EP0880193B1 - Source d'antenne pour l'emission et la réception d'ondes hyperfréquences - Google Patents

Source d'antenne pour l'emission et la réception d'ondes hyperfréquences Download PDF

Info

Publication number
EP0880193B1
EP0880193B1 EP98401216A EP98401216A EP0880193B1 EP 0880193 B1 EP0880193 B1 EP 0880193B1 EP 98401216 A EP98401216 A EP 98401216A EP 98401216 A EP98401216 A EP 98401216A EP 0880193 B1 EP0880193 B1 EP 0880193B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
source according
signals
transducer
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98401216A
Other languages
German (de)
English (en)
Other versions
EP0880193A1 (fr
Inventor
Alexi Khammouni
Jean-Pierre Blot
Gérard Estrade
Jean-Claude Cruchon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0880193A1 publication Critical patent/EP0880193A1/fr
Application granted granted Critical
Publication of EP0880193B1 publication Critical patent/EP0880193B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2131Frequency-selective devices, e.g. filters combining or separating two or more different frequencies with combining or separating polarisations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the invention relates to an antenna source for the emission and reception of polarized microwave waves.
  • band C used today for certain satellite communications, from 3.625 to 4.2 GHz for reception and 5.85 to 6.425 GHz for transmission will be expanded down for reception (3.4 to 4.2 GHz) and down high (5.85 to 6.65 GHz) for transmission.
  • FIG. 1 a source diagram antenna usable for transmitting and receiving signals in conventional C-band, i.e. with bandwidths of 575 MHz for transmission and reception.
  • This antenna source known comprises a radiating element such as a horn 10 connected, via an adaptation section 12 and a guide of circular section waves 14, to a polarizer 16 intended for convert, on the one hand, the signals received into circular polarization into signals in linear polarization and, on the other hand, signals to be transmitted from linear polarization to polarization circular.
  • the polarizer 16 is connected to a transducer 18 for separate the transmit and receive frequencies.
  • This transducer includes a waveguide of circular section whose surface exterior has longitudinal direction slots - that is to say whose largest dimension is parallel to the axis of the guide - connected to other waveguides (not shown) and to filtering means (also not shown) eliminating the transmission frequencies and allowing reception frequencies to pass.
  • the end of the waveguide of the transducer 18 which is opposite to that connected to polarizer 16 receives the signals to issue.
  • the transmission channel includes filtering means for eliminate reception frequencies and, generally, means of orthogonal polarization.
  • the invention overcomes these drawbacks.
  • the antenna source according to the invention is characterized in that to transmit and receive wide signals bands, the transducer separating the emission and reception has a square section waveguide.
  • this transducer is connected to the emission channel by means of a section waveguide circular penetrating inside the waveguide of the transducer.
  • This arrangement optimizes the separation between transmit and receive signals. This separation is further improved if there is provision at the end of the waveguide circular, inside the waveguide of the transducer, a iris, for example in the form of a double slit.
  • the transducer has a waveguide of square section is advantageously provided, on each of its sides, a rectangular opening, or slot, the long side is advantageously perpendicular to the axis of the waveguide.
  • These slots allow extracting reception signals; they are associated with filtering means to eliminate the frequencies resignation.
  • connection of the radiating element to the transducer separating the transmit and receive frequencies is such that it maintains the polarization state of the transmitted signals.
  • a corresponding polarizer is provided in the sending and / or receiving channel, opposite to the radiating element with respect to the transducer. This provision is also favorable to operation for large transmit and receive bands.
  • slots of two opposite faces are, in one embodiment, connected to Respective inputs of a "Magic tee" type adder.
  • the signal received being circularly polarized the output of each of these adders provides the reception signal with a linear polarization of determined direction, the outputs of two magic tees being signals whose polarization vectors are perpendicular to each other.
  • a coupler is advantageously used 3db / 90 °, in particular of the "Riblet" type.
  • Such a coupler includes two rectangular section waveguides that connect in a junction zone of parallelepiped shape, each waveguide comprising an incoming branch and an outgoing branch of the junction area. The latter has a height equal to the short side of the section of each waveguide and one width equal to twice the long side of said section.
  • such a coupler is used in which the junction zone has, at least on a large wall, a projection of elongated shape in the direction transverse to the spread.
  • the corresponding projections in the junction area are either circular or elongated in the longitudinal direction.
  • each of these ribs having, preferably a height that gradually decreases to inside each branch.
  • a receiving duplexer For transmission, when it is necessary to issue right and / or left circularly polarized signals from linearly polarized signals, a receiving duplexer is used signals emitted in orthogonal linear polarizations and a polarizer which transforms linearly polarized signals into circularly polarized signals.
  • a type polarizer "Septum" which combines the duplexer and polarizer functions.
  • a such a polarizer has two waveguides of semi-circular section receiving linearly polarized signals which converge towards an outlet waveguide of circular section.
  • a wall or blade of longitudinal direction and decreasing height in direction radial In the output waveguide, from the junction area input waveguides, a wall or blade of longitudinal direction and decreasing height in direction radial. This wall extends along the axis of the waveguide of exit.
  • the decrease in the height of the blade is either progressive, or, preferably, by jumps, that is to say in stairs.
  • the embodiment of the invention that we are going to describe in relation to the figures concerns an antenna source broadband C transmission and reception.
  • the frequencies are from 3.4 to 4.2 GHz and for transmission, the frequencies are 5.85 to 6.65 GHz.
  • the reception frequency band extends on 800 MHz. The same is true for the frequency band resignation.
  • the antenna source shown in Figure 2 includes a transducer 24 comprising a waveguide 26 of section square which, in the figure, is represented in cross section, that is to say perpendicular to the axis of propagation.
  • a transducer 24 comprising a waveguide 26 of section square which, in the figure, is represented in cross section, that is to say perpendicular to the axis of propagation.
  • Moon of the ends of this waveguide 26 is connected directly to a propagation horn (not shown).
  • a propagation horn not shown.
  • This connection can however include an element non-radiant other than a polarizer, for example an extractor mode used to control a front antenna follow the trajectory of a satellite.
  • the end 30 ( Figure 3) of the waveguide 26 which is opposite the end 28 connected to the horn is connected to a waveguide 32 of circular section receiving, via of a waveguide 34 of square section, the signals emission in right circular polarization and circular polarization left supplied by a polarizer 36.
  • the purpose of the polarizer 36 is to transform the signals linearly polarized input to polarized output signals circular.
  • the input 38 of the polarizer 36 is connected to the output 40 of a duplexer 42 having two inputs, 44 and 46 respectively, receiving linearly polarized signals which must be transformed into polarized signals right circular and left circular polarization.
  • Entrance 44 receives the signals which must be transformed into signals to right circular polarization and input 46 receives signals to be transformed into circularly polarized signals left.
  • the duplexer 42 and polarizer 36 form a single element 50 constituting a polarizer of the "Septum" type, which will be described more far in relation to Figures 5 and 6.
  • the lateral faces 52, 54, 56 and 58 of the waveguide 26 have rectangular openings, or slots, to which are connected reduced waveguides having the same rectangular section.
  • the guides waves 60, 62, 64 and 66 have the same position along the x axis of guide 26. It is important to note that the largest dimension slots, and therefore rectangular waveguides 60, 62, 64 and 66, is perpendicular to the x axis. In other words the rectangular openings extend transversely to to the direction of propagation.
  • Waveguides 60, 62, 64 and 66 are equipped with filters, respectively 70, 72, 74 and 76 ( Figure 2), to remove transmit frequencies and pass frequencies reception.
  • the rectangular waveguides associated with the faces opposite 52 and 56 of the guide 26 are connected to the two inputs, 78 and 80 respectively, of a "magic tee" 82 (figure 2) whose output is connected to the first input 84 of a coupler 86 of the 3db / 90 ° type.
  • the rectangular waveguides associated with the opposite sides 54 and 58 are connected to the respective inputs of a second "magic tee" 90 whose output is connected to the second input 92 of coupler 86.
  • the coupler 86 receives, on its first input 84, a signal of a linear polarization of a first direction and, on its second input 92, a signal of linear polarization orthogonal. These signals are the two components of the wave at right and left circular polarization in the source. He gives on its outputs, respectively 94 and 96, signals which represent and differentiate the two circular polarizations orthogonal. For example, on output 94 the signal represents right circular polarization and on output 96 the signal represents the left circular polarization. An example of such coupler will be described later in relation to FIGS. 7 to 9.
  • the square section of the waveguide 26 also contributes to expand the transmit and receive bands.
  • the waveguide 26 has, on its internal face, corrugations, that is to say, ribs extending perpendicular to the x axis.
  • the transducer 24 comprises, in place of the guide 26 of square section, a waveguide of circular section also with corrugations to broaden the band with respect to a waveguide devoid of such corrugations.
  • the waveguide 26 is connected by its front face 28 to a waveguide 100 (FIG. 4) ensuring the transition between the 26 square section waveguide and the section waveguide circular cone.
  • the waveguide 32 of circular section for the connection to the transmission channel ends, inside the guide of waves 26, by an iris 102 which, in the example, has the shape of a cross, that is to say of two perpendicular slots 104 and 106.
  • the iris 102 short-circuits the reception frequencies.
  • This ring 108 in combination with the iris 102, aims to reflect the signals of reception towards the slots of the lateral walls of the guide 26 and, thus, preventing reception signals from entering the emission channel.
  • the circular waveguide 32 of the emission channel has other iris 110, 112 in the form of rings having a role impedance matching for the transmission frequencies included between 5.85 and 6.65 GHz.
  • irises 114, 116 and 118 are also provided in each reduced rectangular section guide of the reception channel, for example in the waveguide 60 (FIG. 4).
  • the irises 116 and 118 are each formed from of two rectangular plates or ribs projecting from the internal faces of the short sides of the waveguide 60. These ribs, which are referenced, respectively 116 1 and 116 2 for the iris 116, are perpendicular to the large faces 117 of the guide 60.
  • iris 114 the closest to the corresponding slot (not visible in Figure 4) of the waveguide 26, is formed from two plates 114 1 and 114 2 also perpendicular to the small faces of the guide waves 60, but parallel to the large faces 117.
  • Iris 114, 116 and 118 constitute the filtering means allowing to reject the frequencies of emission and pass reception frequencies.
  • Figures 5 and 6 represent a Septum polarizer in the emission channel of the antenna shown in Figure 2.
  • Septum type polarizer 50 has two guides of input waves 130 and 132. Input 44 is at the end waveguide 130 and inlet 46 is at the end of the guide of waves 132 ( Figures 2 and 6). In the vicinity of the entrances the guides are of rectangular section and are then of semi-circular section.
  • These two waveguides 130 and 132 are connected continuously to a waveguide 134 of circular section, of which the diameter is equal to the diameter of the section of each of the semicircular guides 130 and 132.
  • a central wall or blade 136 is provided, the plane of which contains the axis of the waveguide 134.
  • its height, in the radial direction is equal to the internal diameter of guide 134.
  • the width of this wall 136 decreases by jumps, that is to say that its end section has steps. In the example, four steps are planned, respectively 140, 142, 144 and 146.
  • the quality of the polarization circular i.e. the ellipticity rate
  • the cutting end 138 in particular the number of steps and length (in axial direction) and height (in radial direction) of each of these steps.
  • the higher the number of steps the more bandwidth of the polarizer is wide.
  • the lengths and heights of the steps are uneven.
  • FIGS 7 to 9 represent an embodiment of the coupler 86 in the path of reception.
  • a 3db / 90 ° coupler of the type "Riblet" (figure 2), is such that a signal applied to an input 84 is transmitted according to two signals of equal amplitudes on the outputs 94 and 96, these output signals having a phase shift 90 ° to each other.
  • an applied signal on the second input 92 is transmitted with equal amplitudes on outputs 94 and 96 and with a 90 ° phase shift between these output signals.
  • Such a coupler comprises two waveguides 160 and 162 which are connected according to a junction zone 164.
  • These guides waves have a rectangular section and are arranged so such as their small faces 166 and 168, corresponding to short sides of the section, are adjacent and only in the area junction 164 these faces or walls are removed.
  • the junction zone has a floor wall 170 and a ceiling wall 172 (FIG. 8).
  • the width of these walls - i.e. their dimension perpendicular to the propagation y and parallel to the large faces of the guides 160 and 162 - is twice the largest dimension of the rectangular section of each waveguide 160, 162.
  • the height the junction area, i.e. the distance between the walls 170 and 172, is equal to the short side of the section of guides 160 and 162.
  • the floor wall 170 has a projection 174 of which the base 176 has a curvilinear shape elongated transversely to the Y direction of propagation ( Figure 7).
  • This base 176 of the projection 174 occupies a large part, of the order of 75% of the floor area 170.
  • the top 178 of this projection 174 is of substantially smaller dimensions than those of base 176.
  • This vertex is also elongated transversely to the Y direction of propagation.
  • the base and the top of the projection are centered with respect to the junction zone 164.
  • the projection 174 is extended by ribs, respectively 180, 182, 184 and 186.
  • ribs respectively 180, 182, 184 and 186.
  • the rib 180 is constituted by a wall perpendicular to the floor 170. Inside the junction zone 164 the height of this rib 180 is the same as the height of the projection 174. This rib 180 is directed towards the branch of input 160 1 of the waveguide 160 and it partially penetrates this branch 160 1 . In this branch its height gradually decreases. In other words, the end of the rib 180 has the shape of a wedge or bevel 190. In contrast to the bevel 190, the rib 180 is connected to the end 192, facing the waveguide 160, from the top 178 of the projection 174.
  • the rib 184 is directed towards the outlet branch 160 2 of the waveguide 160.
  • the rib 182 is directed towards the inlet branch 162 1 of the waveguide 162 and the rib 186 is directed towards the outlet branch 162 2 of this same waveguide 162.
  • the ribs 182 and 186 are connected to the end 194 of the apex 178 of the projection which is opposite to the end 192 to which the two other ribs 180 and 184 are connected.
  • An adjustment screw 196 is provided in the ceiling 172 near its edge 198.
  • Another adjusting screw 200 is located in the center of the ceiling 172.
  • the projection 174 elongated transversely at direction Y of signal propagation allowed keep the equal properties of the amplitudes of the signals 0.1 dB output over a wide frequency band and, in in all cases, on the 800 MHz of the receiving C band.
  • the ribs 180, 182, 184 and 186 further significantly improve the quality of the coupler on the desired bandwidth.
  • the dimensions of the zone 164 are of the same order of magnitude as the dimensions of the corresponding zone of a conventional Riblet coupler. In a manner known per se, the properties of the coupler result from the fact that the modes TE 10 and TE 20 coexist in the junction zone 164.
  • the TE 10 mode is transformed into a TE 10 U-shaped mode, which gives it a more stationary guided wavelength ⁇ G and a greater bandwidth of use in relation to the dimensions of the U.
  • the ceiling 172 of the junction zone 164 has a projection 210 analogous to projection 174 and which is also extended by four ribs analogous to the corresponding associated ribs to the projection 174.
  • the dimensions and arrangement of the projection 210 and associated ribs are the same as those of the projection 174 and its corresponding ribs.
  • the projection 174 and, optionally, the projection 210 is not constituted by a continuous element but by a set of projections such as nipples sufficiently close together to give the same result as a continuous projection.
  • the emission one can also foresee the use of a duplexer and a polarizer rotated by 90 °, the emission then performed with linear polarization signals orthogonal.
  • the source has a number of accesses lower than the four accesses provided in the examples described above (two transmitting accesses and two receiving accesses). In in this case, the unused accesses will be loaded.
  • the antenna source described applies in particular telecommunications antennas with a diameter between 1 and 32 meters or more.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Aerials With Secondary Devices (AREA)
  • Transceivers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

L'invention est relative à une source d'antenne pour l'émission et la réception d'ondes hyperfréquences polarisées.
On sait que pour transmettre de grandes quantités d'informations à l'aide de signaux radioélectriques, on a intérêt à utiliser des signaux polarisés et dont les fréquences porteuses ont des valeurs élevées et des bandes larges.
Par ailleurs, quand une même antenne est destinée à émettre et recevoir des signaux, il est nécessaire que les bandes de fréquences d'émission soient distinctes des bandes de fréquences de réception.
L'augmentation constante du trafic de télécommunications amène à élargir les bandes des fréquences d'émission et de réception. Par exemple, la bande C, utilisée aujourd'hui pour certaines communications par satellites, de 3,625 à 4,2 GHz pour la réception et de 5,85 à 6,425 GHz pour l'émission va être élargie vers le bas pour la réception (3,4 à 4,2 GHz ) et vers le haut (5,85 à 6,65 GHz) pour l'émission.
On a représenté sur la figure 1, un schéma de source d'antenne utilisable pour l'émission et la réception de signaux en bande C classique, c'est-à-dire avec des largeurs de bandes de 575 MHz pour l'émission et la réception. Cette source d'antenne connue comporte un élément rayonnant tel qu'un cornet 10 relié, par l'intermédiaire d'une section d'adaptation 12 et d'un guide d'ondes de section circulaire 14, à un polariseur 16 destiné à convertir, d'une part, les signaux reçus en polarisation circulaire en des signaux en polarisation linéaire et, d'autre part, les signaux à émettre d'une polarisation linéaire en une polarisation circulaire.
Le polariseur 16 est relié à un transducteur 18 pour séparer les fréquences d'émission et de réception. Ce transducteur comporte un guide d'ondes de section circulaire dont la surface extérieure présente des fentes de direction longitudinale - c'est-à-dire dont la plus grande dimension est parallèle à l'axe du guide - connectées à d'autres guides d'ondes (non montrés) et à des moyens de filtrage (également non montrés) éliminant les fréquences d'émission et laissant passer les fréquences de réception.
L'extrémité du guide d'ondes du transducteur 18 qui est opposée à celle connectée au polariseur 16 reçoit les signaux à émettre. La voie d'émission comporte des moyens de filtrage pour éliminer les fréquences de réception et, généralement, des moyens de polarisation orthogonaux.
On a constaté qu'une source d'antenne de ce type ne donnait pas de résultats satisfaisants pour l'émission et la réception des signaux à large bande, notamment pour la bande C élargie mentionnée ci-dessus.
L'invention permet de remédier à ces inconvénients.
La source d'antenne conforme à l'invention est caractérisée en ce que, pour émettre et recevoir des signaux à larges bandes, le transducteur séparant les signaux d'émission et de réception comporte un guide d'ondes de section carrée.
Dans le mode de réalisation préféré, ce transducteur est relié à la voie d'émission grâce à un guide d'ondes de section circulaire pénétrant à l'intérieur du guide d'ondes du transducteur. Cette disposition permet d'optimiser la séparation entre les signaux d'émission et de réception. Cette séparation est encore améliorée si on prévoit à l'extrémité du guide d'ondes circulaire, à l'intérieur du guide d'ondes du transducteur, un iris, par exemple en forme d'une double fente.
Lorsque le transducteur comporte un guide d'ondes de section carrée on prévoit avantageusement, sur chacune de ses faces, une ouverture rectangulaire, ou fente, dont le grand côté est avantageusement perpendiculaire à l'axe du guide d'ondes. Ces fentes permettent d'extraire les signaux de réception ; elles sont associées à des moyens de filtrage pour éliminer les fréquences d'émission.
Dans un mode de réalisation préféré de l'invention, la connexion de l'élément rayonnant au transducteur séparant les fréquences d'émission et de réception est telle qu'elle maintient l'état de polarisation des signaux transmis.
Si, dans ce cas, les signaux transmis ou reçus doivent subir une conversion de leur état de polarisation (circulaire en linéaire ou linéaire en circulaire), un polariseur correspondant est prévu dans la voie d'émission et/de réception, à l'opposé de l'élément rayonnant par rapport au transducteur. Cette disposition est également favorable au fonctionnement pour des larges bandes d'émission et de réception.
Lorsqu'on prévoit des fentes permettant d'extraire les signaux de réception du guide d'ondes du transducteur, les fentes de deux faces opposées sont, dans une réalisation, reliées aux entrées respectives d'un additionneur du type "Té magique". Le signal reçu étant à polarisation circulaire la sortie de chacun de ces additionneurs fournit le signal de réception avec une polarisation linéaire de direction déterminée, les sorties des deux Tés magiques étant des signaux dont les vecteurs de polarisation sont perpendiculaires entre eux.
Pour transformer ces signaux de polarisations linéaires orthogonales caractérisant les polarisations circulaires droite et gauche dans la source, on utilise avantageusement un coupleur 3db/90°, notamment de type "Riblet". Un tel coupleur comprend deux guides d'ondes de section rectangulaire qui se raccordent dans une zone de jonction de forme parallèlipipèdique, chaque guide d'ondes comprenant une branche entrant et une branche sortant de la zone de jonction. Cette dernière présente une hauteur égale au petit côté de la section de chaque guide d'ondes et une largeur égale au double du grand côté de ladite section. Pour équilibrer les amplitudes des signaux des branches de sortie, on prévoit généralement au moins une saillie d'une grande paroi à l'intérieur de la zone de jonction.
Pour optimiser la séparation de polarisation effectuée par le coupleur, c'est-à-dire pour obtenir, sur une large bande de fréquences, des signaux déphasés de 90° ayant des amplitudes égales, par exemple à environ 0,1 db près, selon une autre disposition de l'invention, on utilise un tel coupleur dans lequel la zone de jonction présente, au moins sur une grande paroi, une saillie de forme allongée dans la direction transversale à la propagation.
Dans les coupleurs "Riblet" connus les saillies correspondantes dans la zone de jonction sont soit circulaires, soit allongées en direction longitudinale.
Avec une saillie allongée en direction transversale, on obtient des résultats sensiblement meilleurs qu'avec les coupleurs connus, c'est-à-dire que les signaux de sortie sont équilibrés en amplitude sur une plus large bande de fréquences.
Des résultats encore supérieurs sont obtenus quand la saillie est prolongée selon des nervures dirigées vers chacune des branches des guides d'ondes, chacune de ces nervures présentant, de préférence, une hauteur qui diminue progressivement à l'intérieur de chaque branche.
Pour l'émission, quand il est nécessaire d'émettre des signaux à polarisation circulaire droite et/ou gauche à partir de signaux à polarisation linéaire, on utilise un duplexeur recevant les signaux émis en polarisations linéaires orthogonales et un polariseur qui transforme les signaux polarisés linéairement en des signaux polarisés circulairement.
On peut également utiliser un polariseur de type "Septum" qui combine les fonctions duplexeur et polariseur. Un tel polariseur comporte deux guides d'ondes de section semi-circulaire recevant des signaux à polarisations linéaires qui convergent vers un guide d'ondes de sortie de section circulaire. Dans le guide d'ondes de sortie, à partir de la zone de jonction des guides d'ondes d'entrée, on prévoit une paroi ou lame de direction longitudinale et de hauteur décroissante en direction radiale. Cette paroi s'étend selon l'axe du guide d'ondes de sortie. La décroissance de la hauteur de la lame est soit progressive, soit, préférentiellement, par sauts, c'est-à-dire en marches d'escalier. On a constaté qu'on obtenait les meilleurs résultats avec de telles marches et que le nombre de ces marches avait une influence sur la bande passante du polariseur. En général plus le nombre de marches augmente plus la bande passante du polariseur est importante.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
  • la figure 1, déjà décrite, illustre un état antérieur de la technique,
  • la figure 2 est un schéma d'ensemble d'une source d'antenne conforme à l'invention,
  • la figure 3 est une vue en perspective montrant un transducteur faisant partie de la source de la figure 2,
  • la figure 4 est une vue en perspective montrant l'intérieur du transducteur de la figure 3,
  • la figure 5 est une vue en coupe d'un polariseur destiné à la voie d'émission de la source d'antenne représentée sur la figure 2,
  • la figure 6 est une coupe selon la ligne 6-6 de la figure 5,
  • la figure 7 est un schéma montrant l'intérieur d'un coupleur 3db/90° utilisé comme polariseur dans la voie de réception de la source représentée sur la figure 2,
  • la figure 8 est une vue selon la flèche f du coupleur représenté sur la figure 7, et
  • la figure 9 est une vue analogue à celle de la figure 8, mais pour une variante.
  • L'exemple de réalisation de l'invention que l'on va décrire en relation avec les figures concerne une source d'antenne d'émission et de réception en bande C élargie. Comme indiqué ci-dessus, pour la réception les fréquences sont de 3,4 à 4,2 GHz et pour l'émission, les fréquences sont de 5,85 à 6,65 GHz. En d'autres termes, la bande de fréquences de réception s'étend sur 800 MHz. Il en est de même pour la bande de fréquences d'émission.
    La source d'antenne représentée sur la figure 2 comporte un transducteur 24 comprenant un guide d'ondes 26 de section carrée qui, sur la figure, est représenté en section transversale, c'est-à-dire perpendiculaire à l'axe de propagation. L'une des extrémités de ce guide d'ondes 26 est connectée directement à un cornet de propagation (non représenté). Par "directement" on entend que le transducteur 24 n'est pas relié au cornet de propagation, ou à un autre organe rayonnant, par l'intermédiaire d'un polariseur. Cette connexion peut cependant comporter un élément non rayonnant autre qu'un polariseur, par example un extracteur de mode servant à l'asservissement d'une antenne devant suivre la trajectoire d'un satellite.
    L'extrémité 30 (figure 3) du guide d'ondes 26 qui est opposée à l'extrémité 28 reliée au cornet est connectée à un guide d'ondes 32 de section circulaire recevant, par l'intermédiaire d'un guide d'ondes 34 de section carrée, les signaux d'émission en polarisation circulaire droite et polarisation circulaire gauche fournis par un polariseur 36.
    Le polariseur 36 a pour but de transformer les signaux d'entrée à polarisation linéaire en des signaux de sortie à polarisation circulaire. Ainsi l'entrée 38 du polariseur 36 est reliée à la sortie 40 d'un duplexeur 42 présentant deux entrées, respectivement 44 et 46, recevant des signaux polarisés linéairement qui doivent être transformés en des signaux à polarisation circulaire droite et polarisation circulaire gauche. L'entrée 44 reçoit les signaux qui doivent être transformés en des signaux à polarisation circulaire droite et l'entrée 46 reçoit les signaux devant être transformés en des signaux à polarisation circulaire gauche.
    Dans le mode de réalisation préféré de l'invention, le duplexeur 42 et le polariseur 36 forment un élément unique 50 constituant un polariseur de type "Septum", qui sera décrit plus loin en relation avec les figures 5 et 6.
    Les faces latérales 52, 54, 56 et 58 du guide d'ondes 26 présentent des ouvertures rectangulaires, ou fentes, auxquelles sont connectés des guides d'ondes réduits ayant la même section rectangulaire. On voit sur la figure 3 que la face 52 est prolongée par le guide d'ondes rectangulaire 60. Les guides d'ondes 60, 62, 64 et 66 ont la même position le long de l'axe x du guide 26. Il est important de noter que la plus grande dimension des fentes, et donc des guides d'ondes rectangulaires 60, 62, 64 et 66, est perpendiculaire à l'axe x. Autrement dit les ouvertures rectangulaires s'étendent transversalement par rapport à la direction de propagation.
    Les guides d'ondes 60, 62, 64 et 66 sont équipés de filtres, respectivement 70, 72, 74 et 76 (figure 2), pour éliminer les fréquences d'émission et laisser passer les fréquences de réception.
    Les guides d'ondes rectangulaires associés aux faces opposées 52 et 56 du guide 26 sont reliés aux deux entrées, respectivement 78 et 80, d'un "Té magique" 82 (figure 2) dont la sortie est reliée à la première entrée 84 d'un coupleur 86 du type 3db/90°.
    De même, les guides d'ondes rectangulaires associés aux faces opposées 54 et 58 sont reliés aux entrées respectives d'un second "Té magique" 90 dont la sortie est connectée à la seconde entrée 92 du coupleur 86.
    Le coupleur 86 reçoit, sur sa première entrée 84, un signal d'une polarisation linéaire d'une première direction et, sur sa seconde entrée 92, un signal d'une polarisation linéaire orthogonale. Ces signaux sont les deux composantes de l'onde à polarisation circulaire droite et gauche dans la source. Il fournit sur ses sorties, respectivement 94 et 96, des signaux qui représentent et différentient les deux polarisations circulaires orthogonales. Par exemple, sur la sortie 94 le signal représente la polarisation circulaire droite et sur la sortie 96 le signal représente la polarisation circulaire gauche. Un exemple d'un tel coupleur sera décrit plus loin en relation avec les figures 7 à 9.
    On notera ici que le fait de prévoir des polariseurs séparés pour l'émission et la réception permet d'optimiser ces derniers et de réaliser une source d'antenne pour recevoir et émettre des signaux en bande C élargie.
    La section carrée du guide d'ondes 26 contribue aussi à élargir les bandes d'émission et de réception.
    En variante (non représentée) le guide d'ondes 26 présente, sur sa face interne, des corrugations, c'est-à-dire des nervures s'étendant perpendiculairement à l'axe x. Dans une autre variante, le transducteur 24 comporte, à la place du guide d'ondes 26 de section carrée, un guide d'ondes de section circulaire également doté de corrugations permettant d'élargir la bande par rapport à un guide d'ondes dépourvu de telles corrugations.
    On se réfère maintenant aux figures 3 et 4.
    Le guide d'ondes 26 est relié par sa face avant 28 à un guide d'ondes 100 (figure 4) assurant la transition entre le guide d'ondes 26 de section carrée et le guide d'ondes de section circulaire du cornet.
    Le guide d'ondes 32 de section circulaire pour la connexion à la voie d'émission se termine, à l'intérieur du guide d'ondes 26, par un iris 102 qui, dans l'exemple, a la forme d'une croix, c'est-à-dire de deux fentes perpendiculaires 104 et 106. L'iris 102 court-circuite les fréquences de réception.
    A l'arrière de cet iris 106, contre la face interne de la paroi 30, on prévoit un anneau 108. Cet anneau 108, en combinaison avec l'iris 102, a pour but de réfléchir les signaux de réception vers les fentes des parois latérales du guide 26 et, ainsi, empêcher que les signaux de réception ne pénètrent dans la voie d'émission.
    Le guide d'ondes circulaire 32 de la voie d'émission comporte d'autres iris 110, 112 en forme d'anneaux ayant un rôle d'adaptation d'impédance pour les fréquences d'émission comprises entre 5,85 et 6,65 GHz.
    Dans chaque guide réduit de section rectangulaire de la voie de réception, par exemple dans le guide d'ondes 60 (figure 4), on prévoit aussi des iris 114, 116 et 118. Les iris 116 et 118 sont formés, chacun, à partir de deux plaques ou nervures rectangulaires en saillie des faces internes des petits côtés du guide d'ondes 60. Ces nervures, qui sont référencées, respectivement 1161 et 1162 pour l'iris 116, sont perpendiculaires aux grandes faces 117 du guide 60.
    Par contre l'iris 114, le plus proche de la fente correspondante (non visible sur la figure 4) du guide d'ondes 26, est formé à partir de deux plaques 1141 et 1142 également perpendiculaires aux petites faces du guide d'ondes 60, mais parallèles aux grandes faces 117.
    Les iris 114, 116 et 118 constituent les moyens de filtrage permettant de rejeter les fréquences d'émission et de laisser passer les fréquences de réception.
    On se réfère maintenant aux figures 5 et 6 qui représentent un polariseur Septum se trouvant dans la voie d'émission de l'antenne représentée sur la figure 2.
    Le polariseur 50 de type Septum comporte deux guides d'ondes d'entrée 130 et 132. L'entrée 44 se trouve à l'extrémité du guide d'ondes 130 et l'entrée 46 est à l'extrémité du guide d'ondes 132 (figures 2 et 6). Au voisinage des entrées les guides sont de section rectangulaire et sont ensuite de section semi-circulaire.
    Ces deux guides d'ondes 130 et 132 se raccordent de façon continue à un guide d'ondes 134 de section circulaire, dont le diamètre est égal au diamètre de la section de chacun des guides semi-circulaires 130 et 132. Dans le guide d'ondes 134, à partir de la zone de raccordement entre les guides d'ondes 130 et 132, on prévoit une paroi, ou lame, centrale 136 dont le plan contient l'axe du guide d'ondes 134. Dans la zone de raccordement entre les guides 130 et 132 sa hauteur, en direction radiale, est égale au diamètre interne du guide 134. Vers la zone de sortie 138 la largeur de cette paroi 136 diminue par sauts, c'est-à-dire que sa section d'extrémité présente des marches. Dans l'exemple, on prévoit quatre marches, respectivement 140, 142, 144 et 146.
    Sur les entrées 44 et 46 on applique des signaux à polarisation linéaire qui sont transformés, à la sortie 150, en des signaux à polarisation circulaire. Les signaux appliqués sur l'entrée 44 sont transformés en signaux à polarisation circulaire droite et les signaux appliqués sur l'entrée 46 sont transformés en des signaux à polarisation circulaire gauche.
    Dans la bande C élargie la qualité de la polarisation circulaire, c'est-à-dire le taux d'ellipticité, dépend de la découpe de l'extrémité 138, en particulier du nombre de marches et de la longueur (en direction axiale) et de la hauteur (en direction radiale) de chacune de ces marches. En particulier, on a constaté que plus le nombre de marches est élevé et plus la bande passante du polariseur est large. On remarquera aussi que les longueurs et les hauteurs des marches sont inégales.
    On se réfère maintenant aux figures 7 à 9 qui représentent un mode de réalisation du coupleur 86 dans la voie de réception. De façon en soi connue, un coupleur 3db/90° de type "Riblet" (figure 2), est tel qu'un signal appliqué sur une entrée 84 est transmis selon deux signaux d'amplitudes égales sur les sorties 94 et 96, ces signaux de sorties présentant un déphasage de 90° l'un par rapport à l'autre. De même, un signal appliqué sur la seconde entrée 92 est transmis avec des amplitudes égales sur les sorties 94 et 96 et avec un déphasage de 90° entre ces signaux de sortie.
    Un tel coupleur comporte deux guides d'ondes 160 et 162 qui se raccordent selon une zone 164 de jonction. Ces guides d'ondes ont une section rectangulaire et sont disposés de façon telle que leurs petites faces 166 et 168, correspondant aux petits côtés de la section, soient adjacentes et que dans la zone de jonction 164 ces faces ou parois soient supprimées.
    La zone de jonction présente une paroi de plancher 170 et une paroi de plafond 172 (figure 8). La largeur de ces parois - c'est-à-dire leur dimension perpendiculairement à la propagation y et parallèlement aux grandes faces des guides 160 et 162 - est égale au double de la plus grande dimension de la section rectangulaire de chaque guide d'ondes 160, 162. La hauteur de la zone de jonction, c'est-à-dire la distance entre les parois 170 et 172, est égale au petit côté de la section des guides 160 et 162.
    La paroi de plancher 170 comporte une saillie 174 dont la base 176 présente une forme curviligne allongée transversalement à la direction Y de propagation (figure 7). Cette base 176 de la saillie 174 occupe une grande partie, de l'ordre de 75%, de la surface du plancher 170. Le sommet 178 de cette saillie 174 est de dimensions sensiblement plus faibles que celles de la base 176. Ce sommet est également allongé transversalement à la direction Y de propagation. La base et le sommet de la saillie sont centrés par rapport à la zone de jonction 164.
    La saillie 174 est prolongée par des nervures, respectivement 180, 182, 184 et 186. Pour simplifier on ne décrira qu'une seule de ces nervures, celle de référence 180, les autres étant analogues.
    La nervure 180 est constituée par une paroi perpendiculaire au plancher 170. A l'intérieur de la zone de jonction 164 la hauteur de cette nervure 180 est la même que la hauteur de la saillie 174. Cette nervure 180 est dirigée vers la branche d'entrée 1601 du guide d'ondes 160 et elle pénètre en partie dans cette branche 1601. Dans cette branche sa hauteur diminue progressivement. En d'autres termes, l'extrémité de la nervure 180 a la forme d'un coin ou biseau 190. A l'opposé du biseau 190, la nervure 180 se raccorde à l'extrémité 192, tournée vers le guide d'ondes 160, du sommet 178 de la saillie 174.
    La nervure 184 est dirigée vers la branche de sortie 1602 du guide d'ondes 160. La nervure 182 est dirigée vers la branche d'entrée 1621 du guide d'ondes 162 et la nervure 186 est dirigée vers la branche de sortie 1622 de ce même guide d'ondes 162. Les nervures 182 et 186 se raccordent à l'extrémité 194 du sommet 178 de la saillie qui est opposée à l'extrémité 192 à laquelle se raccordent les deux autres nervures 180 et 184.
    Une vis de réglage 196 est prévue dans le plafond 172 au voisinage de son bord 198. Une autre vis de réglage 200 se trouve au centre du plafond 172. Ces vis permettent un réglage du couplage entre les ondes sortantes, c'est-à-dire un réglage des amplitudes relatives des ondes.
    On a constaté que la saillie 174 allongée transversalement à la direction Y de propagation des signaux permettait de conserver les propriétés d'égalité des amplitudes des signaux de sortie à 0,1 db près sur une large bande de fréquences et, en tous cas, sur les 800 MHz de la bande C de réception. Les nervures 180, 182, 184 et 186 améliorent encore sensiblement la qualité du coupleur sur la largeur de bande désirée.
    Les dimensions de la zone 164 sont du même ordre de grandeur que les dimensions de la zone correspondante d'un coupleur Riblet classique. De façon en soi connue les propriétés du coupleur résultent du fait que les modes TE10 et TE20 coexistent dans la zone de jonction 164.
    Mais avec l'invention, le mode TE10 est transformé en un mode TE10 en U, ce qui lui confère une longueur d'ondes guidée λG plus stationnaire et une plus grande largeur de bande d'utilisation en rapport avec les dimensions du U.
    Dans le mode de réalisation représenté sur la figure 9, le plafond 172 de la zone de jonction 164 comporte une saillie 210 analogue à la saillie 174 et qui est également prolongée par quatre nervures analogues aux nervures correspondantes associées à la saillie 174. Les dimensions et la disposition de la saillie 210 et des nervures associées sont les mêmes que celles de la saillie 174 et de ses nervures correspondantes.
    En variante la saillie 174 et, éventuellement, la saillie 210 n'est pas constituée par un élément continu mais par un ensemble de saillies tels que des tétons suffisamment rapprochés pour conférer le même résultat qu'une saillie continue.
    Dans une variante, on se passe du polariseur 86, le signal de réception étant utilisé en polarisation linéaire. Les signaux reçus sont ainsi récupérés aux sorties des Tés magiques 82 et 90.
    Également en variante, pour l'émission on prévoit uniquement un duplexeur 42 et non un polariseur 36, l'émission étant effectuée avec des signaux à polarisations linéaires orthogonales.
    Pour l'émission on peut aussi prévoir l'utilisation d'un duplexeur et d'un polariseur tourné de 90°, l'émission s'effectuant alors avec des signaux à polarisations linéaires orthogonales.
    En variante encore la source comporte un nombre d'accès inférieur aux quatre accès prévus dans les exemples décrits ci-dessus (deux accès en émission et deux accès en réception). Dans ce cas, on chargera les accès non utilisés.
    La source d'antenne décrite s'applique en particulier aux antennes de télécommunication de diamètre compris entre 1 et 32 mètres ou plus.

    Claims (25)

    1. Source d'antenne pour l'émission et la réception d'ondes hyperfréquences comprenant un transducteur pour séparer les signaux, à fréquences différentes, d'émission et de réception, caractérisée en ce que le transducteur comporte un guide d'ondes (26) de section carrée dont une extrémité est connectée à l'élément rayonnant dont l'autre extrémité est connectée à la voie d'émission, cette voie d'émission comportant un guide d'ondes de section circulaire se terminant à l'intérieur du guide d'onde (26) de section carrée.
    2. Source selon la revendication 1, caractérisée en ce que les signaux reçus sont transmis par les faces latérales du guide d'ondes (26) du transducteur.
    3. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que la voie de réception comporte des guides d'ondes reliés aux faces latérales du guide d'ondes du transducteur (24) par l'intermédiaire d'ouvertures ou fentes allongées transversalement à la direction de propagation.
    4. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que la voie d'émission est connectée au guide d'ondes (26) du transducteur (24) par l'intermédiaire de moyens de filtrage (102, 108) laissant passer les signaux à fréquences d'émission et réfléchissant les signaux à fréquences de réception.
    5. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que le guide d'ondes de la voie d'émission comporte un iris, par exemple en forme d'une double fente (104, 106), se trouvant à l'intérieur du guide d'ondes (26) du transducteur (24).
    6. Source selon la revendication 4 ou 5, caractérisée en ce que les moyens de filtrage comportent un anneau (108) se trouvant à l'intérieur du guide d'ondes (26) du transducteur (24).
    7. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que la connexion du transducteur à l'élément rayonnant de l'antenne est telle qu'elle maintient l'état de polarisation du signal reçu par l'élément rayonnant et du signal émis vers cet élément rayonnant.
    8. Source selon la revendication 7, caractérisée en ce que deux faces latérales opposées (52, 56) du guide d'ondes (26) du transducteur (24) sont reliées aux deux entrées d'un sommateur (82), tel qu'un Té magique, et en ce que les deux autres faces latérales opposées (54, 58) du guide d'ondes (26) du transducteur (24) sont connectées aux entrées d'un second sommateur (90), tel qu'un Té magique, les sorties des deux sommateurs (82, 90) délivrant des signaux à polarisations linéaires orthogonales entre elles.
    9. Source selon la revendication 7 ou 8, caractérisée en ce qu'elle comprend, dans la voie de réception, un polariseur (86) pour transformer des signaux à polarisation linéaire en des signaux à polarisation circulaire.
    10. Source selon la revendication 9, caractérisée en ce que le polariseur (86) comporte un coupleur du type 3db/90°, par exemple du type "Riblet".
    11. Source selon la revendication 10, caractérisée en ce que le coupleur 3db/90° comprend deux guides d'ondes (160, 162) de sections rectangulaires dont les branches d'entrées et de sorties se raccordent à une zone de jonction (164) parallèlipipèdique dont la hauteur est égale au petit côté de la section des guides et dont la largeur est le double du plus grand côté de la section des guides, la paroi de plafond (172) et/ou de plancher (170) de cette zone de jonction présentant une saillie (174) dirigée vers l'intérieur et allongée transversalement à la direction Y de propagation des ondes.
    12. Source selon la revendication 11, caractérisée en ce que la saillie (174) présente à sa base (176) une aire occupant une fraction importante de l'aire de la paroi (170) correspondante de la zone de jonction (164), et à son extrémité libre, ou sommet, (178) des dimensions sensiblement moins importantes.
    13. Source selon la revendication 12, caractérisée en ce que le sommet (178) de la saillie (174) occupe une position centrale dans la zone de jonction (164).
    14. Source selon l'une quelconque des revendications 11 à 13, caractérisée en ce que de la saillie (174) sont solidaires des nervures (180, 182, 184, 186) dirigées vers les branches d'entrées et de sorties des deux guides d'ondes.
    15. Source selon la revendication 14, caractérisée en ce que les nervures ont sensiblement la même hauteur que la saillie (174).
    16. Source selon la revendication 14 ou 15, caractérisée en ce que chaque nervure pénètre dans une branche de guide d'ondes et en ce que l'extrémité pénétrant dans la branche présente une hauteur qui diminue progressivement depuis la jonction vers la branche.
    17. Source selon l'une quelconque des revendications 14 à 16, caractérisée en ce que les nervures dirigées vers un premier guide d'ondes (160) se raccordent au sommet (178) de la saillie par sa première extrémité (192) dirigée vers le premier guide d'ondes, tandis que les nervures dirigées vers les branches d'entrée et de sortie du second guide d'ondes (162) se raccordent au sommet (178) de la nervure (174) par sa seconde extrémité (194).
    18. Source selon l'une quelconque des revendications 11 à 17, caractérisée en ce que dans la zone de jonction (164) du coupleur on prévoit des moyens de réglage (196, 200) du couplage entre les signaux de sortie.
    19. Source selon l'une quelconque des revendications précédentes, caractérisée en ce que dans la voie d'émission, on prévoit un polariseur du type Septum (50) pour transformer des signaux à polarisations linéaires en des signaux à polarisations circulaires droite et gauche.
    20. Source selon la revendication 19, caractérisée en ce que le polariseur (50) comporte deux guides d'ondes d'entrées de section semi-circulaire (130, 132) se raccordant à un guide d'ondes de sortie (134), de section circulaire, ce dernier présentant, à partir de la zone de raccordement aux guides d'entrées, une paroi (136) axiale de séparation se terminant, en direction de la sortie (150) du guide d'ondes de sortie (134), par une zone où la hauteur de la paroi diminue par marches (140, 142, 144, 146).
    21. Source selon la revendication 20, caractérisée en ce que la bande passante du polariseur (50) est ajustée par le choix du nombre de marches de l'extrémité de la paroi (136).
    22. Source selon la revendication 20 ou 21, caractérisée en ce que les longueurs des marches, en direction axiale, sont inégales.
    23. Source selon l'une quelconque des revendications 20 à 22, caractérisée en ce que les hauteurs des marches, en direction radiale, sont inégales.
    24. Application d'une source selon l'une quelconque des revendications précédentes, à la réception de signaux dans la bande de 3,4 à 4,2 GHz .
    25. Application d'une source selon l'une quelconque des revendications 1 à 23, à l'émission de signaux à des fréquences comprises entre 5,85 et 6,65 GHz.
    EP98401216A 1997-05-21 1998-05-20 Source d'antenne pour l'emission et la réception d'ondes hyperfréquences Expired - Lifetime EP0880193B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9706172 1997-05-21
    FR9706172A FR2763749B1 (fr) 1997-05-21 1997-05-21 Source d'antenne pour l'emission et la reception d'ondes hyperfrequences polarisees

    Publications (2)

    Publication Number Publication Date
    EP0880193A1 EP0880193A1 (fr) 1998-11-25
    EP0880193B1 true EP0880193B1 (fr) 2003-08-27

    Family

    ID=9507058

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98401216A Expired - Lifetime EP0880193B1 (fr) 1997-05-21 1998-05-20 Source d'antenne pour l'emission et la réception d'ondes hyperfréquences

    Country Status (10)

    Country Link
    US (1) US6166699A (fr)
    EP (1) EP0880193B1 (fr)
    JP (1) JPH1117402A (fr)
    CN (1) CN1202746A (fr)
    CA (1) CA2235792A1 (fr)
    DE (1) DE69817445D1 (fr)
    EA (1) EA000492B1 (fr)
    FR (1) FR2763749B1 (fr)
    ID (1) ID20322A (fr)
    NO (1) NO982232L (fr)

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2002071539A1 (fr) * 2001-03-02 2002-09-12 Mitsubishi Denki Kabushiki Kaisha Antenne
    DE10126468B4 (de) * 2001-05-31 2007-07-05 Eads Deutschland Gmbh Schlitzantenne
    US6661309B2 (en) * 2001-10-22 2003-12-09 Victory Industrial Corporation Multiple-channel feed network
    FR2831997B1 (fr) 2001-11-07 2004-01-16 Thomson Licensing Sa Module guide d'ondes separateur en frequence a polarisation circulaire double et emetteur-recepteur le comportant
    FR2833763B1 (fr) * 2001-12-14 2005-07-01 Manuf D App Electr De Cahors M Guide d'ondes en deux parties assemblees l'une contre l'autre
    JP4060228B2 (ja) 2003-04-04 2008-03-12 三菱電機株式会社 導波管形偏分波器
    JP4011511B2 (ja) * 2003-04-04 2007-11-21 三菱電機株式会社 アンテナ装置
    US6943744B1 (en) 2003-07-09 2005-09-13 Patriot Antenna Systems, Inc. Waveguide diplexing and filtering device
    FR2923657B1 (fr) * 2007-11-09 2011-04-15 Thales Sa Procede de fabrication d'une source hyperfrequence monobloc electroformee a lame epaisse
    DE102008044895B4 (de) * 2008-08-29 2018-02-22 Astrium Gmbh Signal-Verzweigung zur Verwendung in einem Kommunikationssystem
    CN101872901A (zh) 2009-04-23 2010-10-27 安德鲁有限责任公司 单元微波天线馈电装置及其制造方法
    CN103647154B (zh) * 2010-03-12 2016-05-25 康普技术有限责任公司 双极化的反射器天线组件
    EP2815454A2 (fr) 2012-02-17 2014-12-24 Pro Brand International (Europe) Limited Appareil de réception et/ou d'émission de signal de données multibande
    GB201602524D0 (en) * 2016-02-12 2016-03-30 Filtronic Broadband Ltd A millimetre wave transceiver
    RU169535U1 (ru) * 2016-04-22 2017-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Возбудитель волны те01
    US10816661B2 (en) * 2016-06-08 2020-10-27 Rosemount Aerospace Inc. Airborne ice detector using quasi-optical radar
    RU2626726C1 (ru) * 2016-07-12 2017-07-31 Акционерное общество "Концерн воздушно-космической обороны "Алмаз-Антей"(АО "Концерн ВКО "Алмаз-Антей") Компактная 90-градусная скрутка в прямоугольном волноводе
    RU2647203C2 (ru) * 2016-08-09 2018-03-14 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Частотно-поляризационный селектор
    CN110867644B (zh) * 2019-11-11 2021-01-19 中国电子科技集团公司第十四研究所 一种双频段多极化共口径同轴波导缝隙天线
    US11686742B2 (en) 2020-11-20 2023-06-27 Rosemount Aerospace Inc. Laser airspeed measurement sensor incorporating reversion capability
    US11851193B2 (en) 2020-11-20 2023-12-26 Rosemount Aerospace Inc. Blended optical and vane synthetic air data architecture

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3500419A (en) * 1966-09-09 1970-03-10 Technical Appliance Corp Dual frequency,dual polarized cassegrain antenna
    US3731236A (en) * 1972-08-17 1973-05-01 Gte Sylvania Inc Independently adjustable dual polarized diplexer
    DE2443166C3 (de) * 1974-09-10 1985-05-30 ANT Nachrichtentechnik GmbH, 7150 Backnang Systemweiche zur Trennung zweier Signale, die aus je zwei doppelt polarisierten Frequenzbändern bestehen
    US3955202A (en) * 1975-04-15 1976-05-04 Macrowave Development Laboratories, Inc. Circularly polarized wave launcher
    US4162463A (en) * 1977-12-23 1979-07-24 Gte Sylvania Incorporated Diplexer apparatus
    JPS54114156A (en) * 1978-02-27 1979-09-06 Mitsubishi Electric Corp Branching filter
    DE3020514A1 (de) * 1980-05-30 1981-12-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Antennenspeisesystem fuer eine nachfuehrbare antenne
    IT1155664B (it) * 1982-03-25 1987-01-28 Sip Dispositivo di guida d onda per la separazione di segnali a radiofrequenza di diversa frequenza e polarizzazione
    US5003321A (en) * 1985-09-09 1991-03-26 Sts Enterprises, Inc. Dual frequency feed
    CA1260609A (fr) * 1986-09-12 1989-09-26 Her Majesty The Queen, In Right Of Canada, As Represented By The Minister Of National Defence Systeme d'alimentation multiband a large bande passante avec diversite de polarisation
    DE9107191U1 (fr) * 1991-06-11 1991-08-08 Siemens Ag, 8000 Muenchen, De

    Also Published As

    Publication number Publication date
    NO982232D0 (no) 1998-05-15
    FR2763749B1 (fr) 1999-07-23
    FR2763749A1 (fr) 1998-11-27
    ID20322A (id) 1998-11-26
    NO982232L (no) 1998-11-23
    US6166699A (en) 2000-12-26
    EA199800396A1 (ru) 1998-12-24
    CN1202746A (zh) 1998-12-23
    DE69817445D1 (de) 2003-10-02
    CA2235792A1 (fr) 1998-11-21
    EA000492B1 (ru) 1999-08-26
    JPH1117402A (ja) 1999-01-22
    EP0880193A1 (fr) 1998-11-25

    Similar Documents

    Publication Publication Date Title
    EP0880193B1 (fr) Source d'antenne pour l'emission et la réception d'ondes hyperfréquences
    EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
    EP2195877B1 (fr) Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
    FR2623020A1 (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
    FR2524209A1 (fr) Dispositif guide d'ondes, capable de separer des signaux de radiofrequence a double bande et double polarisation
    EP3726642B1 (fr) Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande
    FR2831997A1 (fr) Module guide d'ondes separateur en frequence a polarisation circulaire double et emetteur-recepteur le comportant
    EP0098192B1 (fr) Dispositif de multiplexage pour grouper deux bandes de fréquences
    FR2850793A1 (fr) Transition entre un circuit micro-ruban et un guide d'onde et unite exterieure d'emission reception incorporant la transition
    EP3176875B1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
    FR2859824A1 (fr) Antenne a diversite de polarisation
    EP0467818B1 (fr) Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial
    FR2641133A1 (fr)
    FR2824425A1 (fr) Coupleur coaxial a large bande de jonction a mode orthogonal
    FR2532120A3 (fr) Coupleur hyperfrequence selectif
    FR2723801A1 (fr) Diplexeur a intervalle d'un octave entre bandes.
    EP0068940B1 (fr) Source primaire à réutilisation de fréquences
    EP3035445B1 (fr) Coupleur de jonction a mode orthogonal et separateur de polarisations et de frequences associe
    WO2024047573A1 (fr) Jonction orthomode à six ports
    EP0192186B1 (fr) Duplexeur de polarisations
    EP2281320B1 (fr) Coupleur pour systeme radio frequences multibandes
    EP2092592B1 (fr) Coupleur à bande de fonctionnement ultra large de jonction à mode orthogonal
    EP0093058B1 (fr) Dispositif d'excitation d'une source de révolution rainurée hyperfréquence bi-bande
    EP3811458A1 (fr) Excitateur radiofrequence d'antenne en reception et transmission
    FR2722032A1 (fr) Dispositif de couplage en anneau

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: BLOT, JEAN-PIERRE

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL

    17P Request for examination filed

    Effective date: 19990525

    AKX Designation fees paid

    Free format text: DE GB IT

    17Q First examination report despatched

    Effective date: 20020318

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: CRUCHON, JEAN-CLAUDE

    Inventor name: ESTRADE, GERARD

    Inventor name: BLOT, JEAN-PIERRE

    Inventor name: KHAMMOUNI ALEXI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: CRUCHON, JEAN-CLAUDE

    Inventor name: ESTRADE, GERARD

    Inventor name: BLOT, JEAN-PIERRE

    Inventor name: KHAMMOUNI ALEXI

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): DE GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20030827

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030827

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69817445

    Country of ref document: DE

    Date of ref document: 20031002

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031128

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20030827

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040528