EP0898085B1 - Vérin à fluide à pression pour fluides électrorhéologiques - Google Patents

Vérin à fluide à pression pour fluides électrorhéologiques Download PDF

Info

Publication number
EP0898085B1
EP0898085B1 EP98114617A EP98114617A EP0898085B1 EP 0898085 B1 EP0898085 B1 EP 0898085B1 EP 98114617 A EP98114617 A EP 98114617A EP 98114617 A EP98114617 A EP 98114617A EP 0898085 B1 EP0898085 B1 EP 0898085B1
Authority
EP
European Patent Office
Prior art keywords
housing
valves
pressurized
fluid motor
electrorheological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98114617A
Other languages
German (de)
English (en)
Other versions
EP0898085A3 (fr
EP0898085A2 (fr
Inventor
Horst Dr. Rosenfeldt
Dorothea Adams
Horst Scherk
Eckhardt Dr. Wendt
Klaus Büsing
Gerald Fees
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Schenck AG
Bayer Chemicals AG
Original Assignee
Fludicon GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fludicon GmbH filed Critical Fludicon GmbH
Publication of EP0898085A2 publication Critical patent/EP0898085A2/fr
Publication of EP0898085A3 publication Critical patent/EP0898085A3/fr
Application granted granted Critical
Publication of EP0898085B1 publication Critical patent/EP0898085B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/06Use of special fluids, e.g. liquid metal; Special adaptations of fluid-pressure systems, or control of elements therefor, to the use of such fluids
    • F15B21/065Use of electro- or magnetosensitive fluids, e.g. electrorheological fluid

Definitions

  • the invention relates to a pressure medium motor for electrorheological fluids, with a housing surrounding two working chambers, a piston movable in the housing, which separates the working chambers from each other, an inlet channel for the supply of an electrorheological fluid from a space of higher pressure, an outlet channel for the discharge of electrorheological Liquid in a space of low pressure and electrorheological valves with a respective one working chamber with the inlet channel or the outlet channel connecting annular gap whose boundary surfaces form electrodes for generating an electric field.
  • Electrorheological fluids also known as electroviscous liquids, change their viscosity as a function of the field strength of an electric field to which they are exposed. Under the effect of an electric field, electrorheological fluids become tough or even stiff. It is known to use electrorheological fluids as working fluid in hydraulic systems in order to be able to electrically control hydraulic processes directly by means of electrorheological valves.
  • a pressure medium motor embodied as a differential cylinder which serves as a servomotor is intended for aircraft and is operated with an electrorheological fluid.
  • Control is provided by electrorheological valves integrated in the cylinder.
  • the four valves are designed as annular gaps, which are formed by the insertion of two pipes in the cylinder.
  • the piston of the cylinder is passed through the inner tube.
  • the supply and discharge of the electrorheological fluid via nozzles, which are arranged in the middle between the two end faces of the cylinder in the cylinder wall. Due to the short connection between the valves and the cylinder chambers, the high response speed of the electrorheological fluid can be well utilized in this known embodiment.
  • the invention is based on the object, a pressure medium engine of the type mentioned with integrated valves to create the compact outer dimensions, a high differential pressure between the two working chambers and thus a relatively large actuating force that achieves high dynamics and in which a good heat dissipation is given by direct metallic heat conduction.
  • the object is achieved in that the electrorheological valves through the housing wall in the longitudinal direction penetrating holes and in the holes arranged, insulated from the housing elements are formed, the holes and the elements together annular gaps constant gap width and limit the elements to a high voltage and the housing can be applied to ground potential.
  • the electrode gaps of the electrorheological valves can be guided over the entire length of the housing, so that one, measured on the length of the pressure medium motor, high pressure difference can be achieved. All annular gaps are in direct contact with the housing wall that can be produced from a metal, which ensures good heat dissipation.
  • Each valve can be formed by several holes with high voltage elements. It is therefore a large cross-sectional area of the valves and thus a high volume flow and high dynamics of the pressure medium motor can be achieved.
  • the inventive design of the pressure medium motor also allows a mechanically simple structure with identical components, namely holes and elements of the same size, to form the four valves.
  • the elements may in a simple embodiment consist of cylindrical rods or spikes, but they may also have the shape of a coil extending along the bore.
  • the elements can be mounted, with their ends protruding from the bores, in end caps which are fastened to the end faces of the housing and made of highly insulating material, e.g. engineering thermoplastics such as PPS or ceramics.
  • the end caps may further form chambers through which the annular gaps of the valves are connected to the inlet channel and the outlet channel or a working chamber. This has the advantage that the entire annular gap cross section is available as an inlet cross section.
  • the four valves may be connected to the working chambers and the inlet channel and the outlet channel in two different ways via the chambers in the end caps.
  • the inlet channel and the outlet channel lie on one end side of the housing and the valves are connected via the other end face of the housing with the working chambers.
  • This embodiment has the advantage that a unit of motor, pump and tank or memory can be flanged to the one end face of the pressure medium motor, resulting in a very compact overall mechanical structure of an aggregate, for example, in industrial robots for accurate positioning or as power steering for Passenger or truck can be used. Since the electrorheological fluid has a very high response speed of usually 1 ms, such an aggregate can also be used as a high-frequency cylinder in material testing.
  • the inlet channel and the outlet channel are guided to chambers on both end sides of the housing and connected there in each case with the annular gaps of another valve. This results in very short connection paths to the respective working chamber at all four valves.
  • FIG. 1 illustrates the mode of operation of the pressure medium motor operating in the following with an electrorheological fluid.
  • the lines denote the flow channels through which the electrorheological working fluid from a pump P is conveyed to a non-pressurized container T. Between the pump P and the tank T there are two parallel flow channels.
  • the upper channel contains in series one behind the other the annular gap valves 1a and 2b illustrated by circular surfaces, the lower flow channel the annular gap valves 2a and 1b, viewed in the flow direction. Between the annular gap valves 1a, 2b is at the upper flow channel connected to a working chamber A of the pressure medium motor, between the annular gap valves 2a, 1b, the other working chamber B of the pressure medium motor is connected to the lower flow channel.
  • the annular gap valves 1a, 1b are blocked by applying a high voltage, i. by the electric field generated by the high voltage in the annular gap, the viscosity of the electrorheological working fluid within the annular gap is increased so much that against the flow resistance caused thereby only a fraction of the delivered amount of liquid can pass through the annular gap valves 1a, 1b.
  • the pressure at the pump outlet and in the annular gap valve 2a switched to passageway increases with the working chamber B connected to this passage.
  • the pressure in the working chamber A remains at the low level of the container T, since the valve 2b is also on passage. Due to the pressure difference between the working chamber B and the working chamber A, the piston is moved in the direction of the working chamber A.
  • the annular gap valves 2a, 2b are blocked by applying a high voltage and the annular gap valves 1a, 1b de-energized and thus switched to passage. If the valves are switched quickly back and forth, the piston can be set to a vibration corresponding to the switching frequency.
  • the pressure medium motor shown in Figures 2 to 6 has a cylindrical housing 1, which consists of metal.
  • the housing 1 has a central, continuous cylinder bore 2, in which a piston 3 with a piston rod 4 is guided axially movable.
  • the piston 3 is with a Sliding seal 5 sealed against the wall of the cylinder bore 2 and divides the cylinder bore 2 into two working chambers A, B.
  • a series of cylindrical bores 6 are provided parallel to the cylinder bore 2, which completely penetrate the housing 1 and have a uniform diameter .
  • Through the holes 6 extend cylindrical mandrels 7 made of metal, which have a smaller diameter than the holes 6 and are centered with respect to the holes.
  • end caps 9, 10 which are mounted pressure-tight on both end sides of the housing 1.
  • the end caps 9, 10 are made of an insulating material, such as PPS or polycarbonate, which may be reinforced with fillers, such as glass fibers.
  • the end caps 9, 10 on a cylindrical projection 11 which engages in each case into the end of the cylinder bore 2 and closes it.
  • the end caps 9, 10 are provided with central through holes 12 in which the piston rod 4 is guided and sealed.
  • the end caps 9, 10 each have on their side facing the housing 1 two semi-cylindrical chambers 13, 14 and 15, 16 which are separated from one another by a radial wall 17 and 18, respectively.
  • the walls 17, 18 are aligned with each other so that their center plane are perpendicular to each other.
  • Each of the four groups of annular gaps forms an electrorheological annular gap valve 1a, 1b, 2a, 2b.
  • the mandrels 7 of each annular gap valve are connected to one another in the end cap 9 by a high-voltage distributor 19 and can be connected to a high-voltage source independently of the spikes of the other annular gap valves.
  • the housing 1 is connected to ground potential. If high voltage is applied to the spikes 7 of an annular gap valve, an electric field is generated in the annular gaps 8 of this annular gap valve and the viscosity of the electrorheological working fluid in the annular gaps 8 of this valve is increased.
  • the chamber 16 is connected via a channel 20 in the housing 1 with the working chamber A and the chamber 15 via a channel 21 in the housing 1 with the working chamber B.
  • the chamber 14 is connected to the inlet channel 22 and the chamber 13 to the outlet channel 23.
  • the working fluid supplied via the inlet channel 22 of the chamber 14 can thus enter the chamber 16 either via the annular gap valve 1a or into the chamber 15 via the annular gap valve 2a. Accordingly, the working fluid from the chamber 16 via the annular gap valve 2b and from the chamber 15 via the annular gap valve 1b respectively in the chamber 13 and from there in the outlet channel 23 are discharged.
  • the invention described is equally suitable for pressure medium motors that work with a magnetorheological working fluid. Instead of an electric field, a magnetic field is then to be built up in the annular gaps with the aid of suitable coils.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Servomotors (AREA)
  • Fluid-Damping Devices (AREA)

Claims (7)

  1. Moteur à fluide sous pression pour des fluides électrorhéologiques, avec un carter entourant deux compartiments de travail, un piston mobile dans le carter, qui sépare les compartiments de travail l'un de l'autre, une canalisation d'entrée pour l'alimentation d'un fluide électrorhéologique à partir d'un espace de plus haute pression, une canalisation de sortie pour évacuer le fluide électrorhéologique dans un espace de plus basse pression et des soupapes électrorhéologiques avec respectivement une fente annulaire reliant un compartiment de travail avec la canalisation d'entrée ou la canalisation de sortie, dont les surfaces de délimitation forment des électrodes pour la création d'un champ électrique, caractérisé en ce que les soupapes électrorhéologiques (1a, 1b, 2a, 2b) sont formées par les perçages (6) traversant la paroi du carter dans le sens longitudinal et par des éléments (goujons 7), disposés dans les perçages (6) et isolés par rapport au carter (1), les perçages (6) et les éléments (goujons 7) délimitant ensemble des fentes annulaires (8) avec une largeur de fente constante et les éléments (goujons 7) pouvant être soumis à une haute tension et le carter (1) à un potentiel de masse.
  2. Moteur à fluide sous pression selon la revendication 1, caractérisé en ce que par leur extrémités saillant hors des perçages, les éléments (goujons 7) sont logés dans des capuchons de terminaison (9, 10) qui sont fixés sur les faces frontales du carter (1) et qui sont fabriqués en un matériau hautement isolant.
  3. Moteur à fluide sous pression selon la revendication 1 ou 2, caractérisé en ce que les capuchons de terminaison (9, 10) forment des compartiments (13, 14, 15, 16) à travers lesquels les fentes annulaires (8) des soupapes (1a, 1b, 2a; 2b) sont reliées avec la canalisation d'entrée (22) et avec la canalisation de sortie (23) ou avec un compartiment de travail (A, B).
  4. Moteur à fluide sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce que la canalisation d'entrée (22) et la canalisation de sortie (23) se situent sur une face frontale du carter (1) où elles sont reliées respectivement avec deux soupapes (1a, 2a, ou 1b, 2b) et en ce que les soupapes (1a, 1b, 2a, 2b) sont reliées avec les compartiments de travail (A, B) sur l'autre face frontale du carter (1).
  5. Moteur à fluide sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une unité constituée du moteur, de la pompe et du réservoir et/ou de l'accumulateur est bridée sur la surface frontale du moteur à fluide sous pression.
  6. Moteur à fluide sous pression selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la canalisation d'entrée (22) et la canalisation de sortie (23) sont conduites vers les deux faces frontales du carter (1) où elles sont respectivement reliées avec la fente annulaire d'une autre soupape.
  7. Moteur à fluide sous pression selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est déterminé pour des fluides magnétorhéologiques et que les soupapes sont conçues sous la forme de soupapes magnétorhéologiques, de façon à ce qu'un champ magnétique puisse être crée entre le carter et les éléments.
EP98114617A 1997-08-16 1998-08-04 Vérin à fluide à pression pour fluides électrorhéologiques Expired - Lifetime EP0898085B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19735466 1997-08-16
DE19735466A DE19735466B4 (de) 1997-08-16 1997-08-16 Druckmittelmotor für elektrorheologische Flüssigkeiten

Publications (3)

Publication Number Publication Date
EP0898085A2 EP0898085A2 (fr) 1999-02-24
EP0898085A3 EP0898085A3 (fr) 2000-01-19
EP0898085B1 true EP0898085B1 (fr) 2006-05-10

Family

ID=7839107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98114617A Expired - Lifetime EP0898085B1 (fr) 1997-08-16 1998-08-04 Vérin à fluide à pression pour fluides électrorhéologiques

Country Status (5)

Country Link
US (1) US6116144A (fr)
EP (1) EP0898085B1 (fr)
JP (1) JPH11125215A (fr)
KR (1) KR19990023619A (fr)
DE (2) DE19735466B4 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717693A1 (de) * 1997-04-26 1998-10-29 Schenck Ag Carl Stell- und Dämpfervorrichtung
DE19955959A1 (de) * 1999-11-19 2001-05-23 Schenck Pegasus Gmbh Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten
US6823895B2 (en) * 2001-05-31 2004-11-30 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada Magnetorheological fluid device
DE102004010532A1 (de) * 2004-03-04 2005-12-15 Fludicon Gmbh Ventilansteuerung von hydraulischen Aktoren auf Basis elektrorheologischer Flüssigkeiten
DE102004026454B4 (de) * 2004-05-29 2007-10-25 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Wehrtechnik und Beschaffung Schwimmende Rohrlagerung
DE102010001595B4 (de) * 2010-02-04 2012-05-16 Sumitomo (Shi) Demag Plastics Machinery Gmbh Spritzgießmaschine sowie hydraulische Antriebseinheit hierfür
RU2634166C2 (ru) * 2014-08-18 2017-10-24 Катарина Валерьевна Найгерт Магнитореологический привод прямого электромагнитного управления характеристиками потока верхнего контура гидравлической системы с гидравлическим мостиком (варианты)
CN106438565B (zh) * 2016-12-08 2018-02-02 广东技术师范学院 一种防尘控热装置及其方法
DE102017214660B4 (de) * 2017-08-22 2022-12-15 Bayerische Motoren Werke Aktiengesellschaft Druckbolzen einer Presse sowie Presse mit Druckbolzen

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050034A (en) * 1960-04-04 1962-08-21 Ct Circuits Inc Transducer-controlled servomechanism
US3501099A (en) * 1967-09-27 1970-03-17 Physics Int Co Electromechanical actuator having an active element of electroexpansive material
US3552275A (en) * 1968-07-29 1971-01-05 Boeing Co Electric fluid actuator
US3587613A (en) * 1969-07-18 1971-06-28 Atomic Energy Commission Electro-fluid valve having strip electrodes
US3599428A (en) * 1970-04-29 1971-08-17 Boeing Co Electric fluid actuator
DE3063743D1 (en) * 1979-05-15 1983-07-21 Secr Defence Brit A hydraulic servo valve arrangement
JP2599602B2 (ja) * 1987-11-02 1997-04-09 株式会社ブリヂストン 起振装置
DE3738630C2 (de) * 1987-11-13 1995-06-08 Rexroth Mannesmann Gmbh Elektrohydraulische Druckwandlervorrichtung
US4840112A (en) * 1988-01-12 1989-06-20 Ga Technologies Inc. Combined valve/cylinder using electro-rheological fluid
US5014829A (en) * 1989-04-18 1991-05-14 Hare Sr Nicholas S Electro-rheological shock absorber
US5161653A (en) * 1989-04-18 1992-11-10 Hare Sr Nicholas S Electro-rheological shock absorber
US5158109A (en) * 1989-04-18 1992-10-27 Hare Sr Nicholas S Electro-rheological valve
GB2244006B (en) * 1990-05-04 1994-05-25 Blatchford & Sons Ltd An artificial limb
US5170866A (en) * 1991-04-01 1992-12-15 Motorola, Inc Motion-damping device using electrorheological fluid
USH1292H (en) * 1992-09-23 1994-03-01 The United States Of America As Represented By The Secretary Of The Navy Electro-rheological fluid damped actuator
US5866971A (en) * 1993-09-09 1999-02-02 Active Control Experts, Inc. Hybrid motor
GB2285494B (en) * 1994-01-05 1998-04-22 Ckd Corp Control apparatus for an electroviscous fluid

Also Published As

Publication number Publication date
EP0898085A3 (fr) 2000-01-19
DE19735466A1 (de) 1999-02-18
US6116144A (en) 2000-09-12
EP0898085A2 (fr) 1999-02-24
KR19990023619A (ko) 1999-03-25
JPH11125215A (ja) 1999-05-11
DE19735466B4 (de) 2007-06-28
DE59813531D1 (de) 2006-06-14

Similar Documents

Publication Publication Date Title
DE3525673A1 (de) Aktives zweikammer-motorlager mit hydraulischer daempfung
WO1999058874A1 (fr) Clapet a base de liquides electrorheologiques et/ou magnetorheologiques
EP0898085B1 (fr) Vérin à fluide à pression pour fluides électrorhéologiques
EP0688411B1 (fr) Soupape de commande hydraulique
DE102012002921A1 (de) Servoventil
EP0066274A1 (fr) Arrangement de vannes pour augmenter la vitesse de sortie d'un vérin
DE10320005B3 (de) Schwingungsdämpfer mit feldkraftabhängig regelbarer Dämpfkraft
DE3446134C2 (fr)
EP3636936B1 (fr) Multiplicateur de pression hydraulique et procédé de production d'une tension de pression axiale dans le cylindre haute pression
DE19514244A1 (de) Hydraulische Zahnstangenlenkung
DE3435952A1 (de) Ventilvorrichtung fuer hydraulische ausbausystem u.dgl.
EP0931964B1 (fr) Distributeur
EP1101953A2 (fr) Moteur à actionnement fluidique pour les fluides électrorhéologiques
WO2010084002A2 (fr) Ensemble machine hydraulique
DE2917435A1 (de) Steuerdrehschiebereinrichtung
DE19757157C2 (de) Hydraulischer Linearantrieb
DE2825790C2 (de) Stellmotor mit Nachlaufsteuerung
EP0226122A2 (fr) Pompe
DE102014011541B4 (de) Elektrorheologischer Aktor
WO1987006657A1 (fr) Convertisseur electro-hydraulique
DE19749060A1 (de) Hydraulische Verdrängermaschine
DE2825827C2 (de) Stellmotor mit Nachlaufsteuerung für hydraulische Verstellmaschinen
WO2017108403A1 (fr) Module accumulateur pour un entraînement à accumulateur à ressort hydromécanique
DE2515035A1 (de) Steuerventil fuer hydraulikkreise
DE19843122A1 (de) Wegeventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB IT LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FEES, GERALD

Inventor name: BUESING, KLAUS

Inventor name: WENDT, ECKHARDT DR.

Inventor name: SCHERK, HORST

Inventor name: ADAMS, DOROTHEA

Inventor name: ROSENFELDT, HORST DR.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000719

AKX Designation fees paid

Free format text: BE CH DE ES FR GB IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL SCHENCK AG

Owner name: BAYER CHEMICALS AG

17Q First examination report despatched

Effective date: 20041202

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FLUDICON GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FEES, GERALD

Inventor name: BUESING, KLAUS

Inventor name: WENDT, ECKHARDT DR.

Inventor name: SCHERK, HORST

Inventor name: ADAMS, DOROTHEA

Inventor name: ROSENFELDT, HORST DR.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59813531

Country of ref document: DE

Date of ref document: 20060614

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20070213

BERE Be: lapsed

Owner name: FLUDICON G.M.B.H.

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120821

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120823

Year of fee payment: 15

Ref country code: FR

Payment date: 20120906

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121024

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59813531

Country of ref document: DE

Effective date: 20140301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902