • the internal layer (A) can be produced in a manner known per se, for example by the extrusion of a thermoplastic material with which the desired quantity of cellulose particles has been mixed, by means of an extruder provided with a flat die, possibly followed by a grille.
  • the side layers (B) can also be produced by any suitable technique, for example by impregnating a fabric of fibers with a molten thermoplastic material, or by laminating a fabric of fibers between two sheets of heated thermoplastic material. .
  • the lateral layers (B) can also be produced from one or more fabrics of reinforcing fibers and fibers of thermoplastic material ("knitted fabrics"), such as for example the composite polypropylene-glass fibers TWINTEX® from VETROTEX.
  • thermoplastic material reinforced with reinforcing fiber fabrics.
  • the anchoring of the reinforcing fibers within the thermoplastic material is particularly good.
  • the lateral layers (B) are not used in the form of such homogeneous plates, but are directly used in the form of fabrics made up of reinforcing fibers and fibers of thermoplastic material, such as described above, without prior step of consolidation of these fabrics into homogeneous plates (that is to say plates of which the constituent thermoplastic material is homogeneous).
  • the use of such mixed fabrics leads to additional advantages: in particular, it makes it possible to carry out even deeper thermoformings without the risk of tearing. In addition, the panels thus obtained are more homogeneous.
  • the proportion of reinforcing fibers is 30 to 70% relative to the total weight of these fabrics.
  • Example 3 is in accordance with the invention, and Examples 1R, 2R and 4R are given for comparison. Examples 1R to 4R - Properties of different composite panels
  • thermoforming process in two stages: the heating and the thermoforming proper in a first press, heated, and a cooling under pressure in a second, cooled press, in which we transfer the mold containing the panel after thermoforming.
  • the operating conditions were as follows:
  • the different panels measured 250 x 350 mm, and had the following structure: (1R) WOOD-STOCK plate (marketed by G. O R. Applicazioni Spécial.), made of PP loaded with 50% by mass of wood particles, 2.5 mm thick.
  • (2R) panel obtained by hot pressing of a stack of 4 layers of balanced fabrics (that is to say comprising the same number of fibers per unit of length in each of the two main directions) of fibers streaked with glass and of PP.
  • These fabrics have a surface mass of 600 g / m 2 and a mass content of glass fibers of 60%.
  • (4R) AZDEL® PM 10400 plate consisting of a polypropylene plate reinforced with an isotropic felt (mat) of long glass fibers.
  • the composite panels thus produced had the following properties.
  • the impact resistance was evaluated by means of a non-notched Charpy test (standard
  • the panels according to the invention have a low specific mass (D), good impact resistance, as well as a high flexural modulus (in particular when expressed by unit of mass - cf. reports F20 / D and F] ⁇ f / R), and relatively independent of temperature (see the ratio F100 / F20), despite a relatively low content of glass fibers (23%).
  • the stack of the three layers is heated by infrared radiation to a temperature of 190 ° C., and introduced into a thermoforming mold conditioned at a temperature of 30 ° C. ⁇ 10 ° C., the male part of which is fixed to the upper plate. of a press, has a frustoconical protrusion 22 cm in diameter (at the base) and 55 mm high, with a draft angle of 5 °, and the female part of which, fixed to the lower plate of the press, comprises a correspondingly shaped cavity. Pressing is carried out under a pressure of 1.6 MPa.
  • Example 5 is repeated using exclusively a WOOD-STOCK plate, without any side layer (with preheating at 175 ° C instead of 190 ° C). The panel obtained after thermoforming is torn.
  • Example 5 is repeated using exclusively an Azdel plate identical to that used in Example 4R, without any side layer (with preheating to 190 ° C). The panel obtained is also torn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

Panneau composite comprenant au moins trois couches à base de matière thermoplastique, parmi lesquelles une couche interne (A) contenant des particules cellulosiques dispersées en son sein, ainsi que deux couches latérales (B), disposées de part et d'autre de ladite couche interne, renforcées par des tissus de fibres de renforcement et substantiellement exemptes de particules cellulosiques. Procédé de thermoformage d'un tel panneau composite, selon lequel ces différentes couches sont assemblées et thermoformées simultanément, sans assemblage préalable des couches (A) et (B).

Description

Panneau composite thermoformable et procédé pour sa fabrication
La présente invention concerne un panneau composite à base de matière thermoplastique ainsi qu'un procédé de thermoformage permettant de le fabriquer.
Dans de nombreuses applications industrielles, telles que par exemple la garniture intérieure de véhicules terrestres, maritimes ou aériens, il est souhaitable de disposer de panneaux composites qui soient légers et peu coûteux tout en présentant de bonnes propriétés mécaniques, en particulier en ce qui concerne leur résistance au choc et à la flexion. De préférence, ces propriétés mécaniques ne doivent pas être excessivement affectées par des températures de l'ordre de 60 à 100°C, qui sont couramment atteintes à proximité de dispositifs de propulsion ou de chauffage, ou encore lorsqu'un véhicule non-ventilé est exposé au soleil
Il est également important de pouvoir aisément donner à ces panneaux des formes variées et adaptées à leur destination, par exemple de manière à ce que certaines de leurs parties puissent servir d'accoudoirs, de cavités de rangement, de renfoncements pour poignées, etc. Ces panneaux doivent donc être capables de subir un thermoformage, même profond, sans se déchirer.
On trouve dans le commerce des plaques de matière thermoplastique chargées de particules de bois, qui sont largement utilisées dans l'industrie automobile. Bien que ces plaques puissent dans certains cas poser des problèmes si on les soumet à un thermoformage extrêmement profond, il serait intéressant, étant donné leur faible coût et leur faible densité, de pouvoir les utiliser comme matériau de départ pour fabriquer des panneaux composites présentant les propriétés souhaitées.
Pour améliorer les propriétés mécaniques de ces plaques, on peut notamment envisager de les renforcer par des barres métalliques, des nervures, etc., mais ces solutions sont complexes et empêchent le thermoformage des panneaux comprenant de telles plaques renforcées.
Par ailleurs, de bonnes propriétés mécaniques peuvent être obtenues en utilisant des plaques de matière thermoplastique comprenant des fibres de renforcement dispersées en leur sein. Toutefois, ces fibres accroissent généralement le risque de déchirement en cas de thermoformage profond, et ces plaques ont une densité élevée.
A titre d'exemple, le document DE 204831 1 décrit un panneau composite à base d'une matière thermoplastique, comprenant un ou plusieurs feutres (mats) ou tissus de fibres de renforcement, de préférence textiles, ainsi que des fibres de bois uniformément dispersées dans toute son épaisseur. Cette dernière caractéristique est désavantageuse : en particulier, elle réduit la résistance mécanique du panneau et accroît les risques de déchirement lors de son thermoformage. Sans que cette explication ne soit limitative, on suspecte que la proximité, et a fortiori le contact, des fibres de bois avec les fibres de renforcement puisse par ailleurs nuire à l'ancrage de ces dernières au sein de la matière thermoplastique, accroissant ainsi le risque de déchirement lors d'un thermoformage profond. Dans le document DE 2048311, le thermoformage n'est d'ailleurs absolument pas évoqué. En outre, une seule et même matière thermoplastique est utilisée pour l'ensemble du panneau, ce qui exclut notamment l'utilisation d'un matériau optimisé, par exemple moins coûteux, dans la zone centrale. Enfin, le procédé de fabrication utilisé dans ce document ne permet pas de garantir l'uniformité de l'épaisseur de chacune des couches du panneau obtenu. La présente invention vise dès lors à fournir un panneau composite léger, simple à fabriquer, peu coûteux, présentant une bonne résistance à la flexion et aux chocs, et capable de résister sans se déchirer à un thermoformage, même profond. Il est en outre souhaitable que ce panneau puisse être fabriqué de manière simple au départ d'une plaque de matière thermoplastique renforcée de particules cellulosiques, telle qu'une plaque WOOD-STOCK®.
De manière plus précise, l'invention concerne un panneau composite comprenant au moins trois couches à base de matière thermoplastique, parmi lesquelles une couche interne (A) contenant des particules cellulosiques dispersées en son sein, ainsi que deux couches latérales (B), disposées de part et d'autre de ladite couche interne, renforcées par des tissus de fibres de renforcement et substantiellement exemptes de particules cellulosiques.
La matière thermoplastique constitutive de chacune des couches (A) et (B) comprend essentiellement un ou plusieurs polymères thermoplastiques, tels que par exemple des polyoléfines, des polyamides, des polymères fluorés ou des polymères vinyliques. De très bons résultats ont été obtenus avec des polyoléfines telles que des homo- et copolymères d'α-oléfines, et en particulier du propylène. Les copolymères éventuellement utilisés comprennent avantageusement au moins 70 % en masse de propylène. D'excellents résultats ont été obtenus avec du polypropylène (PP) homopolymère, c'est-à-dire comprenant au moins 99 % en masse de propylène. Outre ce ou ces polymères, la matière thermoplastique peut encore comprendre un ou plusieurs additifs usuels tels que stabilisants, lubrifiants, antioxydants, pigments, agents antistatiques, compatibilisants, agents de couplage, etc. Les quantités de tels additifs peuvent être quelconques ; elles sont généralement modérées. De préférence, aucun additif n'est présent en des quantités excédant 10 % par rapport à la masse de la matière thermoplastique.
Les matières thermoplastiques constituant la couche interne (A) et chacune des deux couches latérales (B) peuvent être identiques ou différentes. Avantageusement, on utilise pour la couche interne (A) une matière thermoplastique différente, en particulier présentant des propriétés mécaniques moins homogènes ou moins élevées que la ou les matières thermoplastiques constitutives des couches latérales (B). Il peut notamment s'agir d'une mousse ou encore, plus avantageusement, d'une matière thermoplastique recyclée, moins coûteuse. Dans le cas où les matières thermoplastiques constitutives de deux couches adjacentes sont de natures différentes, il est souhaitable que les polymères compris dans ces matières thermoplastiques présentent une compatibilité mutuelle suffisante, afin qu'il ne soit pas nécessaire d'interposer une couche d'adhésif entre ces deux couches. Il peut avantageusement s'agir de différentes polyoléfines. Selon une variante avantageuse, la matière thermoplastique constitutive de chacune des couches (A) et (B) comprend au moins 50 % en masse d'une ou plusieurs polyoléfines (par rapport à la masse totale des polymères de la couche en question). De préférence, on utilise comme polyoléfine(s) un ou plusieurs polymères du propylène. De manière particulièrement préférée, la matière thermoplastique constitutive de chacune des couches (A) et (B) comprend au moins 70 % en masse de propylène, lequel peut aussi bien être contenu dans un homopolymère, dans un copolymère ou dans un mélange de plusieurs homo- et/ou copolymères.
Tout type de particule cellulosique peut être utilisé dans la couche interne (A), notamment de la sciure de bois, de la farine de bois, des fibres de bois, des particules de papier ou de carton, ou des fibres végétales telles que des fibres de lin, de coton ou de bambou, des déchets de paille, ainsi que leurs mélanges. Ces particules ont de préférence des dimensions moyennes d'environ 0, 1 à 3 mm. Il est souhaitable que leur teneur en eau ne dépasse pas 15 % en masse. En vue d'améliorer l'adhérence des particules cellulosiques à la matière thermoplastique constitutive de la couche interne (A), il peut être utile de les compatibiliser, par exemple par addition d'une faible quantité d'agents compatibilisants tels que des organosilanes insaturés (vinyltriéthoxysilane, gamrna- méthacryloxypropyltriméthoxysilane, etc.), ainsi qu'éventuellement un ou des peroxydes. L'effet de tels agents compatibilisants peut encore être accru par l'utilisation conjointe de faibles quantités d'agents réticulants appropriés, par exemple des tri-, tétra- ou penta-acrylates de polyols. Une autre méthode de compatibilisation consiste à utiliser une matière thermoplastique comprenant un ou plusieurs polymères modifiés de manière à présenter une affinité accrue vis-à- vis des particules cellulosiques, tels qu'une polyoléfine greffée par de l'anhydride maléique.
La concentration des particules cellulosiques au sein de la couche interne (A) est généralement d'au moins 30 parties en masse (par rapport à 100 parties en masse de matière thermoplastique), de préférence d'au moins 70 parties. Par ailleurs, cette concentration est généralement d'au plus 250 parties, et de préférence d'au plus 150 parties.
A titre d'exemple, de très bons résultats ont été obtenus en utilisant comme couche interne (A) des plaques de PP chargées de particules de bois commercialisées sous la marque WOOD-STOCK® par la société G O R. Applicazioni Speciali. Chacune des deux couches latérales (B) comprend un ou plusieurs tissus de fibres de renforcement, qui peuvent être de tout type connu. On préfère utiliser des fibres inorganiques, par exemple des fibres de carbone, de verre ou de métal. De très bons résultats ont été obtenus avec des tissus de fibres de verre. Ces fibres ont une longueur élevée, généralement de plusieurs décimètres ; leur longueur correspond souvent au moins à la longueur ou à la largeur du panneau. Ces fibres sont avantageusement compatibles, ou rendues compatibles, avec la matière thermoplastique ; à cette fin, elles peuvent notamment être munies d'un ensimage approprié, par exemple à base de silanes. Plusieurs types différents de fibres peuvent être utilisés conjointement. II est préférable que les tissus de fibres utilisés présentent une structure favorisant leur ancrage au sein de la matière thermoplastique. On peut notamment, à cette fin, utiliser des tissus à mailles ouvertes, de façon à ce que la matière thermoplastique puisse y pénétrer. On peut aussi fabriquer les couches latérales (B) à partir de tissus de fibres de renforcement et de fibres de matière thermoplastique comelées. De plus amples détails quant à la fabrication des couches (A) et (B) sont fournis ci-dessous, en relation avec le procédé. Quel que soit le mode de fabrication des couches latérales (B), leur matière thermoplastique constitutive est de préférence homogène ; en particulier, elle ne présente pas une structure fibreuse, même dans le cas de couches (B) fabriquées au départ de tissus co-mêlés de fibres de renforcement et de fibres thermoplastiques.
L'utilisation de tissus de fibres de renforcement conduit à des performances mécaniques plus élevées que les autres types de renforcement à base de fibres tels que fibres courtes uniformément dispersées ou feutres (mats). En outre, elle réduit très fortement les risques de déchirement du panneau en cas de thermoformage profond. Ce résultat est surprenant dans la mesure où la déformabilité d'un article à base de matière thermoplastique renforcé par un tissu de fibres est a priori considéré comme plus faible que si cet article était renforcé par des fibres courtes, par exemple.
La concentration des fibres de renforcement au sein de chacune des couches latérales (B) est généralement de l'ordre de 10 à 70 % (par rapport au poids total de chacune des couches (B)). Lorsqu'on exprime cette concentration par rapport à la masse du panneau tout entier, on en arrive à des valeurs nettement plus faibles que dans les panneaux uniformément chargés de fibres, pour des propriétés mécaniques comparables, ce qui conduit à une masse spécifique et à un coût matière plus faibles.
Comme exposé précédemment, les deux couches latérales (B) sont substantiellement exemptes de particules cellulosiques, c'est-à-dire qu'elles en contiennent moins de 5 % en masse. Idéalement, ces couches sont totalement exemptes de particules cellulosiques. Outre les constituants mentionnés ci-dessus, les couches (A) et/ou (B) peuvent optionnellement contenir une ou plusieurs charges inorganiques classiques telles que carbonate de calcium, talc, etc.
Les épaisseurs des couches (A) et (B) peuvent être librement choisies en fonction des exigences imposées au panneau composite. L'épaisseur de la couche interne (A) est généralement d'au moins 1 mm. Elle est généralement d'au plus 4 mm. Par ailleurs, l'épaisseur de chacune des couches latérales (B) est généralement d'au moins 0, 1 mm. Elle est en outre généralement d'au plus 0,5 mm.
Selon une variante avantageuse, le rapport entre l'épaisseur de la couche centrale (A) et celle de chacune des couches latérales (B) est compris entre 2 et 40. Outre la couche interne (A) et les deux couches latérales (B), le panneau composite de l'invention peut éventuellement comprendre une ou plusieurs autres couches de matériaux quelconques, pour autant que leur présence ne perturbe pas le thermoformage du panneau. Ces couches supplémentaires sont toutefois de préférence également à base de matière thermoplastique. Il peut notamment s'agir d'une mince couche décorative de matière thermoplastique appliquée sur au moins une partie de la surface extérieure de l'une des couches latérales (B), ou de chacune des deux couches latérales (B). De telles couches décoratives peuvent par exemple être réalisées à base de PVC ou de polyoléfines, éventuellement sous la forme d'une couche de mousse à surface fermée, et peuvent éventuellement être grainées ou texturées. En cas de besoin, une couche d'adhésif peut être interposée entre une couche latérale (B) et une éventuelle couche décorative superficielle adjacente.
Les couches latérales (B) ne sont pas forcément immédiatement adjacentes à la couche interne (A). Par ailleurs, une ou plusieurs autres couches peuvent éventuellement être disposées du côté d'une couche latérale (B) opposé au côté où se trouve la couche interne (A), c'est-à-dire plus près de l'une des deux surfaces extérieures du panneau . Ainsi, par exemple, des panneaux composites présentant les structures suivantes pourraient répondre à la définition de l'invention B/A/B, D/B/A/B/D, D/B/A/B, B/D/A/B, B/D/A/D/B, D/B/D/A/B (D représentant une couche quelconque, ou même plusieurs couches quelconques). Pour des raisons de résistance mécanique, il est toutefois souhaitable que les couches latérales (B), et en particulier les tissus de fibres de renforcement qu'elles contiennent, ne soient pas trop éloignées des surfaces extérieures du panneau. On préfère que la distance (mesurée perpendiculairement à l'épaisseur du panneau) séparant le centre de l'épaisseur de chaque couche latérale (B) de la surface extérieure du panneau la plus proche n'excède pas la distance séparant les centres de l'épaisseur des couches (A) et (B).
Les panneaux composites de l'invention peuvent notamment être utilisés dans l'habillage intérieur de véhicules, par exemple pour fabriquer des tableaux de bord, des plages arrière, des garnitures de portières, des éléments de carrosserie, etc.
Les panneaux peuvent être fabriqués par tout procédé connu, continu ou discontinu, notamment par laminage ou pressage à chaud des différentes couches Dans le cas où les panneaux sont fabriqués au départ de plaques de matière thermoplastique renforcées de particules cellulosiques telles que des plaques WOOD-STOCK, la fabrication des panneaux composites de l'invention peut avantageusement s'effectuer en ligne avec la fabrication desdites plaques, ce qui évite de devoir réchauffer celles-ci. Un autre procédé de fabrication des panneaux, particulièrement avantageux, est décrit ci-après. En raison des avantages qu'offrent les panneaux de l'invention lorsqu'on les thermoforme, l'invention concerne également un panneau tel que décrit ci- dessus, thermoformé. Par panneau thermoformé, on entend désigner un panneau qui a été mis en forme de telle façon qu'au moins une de ses parties subisse une déformation qui, mesurée perpendiculairement au plan moyen du panneau, vaut au moins 2 fois son épaisseur, et en particulier au moins 10 fois son épaisseur. Un autre aspect de la présente invention concerne un procédé particulier permettant la fabrication d'un panneau composite tel que décrit ci-dessus. Selon les procédés antérieurement connus, une première étape de fabrication permet d'obtenir un panneau composite plan, par exemple par laminage ou pressage à chaud de différentes couches. Ce panneau peut ensuite être thermoformé dans une seconde étape. Le thermoformage est donc appliqué à un panneau composite monolithique, d'épaisseur parfois élevée, ce qui conduit généralement à des déchirements en cas de thermoformage profond. De manière générale, le thermoformage consiste à disposer le panneau entre deux demi- moules présentant chacun la forme de l'article que l'on souhaite obtenir, et appliquer au moyen de ceux-ci une pression élevée au panneau, après l'avoir chauffé. Les deux demi-moules sont généralement qualifiés de demi-moules mâle et femelle respectivement, selon leur forme.
La présente invention vise également à fournir un procédé simple de fabrication de panneaux composites tels que définis ci-dessus, qui permette d'assembler leurs différentes couches et de les thermoformer, même profondément, simultanément, sans provoquer de déchirement.
De manière plus précise, un autre objet de la présente invention concerne un procédé de thermoformage d'un panneau composite comprenant au moins trois couches à base de matière thermoplastique, parmi lesquelles une couche interne (A) contenant des particules cellulosiques dispersées en son sein, ainsi que deux couches latérales (B), disposées de part et d'autre de ladite couche interne, renforcées par des tissus de fibres de renforcement et substantiellement exemptes de particules cellulosiques, selon lequel ces différentes couches sont assemblées et thermoformées simultanément, sans assemblage préalable des couches (A) et (B). Ce procédé regroupe l'assemblage et le thermoformage, ce qui conduit à une économie de temps et d'énergie, étant donné qu'un seul chauffage suffit pour assembler les différentes couches et pour simultanément thermoformer le panneau composite ainsi obtenu.
Que l'assemblage et le thermoformage des différentes couches soient simultanés signifie que ces deux opérations se déroulent au même moment - et donc forcément dans le même moule - pour chacune des zones du panneau, considérées cependant isolément les unes des autres. Ceci n'exclut donc pas que les couches soient assemblées et thermoformées dans certaines zones du panneau avant d'autres, ce qui est notamment le cas lorsqu'on utilise un moule comprenant une ou plusieurs pièces rétractables, initialement saillantes, permettant d'assembler et thermoformer simultanément les couches dans une ou plusieurs zones fortement déformées du panneau avant de procéder à leur assemblage et thermoformage simultané dans les autres zones du panneau.
D'autres avantages de ce procédé sont liés aux propriétés des panneaux composites qu'il permet d'obtenir. Ainsi, de manière surprenante, on a constaté que ce procédé conduisait à des panneaux présentant un état de surface nettement meilleur que les procédés connus. En outre, on a constaté que le fait de procéder à la mise en oeuvre sans jonction préalable des couches (A) et (B) réduit considérablement les risques de déchirement lors du thermoformage, en particulier en cas d'un thermoformage profond. Par thermoformage profond, on entend désigner un thermoformage tel qu'au moins une partie du panneau subit lors du thermoformage une déformation qui, mesurée perpendiculairement au plan moyen du panneau, vaut au moins 5 fois son épaisseur, et en particulier au moins 15 fois son épaisseur. Le procédé est spécialement avantageux lorsque la pente d'au moins une zone du bord de la partie déformée forme un angle d'au moins 30° par rapport au plan moyen du panneau.
Généralement, avant de procéder au thermoformage, on dispose les différentes couches dans un cadre métallique, de telle façon toutefois que leur glissement relatif soit possible. A cette fin, on peut par exemple utiliser un cadre comprenant deux parties semblables que l'on dispose de part et d'autre des différentes couches empilées les unes sur les autres, de manière à les pincer et à les tendre tout en les soumettant à une pression bien déterminée sur leur périphérie. Cette pression doit être suffisamment élevée pour que les différentes couches soient tendues et substantiellement planes, mais suffisamment faible pour permettre un déplacement des couches ou de certaines de leurs parties en cas de besoin, pour éviter toute déchirement. On peut notamment utiliser un cadre muni de ressorts ou de vérins disposés à intervalles réguliers sur sa périphérie, de façon à exercer une pression déterminée sur la périphérie de l'empilement des couches. Il est souhaitable que les différentes couches aient des dimensions supérieures à celles de ce cadre, et y soient disposées de manière à en déborder, afin qu'elles restent toujours pincées par le cadre même après un léger déplacement latéral éventuel. Il est par ailleurs évident que le cadre utilisé doit avoir des dimensions supérieures à celles du moule, afin de ne pas empêcher sa fermeture.
En vue du thermoformage, les différentes couches peuvent être préchauffées ensemble, après avoir été superposées, ou bien séparément, avant d'être superposées.
Selon une première variante de réalisation, l'empilement des différentes couches, solidarisé par un cadre tel que décrit ci-dessus ou par tout dispositif équivalent, est alors placé dans un four, par exemple à infrarouges, dans lequel il est chauffé au-delà de la température de mise en oeuvre de la matière thermoplastique qui a la température de mise en oeuvre la plus élevée. Pour une matière thermoplastique semi-cristalline (polyoléfines, etc.), cette température est légèrement supérieure à sa température de fusion (Tf) ; pour une matière thermoplastique amorphe (PVC, etc.), elle est généralement de l'ordre de Tg + 100°C, T„ désignant sa température de transition vitreuse. A titre d'exemple, lorsque chacune des couches (A) et (B) est à base de PP (Tf ≈
160 °C), on chauffe l'empilement à une température d'environ 190°C (± 20°C).
Bien que les différentes couches ne soient pas assemblées avant leur thermoformage, elles sont empilées les unes sur les autres, et leur simple contact suffit généralement à assurer le chauffage de la couche interne par l'intermédiaire des couches extérieures Le choix d'un rayonnement infrarouge de longueur d'onde appropriée permet par ailleurs d'influencer sa pénétration dans les couches de matière thermoplastique II peut également être utile de conférer aux différentes couches des pouvoirs d'absorption différents au moyen de pigments et/ou de charges appropriées. Ainsi, par exemple, de très bons résultats ont été obtenus en utilisant des couches latérales non-pigmentées et une couche interne (A) de couleur sombre.
On peut également préchauffer séparément la couche interne (A), puis y adjoindre les autres couches non préchauffées : étant donné que celles-ci sont généralement plus minces, leur simple contact avec la couche interne permettra généralement de les porter à la température désirée.
Ensuite, l'empilement préchauffé est rapidement introduit dans un moule de thermoformage, où l'on procède simultanément à l'assemblage des couches et à leur thermoformage en leur appliquant une pression élevée. Généralement, le moule est refroidi, et on laisse le panneau s'y refroidir sous pression jusqu'à une température déterminée, par exemple jusqu'à 50°C, avant de l'en extraire. La durée de ce pressage dépend notamment de l'épaisseur du panneau.
Selon une autre variante, le chauffage et le thermoformage peuvent tous deux s'effectuer dans le moule. Ainsi, par exemple, on peut directement disposer l'empilement des différentes couches, sans préchauffage, entre deux demi-moules fixés aux deux mâchoires d'une presse chauffante. Ces mâchoires, et donc le moule, sont d'abord refermées partiellement, de façon à ce que les deux demi- moules entrent en contact avec l'empilement. Le moule n'est refermé complètement que lorsque l'empilement a atteint la température nécessaire à son thermoformage. Il va de soi que le temps de séjour dans la presse chauffante nécessitera dans ce cas une durée beaucoup plus importante que dans le cas précédent, généralement de l'ordre de plusieurs minutes, afin de permettre à chacune des couches d'atteindre la température nécessaire au thermoformage. Bien qu'après le thermoformage le refroidissement du panneau puisse éventuellement se faire dans la même presse, cette variante particulière imposerait à la presse une alternance de chauffages et de refroidissements, ce qui accroîtrait la durée du procédé. Il est donc préférable, lorsque cette variante est retenue, d'utiliser une presse chauffante et une presse refroidie. Dans ce cas, une fois que le thermoformage proprement dit est terminé, on détache le moule des mâchoires de la presse chauffante, sans l'ouvrir, et on l'installe dans la presse refroidie, où le panneau qu'il contient peut se refroidir sous pression. Comme exposé ci-dessus, les couches (A) et (B) ne sont pas jointes avant leur thermoformage, ni directement ni indirectement, mais sont simplement empilées les unes sur les autres. En ce qui concerne les éventuelles couches supplémentaires, elles peuvent indifféremment être préassemblées à l'une des couches (A) et (B), ou bien n'être préalablement jointes à aucune autre couche. Dans certains cas, par exemple, il se peut qu'on dispose de couches latérales (B) déjà revêtues d'une mince couche décorative (D) : dans ce cas, on peut assembler et thermoformer en une seule étape les 3 "couches" (D+B), A et (B+D).
Selon une variante avantageuse, le procédé est effectué dans un moule de thermoformage comprenant un demi-moule mâle et un demi-moule femelle, et on crée une dépression dans le demi-moule femelle pendant au moins une partie du thermoformage ; de préférence, on y réduit la pression à une valeur de 0,05 à 0,02 MPa. Selon cette variante, l'empilement des couches est déposé sur le demi- moule femelle, en contact avec toute sa périphérie, ce qui définit un volume clos pour autant que la forme du demi-moule femelle s'y prête. On met alors ce volume en dépression. La dépression ainsi appliquée ne permet en général pas de provoquer à elle seule l'application de l'empilement des couches contre toute la surface du demi-moule femelle. Elle permet toutefois d'éviter que seul le moule exerce une pression sur l'empilement des couches, et de rendre cette pression plus homogène ; en effet, la pression exercée par le moule est généralement très localisée, en particulier aux arêtes des zones déformées, ce qui accroît les risques de déchirement à ces endroits. La dépression peut notamment être obtenue en prévoyant dans le demi-moule femelle une ou plusieurs ouvertures de très faible diamètre que l'on relie à une pompe à vide extérieure. Cette variante réduit le risque de déchirement du panneau et permet d'obtenir un état de surface d'une qualité surprenante. Selon une variante simple, à la fois la couche interne (A) et les couches latérales (B) sont fabriquées séparément, dans des étapes antérieures au thermoformage, et se présentent chacune sous la forme de plaques homogènes de matière thermoplastique comprenant différents renforts ou charges.
La couche interne (A) peut être fabriquée d'une manière connue en soi, par exemple par l'extrusion d'une matière thermoplastique à laquelle a été mélangée la quantité voulue de particules cellulosiques, au moyen d'une extrudeuse munie d'une filière plate, éventuellement suivie d'une calandre.
Les couches latérales (B) peuvent également être fabriquées par toute technique appropriée, par exemple par l'imprégnation d'un tissu de fibres par une matière thermoplastique fondue, ou par le laminage d'un tissu de fibres entre deux feuilles de matière thermoplastique chauffées. Les couches latérales (B) peuvent encore être fabriquées au départ d'un ou plusieurs tissus de fibres de renforcement et de fibres de matière thermoplastique comelées ("tissus comêlés"), tels que par exemple le matériau composite polypropylène-fibres de verre TWINTEX® de VETROTEX. En effet, en portant de tels tissus comêlés à une température supérieure à la température de fusion des fibres de matière thermoplastique qu'ils contiennent, en les pressant puis en les refroidissant (en bref, en "consolidant" ces tissus), on obtient également des plaques homogènes de matière thermoplastique renforcées de tissus de fibres de renforcement. Dans les plaques de ce type obtenues au départ de tissus comêlés, l'ancrage des fibres de renforcement au sein de la matière thermoplastique est particulièrement bon. Selon une autre variante avantageuse, les couches latérales (B) ne sont pas mises en oeuvre sous la forme de telles plaques homogènes, mais sont directement mises en oeuvre sous la forme de tissus comêlés de fibres de renforcement et de fibres de matière thermoplastique, tels que décrits ci-dessus, sans étape préalable de consolidation de ces tissus en plaques homogènes (c'est-à- dire de plaques dont la matière thermoplastique constitutive est homogène). L'utilisation de tels tissus comêlés conduit à des avantages supplémentaires : en particulier, elle permet de réaliser des thermoformages encore plus profonds sans risque de déchirement. En outre, les panneaux ainsi obtenus sont plus homogènes.
Dans les tissus comêlés préférés, la proportion des fibres de renforcement est de 30 à 70 % par rapport au poids total de ces tissus. Exemples
Les exemples suivants illustrent, de façon non limitative, le fonctionnement et les avantages des panneaux de l'invention et de leur procédé de fabrication. L'exemple 3 est conforme à l'invention, et les exemples 1R, 2R et 4R sont donnés à titre de comparaison. Exemples 1R à 4R - Propriétés de différents panneaux composites
On a fabriqué 4 panneaux composites différents, par un procédé de thermoformage en deux étapes : le réchauffage et le thermoformage proprement dit dans une première presse, chauffée, et un refroidissement sous pression dans une seconde presse, refroidie, dans laquelle on transfère le moule contenant le panneau après son thermoformage. Les conditions opératoires étaient les suivantes :
Les différents panneaux mesuraient 250 x 350 mm, et présentaient la structure suivante : (1R) plaque WOOD-STOCK (commercialisée par G. O R. Applicazioni Spécial.), constituée de PP chargé de 50 % en masse de particules de bois, d'une épaisseur de 2,5 mm.
(2R) panneau obtenu par pressage à chaud d'un empilement de 4 couches de tissus équilibrés (c'est-à-dire comprenant le même nombre de fibres par unité de longueur dans chacune des deux directions principales) de fibres comelées de verre et de PP. Ces tissus présentent une masse surfacique de 600 g/m^ et une teneur massique en fibres de verre de 60 %.
(3) panneau conforme à l'invention, constitué d'une âme centrale qui est une plaque WOOD-STOCK de 1,6 mm d'épaisseur (teneur pondérale en fibres de bois
: 50 %), emprisonnée entre deux couches latérales d'une épaisseur de 0,35 mm, réalisées au départ de tissus comêlés tels que décrits ci-dessus.
(4R) plaque AZDEL® PM 10400, consistant en une plaque de polypropylène renforcée par un feutre isotrope (mat) de fibres de verre longues.
Les panneaux composites ainsi réalisés présentaient les propriétés suivantes. La résistance au choc a été évaluée au moyen d'un test Charpy non-entaillé (norme
ISO 179 (1993)).
On constate clairement que les panneaux conformes à l'invention ont une faible masse spécifique (D), une bonne résistance au choc, ainsi qu'un module de flexion élevé (en particulier lorsqu'on l'exprime par unité de masse - cf. les rapports F20/D et F]θf/D), et relativement indépendant de la température (cf. le rapport F100/F20) , et ce malgré une teneur relativement faible en fibres de verre (23 %). Exemples 5 - Thermoformage
On installe successivement dans un cadre
- un tissu de fibres comelées de verre et de polypropylène tel que décrit ci-dessus,
- une plaque WOOD-STOCK de 2 mm d'épaisseur, et - une autre couche du même tissu de fibres comelées
L'empilement des trois couches est chauffé par rayonnement infrarouge jusqu'à une température de 190°C, et introduit dans un moule de thermoformage conditionné à une température de 30°C ± 10°C, dont la partie mâle, fixée au plateau supérieur d'une presse, comporte une protubérance tronconique de 22 cm de diamètre (à la base) et de 55 mm de hauteur, avec un angle de dépouille de 5°, et dont la partie femelle, fixée au plateau inférieur de la presse, comporte une cavité de forme correspondante. On procède au pressage sous une pression de 1,6 MPa. A l'ouverture du moule, on remarque que la couche interne (plaque WOOD-STOCK) n'est pas déchirée et adhère aux 2 couches latérales ; le panneau obtenu ne présente pas de déformation anormale (autre que celle visée). Exemples comparatifs 6R et 7R - Thermoformage
On répète l'exemple 5 en utilisant exclusivement une plaque WOOD- STOCK, sans aucune couche latérale (avec préchauffage à 175°C au lieu de 190°C). Le panneau obtenu après thermoformage est déchiré. On répète l'exemple 5 en utilisant exclusivement une plaque Azdel identique à celle utilisée dans l'exemple 4R, sans aucune couche latérale (avec préchauffage à 190°C). Le panneau obtenu est également déchiré.

Claims

R E V E N D I C A T I O N S
1 - Panneau composite comprenant au moins trois couches à base de matière thermoplastique, parmi lesquelles une couche interne (A) contenant des particules cellulosiques dispersées en son sein, ainsi que deux couches latérales (B), disposées de part et d'autre de ladite couche interne, renforcées par des tissus de fibres de renforcement et substantiellement exemptes de particules cellulosiques
2 - Panneau selon la revendication 1, dans lequel la matière thermoplastique constitutive de chacune des couches (A) et (B) comprend au moins 50 % en masse d'une ou plusieurs polyoléfines
3 - Panneau selon l'une des revendications précédentes, dans lequel la matière thermoplastique constitutive de chacune des couches (A) et (B) comprend au moins 70 % en masse de propylène
4 - Panneau selon l'une des revendications précédentes, dans lequel les tissus de fibres de renforcement sont des tissus de fibres de verre
5 - Panneau selon l'une des revendications précédentes, dans lequel la matière thermoplastique constitutive des couches latérales (B) est homogène
6 - Panneau selon l'une des revendications précédentes, thermoformé
7 - Procédé de thermoformage d'un panneau composite comprenant au moins trois couches à base de matière thermoplastique, parmi lesquelles une couche interne (A) contenant des particules cellulosiques dispersées en son sein, ainsi que deux couches latérales (B), disposées de part et d'autre de ladite couche interne, renforcées par des tissus de fibres de renforcement et substantiellement exemptes de particules cellulosiques, selon lequel ces différentes couches sont assemblées et thermoformées simultanément, sans assemblage préalable des couches (A) et (B)
8 - Procédé selon la revendication précédente, dans lequel au moins une partie du panneau subit lors du thermoformage une déformation qui, mesurée perpendiculairement au plan moyen du panneau, vaut au moins 5 fois son épaisseur. 9 - Procédé selon l'une des revendications 7 ou 8, dans lequel le procédé est effectué dans un moule de thermoformage comprenant un demi-moule mâle et un demi-moule femelle, et on crée une dépression dans le demi-moule femelle pendant au moins une partie du thermoformage.
10 - Procédé selon l'une des revendications 7 à 9, dans lequel les couches latérales (B) sont directement mises en oeuvre sous la forme de tissus comêlés de fibres de renforcement et de fibres de matière thermoplastique, sans étape préalable de consolidation de ces tissus en plaques homogènes.
EP97923062A 1996-05-16 1997-05-03 Panneau composite thermoformable et procede pour sa fabrication Withdrawn EP0898511A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
ITSV960015 1996-05-16
IT96SV000015A IT1288133B1 (it) 1996-05-16 1996-05-16 Lastra, o simili di materia plastica termoformabile.
BE9600642 1996-07-15
BE9600642A BE1010189A3 (fr) 1996-05-16 1996-07-15 Panneau composite thermoformable et procede pour sa fabrication.
PCT/EP1997/002430 WO1997043121A1 (fr) 1996-05-16 1997-05-03 Panneau composite thermoformable et procede pour sa fabrication

Publications (1)

Publication Number Publication Date
EP0898511A1 true EP0898511A1 (fr) 1999-03-03

Family

ID=25663050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97923062A Withdrawn EP0898511A1 (fr) 1996-05-16 1997-05-03 Panneau composite thermoformable et procede pour sa fabrication

Country Status (5)

Country Link
EP (1) EP0898511A1 (fr)
JP (1) JP2000510062A (fr)
CN (1) CN1225604A (fr)
AU (1) AU2897197A (fr)
WO (1) WO1997043121A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2152139B1 (es) * 1998-01-16 2001-08-16 Plasticos Marlix S A Lamina tricapa para termoconformado.
CN103522544A (zh) * 2013-07-30 2014-01-22 上海汇众汽车制造有限公司 碳纤维热塑性硬质泡沫夹芯复合板材的热压成型方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2048311A1 (en) * 1970-10-01 1972-04-06 Basf Ag Moulded articles especially sheets - comprising polyolefins and/or olefin copolymers, finely-divided wood and fibrous
DE4016409A1 (de) * 1990-05-22 1991-11-28 Basf Ag Flaechiger verbundwerkstoff
JP3244583B2 (ja) * 1994-02-07 2002-01-07 大倉工業株式会社 コンクリート型枠用合成樹脂パネル
DE9407109U1 (de) * 1994-04-29 1994-08-04 Messing, Oliver, 72800 Eningen Platte für Verschalungs-, Abtrennungs- oder Stützzwecke

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9743121A1 *

Also Published As

Publication number Publication date
AU2897197A (en) 1997-12-05
WO1997043121A1 (fr) 1997-11-20
CN1225604A (zh) 1999-08-11
JP2000510062A (ja) 2000-08-08

Similar Documents

Publication Publication Date Title
EP2822746B1 (fr) Procédé de fabrication d'une pièce d'équipement de véhicule automobile et pièce d'équipement associée
FR2510625A1 (fr) Mat fibreux moulable, produit obtenu par moulage de ce mat, et leur procede de fabrication
EP1575759A1 (fr) Procede et dispositif de fabrication d'une plaque composite
FR2883791A1 (fr) Structure plane composee d'un assemblage cohesif de cellules alveolaires jointives
FR2473415A1 (fr) Structures composees a base de plaques en polyolefine rigide revetues de couches de polyolefine flexible et procede de preparation
LU83332A1 (fr) Procede de preparation d'articles manufactures a base de polymeres thermoplastiques contenant des fibres de verre et articles obtenus
EP2964452A2 (fr) Procédé de fabrication d'un matériau composite multicouche, matériau composite multicouche obtenu par le procédé et pièces ou structures mécaniques réalisées avec ledit matériau
EP1405872A1 (fr) Utilisation d'un film à base de PVDF, de PMMA ou leur mélange pour recouvrir des objets en matériau thermodur
EP0158156A1 (fr) Matelas fibreux moulable et son procédé de fabrication
FR3029825A1 (fr) Procede de fabrication d'une piece d'equipement de vehicule automobile et piece de vehicule automobile comprenant un corps composite associee
FR3014731A1 (fr) Procede de fabrication d'une piece structurelle economique, notamment pour un vehicule automobile
FR2890893A1 (fr) Piece de vehicule automobile comprenant une ame alveolaire et une peau
BE1010189A3 (fr) Panneau composite thermoformable et procede pour sa fabrication.
EP0898511A1 (fr) Panneau composite thermoformable et procede pour sa fabrication
EP3233444B1 (fr) Procédé de fabrication d'une pièce composite avec impressions en relief et pièce composite issue d'un tel procédé
FR2914874A1 (fr) Procede de moulage de produits composites creux par extrusion-soufflage, dispositif utilise et produits obtenus
EP1847379B1 (fr) Procédé d'assemblage de bandes multicouches
FR2915421A1 (fr) Procede de moulage de pieces peintes en composite thermoplastique, dispositif et produits obtenus
WO1998044187A1 (fr) Feuille composite, revetement de sol la comprenant et procedes de fabrication de ceux-ci
FR2732266A1 (fr) Element de construction multicouche ainsi que son procede de fabrication
EP0437152A1 (fr) Films à base de Polyéthylène et E.V.A. chargés soudables par haute fréquence, pouvant être associés par complexage ou coextrusion à d'autres films et produits obtenus
FR2663260A1 (fr) Materiau thermoplastique renforce estampable son procede de fabrication articles moules obtenus a partir de ce materiau.
FR2852551A1 (fr) Procede pour la fabrication d'un revetement d'isolation accoustique et/ou antivibratile
FR2520292A1 (fr) Panneaux composites a base de fibres lignocellulosiques et de fibres de polyolefine, et leur procede de fabrication
FR2913913A1 (fr) Structure multicouche petg/pmma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010529

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020103