EP0880193B1 - Antennenstrahler für Mikrowellensendung und empfang - Google Patents

Antennenstrahler für Mikrowellensendung und empfang Download PDF

Info

Publication number
EP0880193B1
EP0880193B1 EP98401216A EP98401216A EP0880193B1 EP 0880193 B1 EP0880193 B1 EP 0880193B1 EP 98401216 A EP98401216 A EP 98401216A EP 98401216 A EP98401216 A EP 98401216A EP 0880193 B1 EP0880193 B1 EP 0880193B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
source according
signals
transducer
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98401216A
Other languages
English (en)
French (fr)
Other versions
EP0880193A1 (de
Inventor
Alexi Khammouni
Jean-Pierre Blot
Gérard Estrade
Jean-Claude Cruchon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0880193A1 publication Critical patent/EP0880193A1/de
Application granted granted Critical
Publication of EP0880193B1 publication Critical patent/EP0880193B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2131Frequency-selective devices, e.g. filters combining or separating two or more different frequencies with combining or separating polarisations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to an antenna source for the emission and reception of polarized microwave waves.
  • band C used today for certain satellite communications, from 3.625 to 4.2 GHz for reception and 5.85 to 6.425 GHz for transmission will be expanded down for reception (3.4 to 4.2 GHz) and down high (5.85 to 6.65 GHz) for transmission.
  • FIG. 1 a source diagram antenna usable for transmitting and receiving signals in conventional C-band, i.e. with bandwidths of 575 MHz for transmission and reception.
  • This antenna source known comprises a radiating element such as a horn 10 connected, via an adaptation section 12 and a guide of circular section waves 14, to a polarizer 16 intended for convert, on the one hand, the signals received into circular polarization into signals in linear polarization and, on the other hand, signals to be transmitted from linear polarization to polarization circular.
  • the polarizer 16 is connected to a transducer 18 for separate the transmit and receive frequencies.
  • This transducer includes a waveguide of circular section whose surface exterior has longitudinal direction slots - that is to say whose largest dimension is parallel to the axis of the guide - connected to other waveguides (not shown) and to filtering means (also not shown) eliminating the transmission frequencies and allowing reception frequencies to pass.
  • the end of the waveguide of the transducer 18 which is opposite to that connected to polarizer 16 receives the signals to issue.
  • the transmission channel includes filtering means for eliminate reception frequencies and, generally, means of orthogonal polarization.
  • the invention overcomes these drawbacks.
  • the antenna source according to the invention is characterized in that to transmit and receive wide signals bands, the transducer separating the emission and reception has a square section waveguide.
  • this transducer is connected to the emission channel by means of a section waveguide circular penetrating inside the waveguide of the transducer.
  • This arrangement optimizes the separation between transmit and receive signals. This separation is further improved if there is provision at the end of the waveguide circular, inside the waveguide of the transducer, a iris, for example in the form of a double slit.
  • the transducer has a waveguide of square section is advantageously provided, on each of its sides, a rectangular opening, or slot, the long side is advantageously perpendicular to the axis of the waveguide.
  • These slots allow extracting reception signals; they are associated with filtering means to eliminate the frequencies resignation.
  • connection of the radiating element to the transducer separating the transmit and receive frequencies is such that it maintains the polarization state of the transmitted signals.
  • a corresponding polarizer is provided in the sending and / or receiving channel, opposite to the radiating element with respect to the transducer. This provision is also favorable to operation for large transmit and receive bands.
  • slots of two opposite faces are, in one embodiment, connected to Respective inputs of a "Magic tee" type adder.
  • the signal received being circularly polarized the output of each of these adders provides the reception signal with a linear polarization of determined direction, the outputs of two magic tees being signals whose polarization vectors are perpendicular to each other.
  • a coupler is advantageously used 3db / 90 °, in particular of the "Riblet" type.
  • Such a coupler includes two rectangular section waveguides that connect in a junction zone of parallelepiped shape, each waveguide comprising an incoming branch and an outgoing branch of the junction area. The latter has a height equal to the short side of the section of each waveguide and one width equal to twice the long side of said section.
  • such a coupler is used in which the junction zone has, at least on a large wall, a projection of elongated shape in the direction transverse to the spread.
  • the corresponding projections in the junction area are either circular or elongated in the longitudinal direction.
  • each of these ribs having, preferably a height that gradually decreases to inside each branch.
  • a receiving duplexer For transmission, when it is necessary to issue right and / or left circularly polarized signals from linearly polarized signals, a receiving duplexer is used signals emitted in orthogonal linear polarizations and a polarizer which transforms linearly polarized signals into circularly polarized signals.
  • a type polarizer "Septum" which combines the duplexer and polarizer functions.
  • a such a polarizer has two waveguides of semi-circular section receiving linearly polarized signals which converge towards an outlet waveguide of circular section.
  • a wall or blade of longitudinal direction and decreasing height in direction radial In the output waveguide, from the junction area input waveguides, a wall or blade of longitudinal direction and decreasing height in direction radial. This wall extends along the axis of the waveguide of exit.
  • the decrease in the height of the blade is either progressive, or, preferably, by jumps, that is to say in stairs.
  • the embodiment of the invention that we are going to describe in relation to the figures concerns an antenna source broadband C transmission and reception.
  • the frequencies are from 3.4 to 4.2 GHz and for transmission, the frequencies are 5.85 to 6.65 GHz.
  • the reception frequency band extends on 800 MHz. The same is true for the frequency band resignation.
  • the antenna source shown in Figure 2 includes a transducer 24 comprising a waveguide 26 of section square which, in the figure, is represented in cross section, that is to say perpendicular to the axis of propagation.
  • a transducer 24 comprising a waveguide 26 of section square which, in the figure, is represented in cross section, that is to say perpendicular to the axis of propagation.
  • Moon of the ends of this waveguide 26 is connected directly to a propagation horn (not shown).
  • a propagation horn not shown.
  • This connection can however include an element non-radiant other than a polarizer, for example an extractor mode used to control a front antenna follow the trajectory of a satellite.
  • the end 30 ( Figure 3) of the waveguide 26 which is opposite the end 28 connected to the horn is connected to a waveguide 32 of circular section receiving, via of a waveguide 34 of square section, the signals emission in right circular polarization and circular polarization left supplied by a polarizer 36.
  • the purpose of the polarizer 36 is to transform the signals linearly polarized input to polarized output signals circular.
  • the input 38 of the polarizer 36 is connected to the output 40 of a duplexer 42 having two inputs, 44 and 46 respectively, receiving linearly polarized signals which must be transformed into polarized signals right circular and left circular polarization.
  • Entrance 44 receives the signals which must be transformed into signals to right circular polarization and input 46 receives signals to be transformed into circularly polarized signals left.
  • the duplexer 42 and polarizer 36 form a single element 50 constituting a polarizer of the "Septum" type, which will be described more far in relation to Figures 5 and 6.
  • the lateral faces 52, 54, 56 and 58 of the waveguide 26 have rectangular openings, or slots, to which are connected reduced waveguides having the same rectangular section.
  • the guides waves 60, 62, 64 and 66 have the same position along the x axis of guide 26. It is important to note that the largest dimension slots, and therefore rectangular waveguides 60, 62, 64 and 66, is perpendicular to the x axis. In other words the rectangular openings extend transversely to to the direction of propagation.
  • Waveguides 60, 62, 64 and 66 are equipped with filters, respectively 70, 72, 74 and 76 ( Figure 2), to remove transmit frequencies and pass frequencies reception.
  • the rectangular waveguides associated with the faces opposite 52 and 56 of the guide 26 are connected to the two inputs, 78 and 80 respectively, of a "magic tee" 82 (figure 2) whose output is connected to the first input 84 of a coupler 86 of the 3db / 90 ° type.
  • the rectangular waveguides associated with the opposite sides 54 and 58 are connected to the respective inputs of a second "magic tee" 90 whose output is connected to the second input 92 of coupler 86.
  • the coupler 86 receives, on its first input 84, a signal of a linear polarization of a first direction and, on its second input 92, a signal of linear polarization orthogonal. These signals are the two components of the wave at right and left circular polarization in the source. He gives on its outputs, respectively 94 and 96, signals which represent and differentiate the two circular polarizations orthogonal. For example, on output 94 the signal represents right circular polarization and on output 96 the signal represents the left circular polarization. An example of such coupler will be described later in relation to FIGS. 7 to 9.
  • the square section of the waveguide 26 also contributes to expand the transmit and receive bands.
  • the waveguide 26 has, on its internal face, corrugations, that is to say, ribs extending perpendicular to the x axis.
  • the transducer 24 comprises, in place of the guide 26 of square section, a waveguide of circular section also with corrugations to broaden the band with respect to a waveguide devoid of such corrugations.
  • the waveguide 26 is connected by its front face 28 to a waveguide 100 (FIG. 4) ensuring the transition between the 26 square section waveguide and the section waveguide circular cone.
  • the waveguide 32 of circular section for the connection to the transmission channel ends, inside the guide of waves 26, by an iris 102 which, in the example, has the shape of a cross, that is to say of two perpendicular slots 104 and 106.
  • the iris 102 short-circuits the reception frequencies.
  • This ring 108 in combination with the iris 102, aims to reflect the signals of reception towards the slots of the lateral walls of the guide 26 and, thus, preventing reception signals from entering the emission channel.
  • the circular waveguide 32 of the emission channel has other iris 110, 112 in the form of rings having a role impedance matching for the transmission frequencies included between 5.85 and 6.65 GHz.
  • irises 114, 116 and 118 are also provided in each reduced rectangular section guide of the reception channel, for example in the waveguide 60 (FIG. 4).
  • the irises 116 and 118 are each formed from of two rectangular plates or ribs projecting from the internal faces of the short sides of the waveguide 60. These ribs, which are referenced, respectively 116 1 and 116 2 for the iris 116, are perpendicular to the large faces 117 of the guide 60.
  • iris 114 the closest to the corresponding slot (not visible in Figure 4) of the waveguide 26, is formed from two plates 114 1 and 114 2 also perpendicular to the small faces of the guide waves 60, but parallel to the large faces 117.
  • Iris 114, 116 and 118 constitute the filtering means allowing to reject the frequencies of emission and pass reception frequencies.
  • Figures 5 and 6 represent a Septum polarizer in the emission channel of the antenna shown in Figure 2.
  • Septum type polarizer 50 has two guides of input waves 130 and 132. Input 44 is at the end waveguide 130 and inlet 46 is at the end of the guide of waves 132 ( Figures 2 and 6). In the vicinity of the entrances the guides are of rectangular section and are then of semi-circular section.
  • These two waveguides 130 and 132 are connected continuously to a waveguide 134 of circular section, of which the diameter is equal to the diameter of the section of each of the semicircular guides 130 and 132.
  • a central wall or blade 136 is provided, the plane of which contains the axis of the waveguide 134.
  • its height, in the radial direction is equal to the internal diameter of guide 134.
  • the width of this wall 136 decreases by jumps, that is to say that its end section has steps. In the example, four steps are planned, respectively 140, 142, 144 and 146.
  • the quality of the polarization circular i.e. the ellipticity rate
  • the cutting end 138 in particular the number of steps and length (in axial direction) and height (in radial direction) of each of these steps.
  • the higher the number of steps the more bandwidth of the polarizer is wide.
  • the lengths and heights of the steps are uneven.
  • FIGS 7 to 9 represent an embodiment of the coupler 86 in the path of reception.
  • a 3db / 90 ° coupler of the type "Riblet" (figure 2), is such that a signal applied to an input 84 is transmitted according to two signals of equal amplitudes on the outputs 94 and 96, these output signals having a phase shift 90 ° to each other.
  • an applied signal on the second input 92 is transmitted with equal amplitudes on outputs 94 and 96 and with a 90 ° phase shift between these output signals.
  • Such a coupler comprises two waveguides 160 and 162 which are connected according to a junction zone 164.
  • These guides waves have a rectangular section and are arranged so such as their small faces 166 and 168, corresponding to short sides of the section, are adjacent and only in the area junction 164 these faces or walls are removed.
  • the junction zone has a floor wall 170 and a ceiling wall 172 (FIG. 8).
  • the width of these walls - i.e. their dimension perpendicular to the propagation y and parallel to the large faces of the guides 160 and 162 - is twice the largest dimension of the rectangular section of each waveguide 160, 162.
  • the height the junction area, i.e. the distance between the walls 170 and 172, is equal to the short side of the section of guides 160 and 162.
  • the floor wall 170 has a projection 174 of which the base 176 has a curvilinear shape elongated transversely to the Y direction of propagation ( Figure 7).
  • This base 176 of the projection 174 occupies a large part, of the order of 75% of the floor area 170.
  • the top 178 of this projection 174 is of substantially smaller dimensions than those of base 176.
  • This vertex is also elongated transversely to the Y direction of propagation.
  • the base and the top of the projection are centered with respect to the junction zone 164.
  • the projection 174 is extended by ribs, respectively 180, 182, 184 and 186.
  • ribs respectively 180, 182, 184 and 186.
  • the rib 180 is constituted by a wall perpendicular to the floor 170. Inside the junction zone 164 the height of this rib 180 is the same as the height of the projection 174. This rib 180 is directed towards the branch of input 160 1 of the waveguide 160 and it partially penetrates this branch 160 1 . In this branch its height gradually decreases. In other words, the end of the rib 180 has the shape of a wedge or bevel 190. In contrast to the bevel 190, the rib 180 is connected to the end 192, facing the waveguide 160, from the top 178 of the projection 174.
  • the rib 184 is directed towards the outlet branch 160 2 of the waveguide 160.
  • the rib 182 is directed towards the inlet branch 162 1 of the waveguide 162 and the rib 186 is directed towards the outlet branch 162 2 of this same waveguide 162.
  • the ribs 182 and 186 are connected to the end 194 of the apex 178 of the projection which is opposite to the end 192 to which the two other ribs 180 and 184 are connected.
  • An adjustment screw 196 is provided in the ceiling 172 near its edge 198.
  • Another adjusting screw 200 is located in the center of the ceiling 172.
  • the projection 174 elongated transversely at direction Y of signal propagation allowed keep the equal properties of the amplitudes of the signals 0.1 dB output over a wide frequency band and, in in all cases, on the 800 MHz of the receiving C band.
  • the ribs 180, 182, 184 and 186 further significantly improve the quality of the coupler on the desired bandwidth.
  • the dimensions of the zone 164 are of the same order of magnitude as the dimensions of the corresponding zone of a conventional Riblet coupler. In a manner known per se, the properties of the coupler result from the fact that the modes TE 10 and TE 20 coexist in the junction zone 164.
  • the TE 10 mode is transformed into a TE 10 U-shaped mode, which gives it a more stationary guided wavelength ⁇ G and a greater bandwidth of use in relation to the dimensions of the U.
  • the ceiling 172 of the junction zone 164 has a projection 210 analogous to projection 174 and which is also extended by four ribs analogous to the corresponding associated ribs to the projection 174.
  • the dimensions and arrangement of the projection 210 and associated ribs are the same as those of the projection 174 and its corresponding ribs.
  • the projection 174 and, optionally, the projection 210 is not constituted by a continuous element but by a set of projections such as nipples sufficiently close together to give the same result as a continuous projection.
  • the emission one can also foresee the use of a duplexer and a polarizer rotated by 90 °, the emission then performed with linear polarization signals orthogonal.
  • the source has a number of accesses lower than the four accesses provided in the examples described above (two transmitting accesses and two receiving accesses). In in this case, the unused accesses will be loaded.
  • the antenna source described applies in particular telecommunications antennas with a diameter between 1 and 32 meters or more.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Aerials With Secondary Devices (AREA)
  • Transceivers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (25)

  1. Antennenstrahler zum Senden und Empfangen von Ultrahochfrequenzwellen, aufweisend einen Transducer zum Trennen der Signale, mit verschiedenen Frequenzen, zum Senden und Empfangen,
    dadurch gekennzeichnet, dass der Transducer einen Wellenleiter (26) quadratischen Querschnitts aufweist, von dem ein Ende an das strahlende Element angeschlossen ist, dessen anderes Ende an den Sendekanal angeschlossen ist, wobei dieser Sendekanal einen Wellenleiter kreisförmigen Querschnitts aufweist, der im Inneren des Wellenleiters (26) quadratischen Querschnitts endet.
  2. Antennenstrahler nach Anspruch 1,
    dadurch gekennzeichnet, dass die empfangenen Signale durch die Seitenflächen des Wellenleiters (26) des Transducers übertragen werden.
  3. Antennenstrahler nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass der Empfangskanal Wellenleiter aufweist, die mit den Seitenflächen des Wellenleiters des Transducers (24) mittels Öffnungen oder Schlitzen verbunden sind, die transversal zur Fortpflanzungsrichtung verlängert sind.
  4. Antennenstrahler nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass der Sendekanal an den Wellenleiter (26) des Transducers (24) mittels Filtermittel (102, 108) angeschlossen ist, die die Signale mit Sendefrequenzen passieren lassen und die Signale mit Empfangsfrequenzen reflektieren.
  5. Antennenstrahler nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass der Wellenleiter des Sendekanals eine Irisblende, beispielsweise in Form eines Doppelschlitzes (104, 106) aufweist, die sich im Inneren des Wellenleiters (26) des Transducers (24) befindet.
  6. Antennenstrahler nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, dass die Filtermittel einen Ring (108) aufweisen, der sich im Inneren des Wellenleiters (26) des Transducers (24) befindet.
  7. Antennenstrahler nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass die Verbindung des Transducers mit dem strahlenden Element der Antenne derart ist, dass sie den Polarisationszustand des durch das strahlende Element empfangenen Signals und des in Richtung auf dieses strahlende Element gesendeten Signals aufrechterhält.
  8. Antennenstrahler nach Anspruch 7,
    dadurch gekennzeichnet, dass die beiden Seitenflächen (52, 56), die dem Wellenleiter (26) des Transducers (24) entgegengesetzt sind, mit den beiden Eingängen eines Summators (82) verbunden sind wie ein magisches T-Stück, und dass die beiden anderen Seitenflächen (54, 58), die dem Wellenleiter (26) des Transducers (24) entgegengesetzt sind, an den Eingängen eines zweiten Summators (90) angeschlossen sind wie ein magisches T-Stück, wobei die Ausgänge der beiden Summatoren (82, 90) Signale mit linearen Polarisationen liefern, die zueinander orthogonal sind.
  9. Antennenstrahler nach Anspruch 7 oder 8,
    dadurch gekennzeichnet, dass er im Empfangskanal einen Polarisator (86) aufweist, um Signale mit linearer Polarisation in Signale mit kreisförmiger Polarisation umzuwandeln.
  10. Antennenstrahler nach Anspruch 9,
    dadurch gekennzeichnet, dass der Polarisator (86) einen Koppler vom Typ 3db/90°, beispielsweise vom Typ "Riblet" aufweist.
  11. Antennenstrahler nach Anspruch 10,
    dadurch gekennzeichnet, dass der Koppler 3db/90° zwei Wellenleiter (160, 162) rechteckiger Querschnitte aufweist, deren Eingangszweige und Ausgangszweige an einer parallelepipedischen Verbindungs- bzw. Übergangszone (164) Anschluss haben, deren Höhe gleich der kleinen Seite des Querschnitts der Wellenleiter und deren Breite das Doppelte der größten Seite des Querschnitts der Wellenleiter ist, wobei die Deckenwand (172) und/oder Bodenwand (170) dieser Verbindungs- bzw. Übergangszone einen Vorsprung (174) aufweist, der nach innen gerichtet und transversal zur Fortpflanzungsrichtung Y der Wellen verlängert ist.
  12. Antennenstrahler nach Anspruch 11,
    dadurch gekennzeichnet, dass der Vorsprung (174) an seiner Basis (176) eine Grundfläche aufweist, die einen sehr großen Anteil der Grundfläche der entsprechenden Wand (170) der Verbindungs- bzw. Übergangszone (164) belegt, und an seinem freien Ende oder Scheitel (178) Abmessungen aufweist, die im wesentlichen weniger groß sind.
  13. Antennenstrahler nach Anspruch 12,
    dadurch gekennzeichnet, dass der Scheitel (178) des Vorsprungs (174) eine zentrale Position in der Verbindungs- bzw. Übergangszone (164) einnimmt.
  14. Antennenstrahler nach einem der Ansprüche 11 bis 13,
    dadurch gekennzeichnet, dass mit dem Vorsprung (174) Rippen (180, 182, 184, 186) fest verbunden sind, die in Richtung auf die Eingangszweige und Ausgangszweige der beiden Wellenleiter gerichtet sind.
  15. Antennenstrahler nach Anspruch 14,
    dadurch gekennzeichnet, dass die Rippen im wesentlichen dieselbe Höhe wie der Vorsprung (174) haben.
  16. Antennenstrahler nach Anspruch 14 oder 15,
    dadurch gekennzeichnet, dass eine jede Rippe in einen Wellenleiterzweig eindringt und dass das Ende, das in den Zweig eindringt, eine Höhe aufweist, die sich fortschreitend von der Verbindung bzw. dem Übergang in Richtung auf den Zweig verkleinert.
  17. Antennenstrahler nach einem der Ansprüche 14 bis 16,
    dadurch gekennzeichnet, dass die Rippen, die in Richtung auf einen ersten Wellenleiter (160) gerichtet sind, im Scheitel (178) des Vorsprungs durch ihr erstes Ende (192) Anschluss haben, das in Richtung auf den ersten Wellenleiter gerichtet ist, während die Rippen, die in Richtung auf die Eingangszweige und Ausgangszweige des zweiten Wellenleiters (162) gerichtet sind, im Scheitel (178) der Rippe (174) durch ihr zweites Ende (194) Anschluss haben.
  18. Antennenstrahler nach einem der Ansprüche 11 bis 17,
    dadurch gekennzeichnet, dass in der Verbindungs- bzw. Übergangszone (164) des Kopplers Mittel (196, 200) zur Regelung der Kopplung zwischen den Ausgangssignalen vorgesehen sind.
  19. Antennenstrahler nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass in dem Sendekanal ein Polarisator vom Typ Septum (50) vorgesehen ist, um Signale mit linearen Polarisationen in Signale rechter und linker kreisförmiger Polarisationen umzuwandeln.
  20. Antennenstrahler nach Anspruch 19,
    dadurch gekennzeichnet, dass der Polarisator (50) zwei Eingangswellenleiter (130, 132) eines halbkreisförmigen Querschnitts aufweist, die in einem Ausgangswellenleiter (134) kreisförmigen Querschnitts Anschluss haben, wobei dieser Letztgenannte ausgehend von der Zone des Anschlusses an den Eingangswellenleitern eine axiale Trennwand (136) aufweist, die in Richtung des Ausgangs (150) des Ausgangswellenleiters (134) durch eine Zone endet, wo die Höhe der Wand durch Stufen (140, 142, 144, 146) endet.
  21. Antennenstrahler nach Anspruch 20,
    dadurch gekennzeichnet, dass der Durchlassbereich des Polarisators (50) durch die Wahl der Anzahl von Stufen des Endes der Wand (136) reguliert ist.
  22. Antennenstrahler nach Anspruch 20 oder 21,
    dadurch gekennzeichnet, dass die Längen der Stufen in axialer Richtung ungleich sind.
  23. Antennenstrahler nach einem der Ansprüche 20 bis 22,
    dadurch gekennzeichnet, dass die Höhen der Stufen in radialer Richtung ungleich sind.
  24. Ausführung eines Antennenstrahlers nach einem der vorstehenden Ansprüche mit Empfang von Signalen im Band von 3,4 bis 4,2 GHz.
  25. Ausführung eines Antennenstrahlers nach einem der Ansprüche 1 bis 23 mit Sendung von Signalen bei Frequenzen zwischen 5,85 und 6,65 GHz.
EP98401216A 1997-05-21 1998-05-20 Antennenstrahler für Mikrowellensendung und empfang Expired - Lifetime EP0880193B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9706172 1997-05-21
FR9706172A FR2763749B1 (fr) 1997-05-21 1997-05-21 Source d'antenne pour l'emission et la reception d'ondes hyperfrequences polarisees

Publications (2)

Publication Number Publication Date
EP0880193A1 EP0880193A1 (de) 1998-11-25
EP0880193B1 true EP0880193B1 (de) 2003-08-27

Family

ID=9507058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98401216A Expired - Lifetime EP0880193B1 (de) 1997-05-21 1998-05-20 Antennenstrahler für Mikrowellensendung und empfang

Country Status (10)

Country Link
US (1) US6166699A (de)
EP (1) EP0880193B1 (de)
JP (1) JPH1117402A (de)
CN (1) CN1202746A (de)
CA (1) CA2235792A1 (de)
DE (1) DE69817445D1 (de)
EA (1) EA000492B1 (de)
FR (1) FR2763749B1 (de)
ID (1) ID20322A (de)
NO (1) NO982232L (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194604A1 (de) * 2001-03-02 2010-06-09 Mitsubishi Denki Kabushiki Kaisha Antennenvorrichtung
DE10126468B4 (de) * 2001-05-31 2007-07-05 Eads Deutschland Gmbh Schlitzantenne
US6661309B2 (en) * 2001-10-22 2003-12-09 Victory Industrial Corporation Multiple-channel feed network
FR2831997B1 (fr) * 2001-11-07 2004-01-16 Thomson Licensing Sa Module guide d'ondes separateur en frequence a polarisation circulaire double et emetteur-recepteur le comportant
FR2833763B1 (fr) * 2001-12-14 2005-07-01 Manuf D App Electr De Cahors M Guide d'ondes en deux parties assemblees l'une contre l'autre
JP4060228B2 (ja) 2003-04-04 2008-03-12 三菱電機株式会社 導波管形偏分波器
JP4011511B2 (ja) 2003-04-04 2007-11-21 三菱電機株式会社 アンテナ装置
US6943744B1 (en) 2003-07-09 2005-09-13 Patriot Antenna Systems, Inc. Waveguide diplexing and filtering device
FR2923657B1 (fr) * 2007-11-09 2011-04-15 Thales Sa Procede de fabrication d'une source hyperfrequence monobloc electroformee a lame epaisse
DE102008044895B4 (de) * 2008-08-29 2018-02-22 Astrium Gmbh Signal-Verzweigung zur Verwendung in einem Kommunikationssystem
CN101872901A (zh) 2009-04-23 2010-10-27 安德鲁有限责任公司 单元微波天线馈电装置及其制造方法
CN102195141B (zh) 2010-03-12 2014-01-29 安德鲁有限责任公司 双极化的反射器天线组件
EP2815454A2 (de) * 2012-02-17 2014-12-24 Pro Brand International (Europe) Limited Mehrbandige datensignalempfangs- und/oder -sendevorrichtung
GB201602524D0 (en) * 2016-02-12 2016-03-30 Filtronic Broadband Ltd A millimetre wave transceiver
RU169535U1 (ru) * 2016-04-22 2017-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Возбудитель волны те01
US10816661B2 (en) * 2016-06-08 2020-10-27 Rosemount Aerospace Inc. Airborne ice detector using quasi-optical radar
RU2626726C1 (ru) * 2016-07-12 2017-07-31 Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей"(АО "Концерн ВКО "Алмаз-Антей") Компактная 90-градусная скрутка в прямоугольном волноводе
RU2647203C2 (ru) * 2016-08-09 2018-03-14 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Частотно-поляризационный селектор
CN110867644B (zh) * 2019-11-11 2021-01-19 中国电子科技集团公司第十四研究所 一种双频段多极化共口径同轴波导缝隙天线
WO2021127864A1 (zh) * 2019-12-23 2021-07-01 罗森伯格技术有限公司 一种双频双极化分路器
US11686742B2 (en) 2020-11-20 2023-06-27 Rosemount Aerospace Inc. Laser airspeed measurement sensor incorporating reversion capability
US11851193B2 (en) 2020-11-20 2023-12-26 Rosemount Aerospace Inc. Blended optical and vane synthetic air data architecture

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500419A (en) * 1966-09-09 1970-03-10 Technical Appliance Corp Dual frequency,dual polarized cassegrain antenna
US3731236A (en) * 1972-08-17 1973-05-01 Gte Sylvania Inc Independently adjustable dual polarized diplexer
DE2443166C3 (de) * 1974-09-10 1985-05-30 ANT Nachrichtentechnik GmbH, 7150 Backnang Systemweiche zur Trennung zweier Signale, die aus je zwei doppelt polarisierten Frequenzbändern bestehen
US3955202A (en) * 1975-04-15 1976-05-04 Macrowave Development Laboratories, Inc. Circularly polarized wave launcher
US4162463A (en) * 1977-12-23 1979-07-24 Gte Sylvania Incorporated Diplexer apparatus
JPS54114156A (en) * 1978-02-27 1979-09-06 Mitsubishi Electric Corp Branching filter
DE3020514A1 (de) * 1980-05-30 1981-12-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Antennenspeisesystem fuer eine nachfuehrbare antenne
IT1155664B (it) * 1982-03-25 1987-01-28 Sip Dispositivo di guida d onda per la separazione di segnali a radiofrequenza di diversa frequenza e polarizzazione
US5003321A (en) * 1985-09-09 1991-03-26 Sts Enterprises, Inc. Dual frequency feed
CA1260609A (en) * 1986-09-12 1989-09-26 Her Majesty The Queen, In Right Of Canada, As Represented By The Minister Of National Defence Wide bandwidth multiband feed system with polarization diversity
DE9107191U1 (de) * 1991-06-11 1991-08-08 Siemens AG, 8000 München Mikrowellen-Kopplerpolarisator

Also Published As

Publication number Publication date
EP0880193A1 (de) 1998-11-25
FR2763749A1 (fr) 1998-11-27
JPH1117402A (ja) 1999-01-22
CN1202746A (zh) 1998-12-23
ID20322A (id) 1998-11-26
EA199800396A1 (ru) 1998-12-24
CA2235792A1 (fr) 1998-11-21
NO982232L (no) 1998-11-23
FR2763749B1 (fr) 1999-07-23
DE69817445D1 (de) 2003-10-02
US6166699A (en) 2000-12-26
EA000492B1 (ru) 1999-08-26
NO982232D0 (no) 1998-05-15

Similar Documents

Publication Publication Date Title
EP0880193B1 (de) Antennenstrahler für Mikrowellensendung und empfang
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
EP2195877B1 (de) Omt-breitband- und multiband-/sende- und empfangs-/kopplungs- und trennvorrichtung für hochfrequenz-telekommunikationsantennen
FR2623020A1 (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
EP3726642B1 (de) Polarisationsschirm mit breitband-hochfrequenz-polarisationszelle(n)
FR2524209A1 (fr) Dispositif guide d'ondes, capable de separer des signaux de radiofrequence a double bande et double polarisation
FR2831997A1 (fr) Module guide d'ondes separateur en frequence a polarisation circulaire double et emetteur-recepteur le comportant
EP0098192B1 (de) Multiplexanordnung zum Zusammenfügen von zwei Frequenzbändern
FR2850793A1 (fr) Transition entre un circuit micro-ruban et un guide d'onde et unite exterieure d'emission reception incorporant la transition
EP3176875B1 (de) Aufbau einer aktiven hybriden rekonfigurierbaren strahlbildungsantenne
FR2859824A1 (fr) Antenne a diversite de polarisation
EP0467818B1 (de) Übergangsstück zwischen elektromagnetischen Hohlleitern, insbesondere zwischen einem Rundhohlleiter und einem Koaxialhohlleiter
FR2824425A1 (fr) Coupleur coaxial a large bande de jonction a mode orthogonal
FR2641133A1 (de)
FR2723801A1 (fr) Diplexeur a intervalle d'un octave entre bandes.
EP0068940B1 (de) Primärstrahler für Frequenz-Doppelausnutzung
EP3035445B1 (de) Anschlusskoppler mit orthogonalmodus, und entsprechender polarisations- und frequenztrennschalter
WO2024047573A1 (fr) Jonction orthomode à six ports
EP0192186B1 (de) Polarisationsweiche
EP2281320B1 (de) Koppler für ein mehrband-hochfrequenzsystem
EP2092592B1 (de) Orthogonalmodus-verbindungskoppler mit ultrabreiter betriebsbandbreite
EP0093058B1 (de) Mikrowellen-Speisevorrichtung für rotationssymmetrischen Doppelbanderreger mit Rillen
EP3811458A1 (de) Hochfrequenzerreger einer empfangs- und sendeantenne
FR2722032A1 (fr) Dispositif de couplage en anneau
FR2608870A1 (fr) Dispositif de multiplexage de canaux de telecommunication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLOT, JEAN-PIERRE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

17P Request for examination filed

Effective date: 19990525

AKX Designation fees paid

Free format text: DE GB IT

17Q First examination report despatched

Effective date: 20020318

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CRUCHON, JEAN-CLAUDE

Inventor name: ESTRADE, GERARD

Inventor name: BLOT, JEAN-PIERRE

Inventor name: KHAMMOUNI ALEXI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CRUCHON, JEAN-CLAUDE

Inventor name: ESTRADE, GERARD

Inventor name: BLOT, JEAN-PIERRE

Inventor name: KHAMMOUNI ALEXI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030827

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030827

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69817445

Country of ref document: DE

Date of ref document: 20031002

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031128

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030827

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040528