EP3035445B1 - Coupleur de jonction a mode orthogonal et separateur de polarisations et de frequences associe - Google Patents

Coupleur de jonction a mode orthogonal et separateur de polarisations et de frequences associe Download PDF

Info

Publication number
EP3035445B1
EP3035445B1 EP15200108.7A EP15200108A EP3035445B1 EP 3035445 B1 EP3035445 B1 EP 3035445B1 EP 15200108 A EP15200108 A EP 15200108A EP 3035445 B1 EP3035445 B1 EP 3035445B1
Authority
EP
European Patent Office
Prior art keywords
coupling
polarization
coupler
slot
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15200108.7A
Other languages
German (de)
English (en)
Other versions
EP3035445A1 (fr
Inventor
Erwan Cartaillac
Pierre Bosshard
Nicolas Ferrando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3035445A1 publication Critical patent/EP3035445A1/fr
Application granted granted Critical
Publication of EP3035445B1 publication Critical patent/EP3035445B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • H01Q13/0258Orthomode horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • H01Q5/55Feeding or matching arrangements for broad-band or multi-band operation for horn or waveguide antennas

Definitions

  • the present invention relates to the field of space telecommunications.
  • the present invention more particularly relates to an orthogonal mode junction coupler and an associated polarization and frequency separator.
  • the present invention applies to mono or multi-band linear polarization sources for all types of single and multi-beam reflector antennas.
  • the invention can find, for example, an application in the spatial field for antennas on board a satellite or for antennas in ground stations called ground stations.
  • antennas require polarization decoupling levels of less than -50 dB for single beam applications and less than -35 dB for multibeam. To reach these levels of performance, it is necessary to use complex radio frequency architectures, particularly at the level of the recombination paths of the signals with vertical and horizontal polarization.
  • orthogonal mode junction coupler also known as OMJ Anglo-Saxon for " OrthoMode Junction ”
  • the function of the orthogonal mode junction coupler is to extract or excite the two linear polarization modes.
  • this device makes complex the system of recombination of the polarizations in particular at the routing of the guides with an implantation on two layers to achieve this function.
  • This complex recombination system therefore penalizes the bulk and mass of the sources.
  • the use of such architecture on Gregorian antennas is more difficult to develop because of the congestion of the source and bad fields of view generated impacting radiation patterns.
  • the document of the prior art WO0016431 describes an orthogonal mode transducer.
  • the figure 1 represents an exemplary embodiment of such an architecture in a dual band configuration.
  • the device comprises an orthogonal mode junction coupler 10, one end of which is connected to a horn 12 via a transformation device. A second end is connected to a polarization splitter 14 (also known as OMT for " OrthoMode Transducer ”) via an undercurrent filter 13.
  • polarization splitter 14 also known as OMT for " OrthoMode Transducer ”
  • Each of the four coupling ports of the coupler 10 is connected to a filtering arm 15.
  • the outputs of these filtering arms 15 are recombined 2 to 2 by means of a divider "H" 17 also called “magic T" with charge 19.
  • the last access of each adder 17 corresponds to a input / output port of the device.
  • the two accesses of the polarization separator 14 not connected to the sub-cut filter 13 correspond to two other input / output ports of the device.
  • the figure 2 represents a second type of architecture known from the prior art to obtain the required performance.
  • This device comprises a horn 12 connected to a polarization splitter 14 in order to separate the two polarization modes of the signal and each of the two arms of said polarization splitter 14 is then connected to a duplexer 16 in order to extract the two frequency bands present in the signal.
  • This second architecture has the advantage of having a reduced number of microwave components to achieve the function of separation of frequency bands and polarizations. However, it applies only when the frequency bands are sufficiently close together.
  • the use of an asymmetric polarization splitter 14 makes polarization separation more sensitive because of the possible excitation of higher modes.
  • FIG 3 illustrates an exemplary embodiment.
  • one end of the orthogonal mode junction coupler 10 is connected to a horn 12 by via a polarization transforming device 11 and a second end is connected to a polarization splitter 14 via an undercurrent filter 13.
  • Each coupling port of the coupler 10 is connected to a filter arm 15.
  • the two outputs of the polarization splitter and the outputs of the filter arms 15 define input / output ports of the device.
  • This architecture has the advantage of being simple and compact, but it offers a decoupling level between the relatively small polarization modes.
  • This configuration provides only a horizontal / vertical bias decoupling level of approximately -18 ⁇ -22 dB while the requirements are -50 dB for single-beam coverage and -35 dB multibeam missions.
  • This poor decoupling can be explained by the imbalance of the electric field associated with the use of a single polarization coupling slot at the orthogonal mode junction coupler.
  • An object of the invention is in particular to correct all or part of the aforementioned drawbacks by proposing a solution making it possible to reduce both the bulk and the mass of the sources in linear polarization while guaranteeing a level of performance at least equivalent to the current sources. in linear polarization.
  • the subject of the invention is an orthogonal mode junction coupler comprising an envelope delimiting a coupling cavity, electromagnetic signals polarized according to at least two orthogonal linear polarization modes being able to propagate inside the coupling cavity, said coupler comprising two accesses, called input / output accesses, passing through said envelope and opening into said coupling cavity, said two input / output ports being aligned along an axis said to be longitudinal to the junction coupler and arranged at opposite ends of the junction coupler, said longitudinal axis being defined by the direction of propagation of the electromagnetic signals, three open slots, called coupling slots, are formed in the junction coupler envelope, said three coupling slots crossing a plane said transverse to the junction coupler, said transverse plane being substantially perpendicular to the longitudinal axis, two of said three coupling slots being aligned along a first axis said to be transverse to the junction coupler, the section of said two coupling slots being of the same size and of the same orientation, the two coupling slots being configured to
  • a slot is formed in the casing of the coupler, said image slot traversing the transverse plane and being opposite the third coupling slot, the section of said slot image being of the same dimensions and orientation as the section of the third coupling slot, one end of said image slot opening into the coupling cavity and the other end being closed by a short circuit plane.
  • the two coupling slots aligned along the transverse axis are configured to couple with the vertical linear polarization, the third coupling slot being configured to couple with the horizontal polarization.
  • the two coupling slots aligned along the transverse axis are configured to couple with the horizontal linear polarization, the third coupling slot being configured to couple with the vertical polarization.
  • the cross section of the coupling cavity is taken from a substantially square, rectangular, circular or elliptical shape.
  • the coupling slots are oriented so as to allow electrical coupling.
  • the coupling slots are oriented to allow magnetic coupling.
  • an input / output port is connected to a short-circuit plane or an under-cut filter.
  • the subject of the invention is also a polarization and frequency separator comprising an orthogonal mode junction coupler according to one of the preceding embodiments, said coupler comprising two input / output ports and three coupling slots, an access port of input / output being connected to an antenna and the other access being connected to a short-circuit plane, a coupling slot forming a polarization port and the other two coupling slots being connected via an adder to to form another polarization access.
  • a filtering arm is connected to each coupling slot and the short circuit plane connected to an input / output port is replaced by an undercurrent filter.
  • the filter arms and the summator are made according to a technology taken from waveguide technology, coaxial technology or microstrip technology.
  • the figure 4 presents an exemplary embodiment of a transmission / reception source.
  • This source can be placed in front of the reflector of an antenna.
  • the source example presented is configured to operate on two frequency bands, a transmitting frequency band and a second receiving band.
  • the source comprises two polarization and frequency separators 40, each polarization and frequency separator being configured to operate on different frequency bands.
  • This example is in no way limiting and the source may be single-band or multi-band with a number of frequency bands greater than two.
  • the polarization and frequency dividers 40 are configured to separate or couple orthogonal polarization signals (vertical and horizontal) propagating within them.
  • the source may comprise a polarization transformation device 11 between the polarization and frequency separator 40 and the antenna 12.
  • the horn antenna 12 operates in circular polarization and the transformation device 11 is configured to transform the linear waves (horizontal or vertical) from the polarization and frequency separator 40 into circular polarization waves and vice versa.
  • the polarization and frequency separator 40 comprises an orthogonal mode junction coupler 10.
  • a coupler 10 is also known as Anglo-Saxon " OrthoMode Junction " or OMJ.
  • the figure 5 illustrates an embodiment of such a coupler 10. This device is intended to extract or excite the two polarization modes of the electromagnetic signals propagating inside said coupler 10.
  • the junction coupler 10 comprises an envelope for delimiting an internal volume forming a coupling cavity.
  • the transverse section of this coupling cavity may for example be of substantially square, substantially rectangular, substantially circular or substantially elliptical shape.
  • the coupling cavity is configured to allow the propagation of polarized electromagnetic signals in at least two vertical and horizontal orthogonal linear polarization modes.
  • the orthogonal mode junction coupler 10 comprises two so-called input / output access ports 105. These ports 105 pass through said envelope and open into the coupling cavity. Polarized electromagnetic signals following two modes of orthogonal linear polarizations is adapted to propagate between the two access input / output 105.
  • the input / output access 105 are substantially aligned along an axis ⁇ L in said longitudinal connecting coupler 10 and disposed at opposite ends of said junction coupler 10.
  • the axis ( ⁇ L) is defined by the longitudinal direction of propagation of electromagnetic signals between the input / output port 105.
  • coupling slots 101, 102 Three open slots, called coupling slots 101, 102 are formed in the envelope of the junction coupler 10. These three coupling slots 101, 102 pass through a plane ⁇ said transverse to the junction coupler 10. This transverse plane ⁇ is substantially perpendicular to the axis ⁇ L longitudinal.
  • the three slots 101, 102 each open into the coupling cavity.
  • These coupling slots 101, 102 are oriented to allow electrical coupling or magnetic coupling.
  • These three coupling slots 101, 102 form three coupling ports for the orthogonal mode junction coupler 10. For example, slots oriented in a longitudinal direction of the coupling cavity allow magnetic coupling. The electrical coupling will be obtained with a 90 ° rotation of the slot.
  • Two of said three coupling slots are aligned along a first axis ⁇ T2 said transverse to the junction coupler 10.
  • the two coupling slots 102 are substantially identical. The dimensions of their section and the orientation of the slots are substantially identical. These two coupling slots 102 are both configured to couple with one of the two orthogonal linear polarizations of the electromagnetic signals propagating between the two input / output ports 105, either both in the vertical polarization, or both. according to the horizontal polarization.
  • the third coupling slot 101 is situated on a second axis ⁇ T1 , said transverse to the junction coupler 10.
  • This second transverse axis ⁇ T1 is of direction substantially orthogonal to the first transverse axis ⁇ T2 .
  • This single coupling slot 101 is configured to couple with the polarization different from that coupling with the two coupling slots 102 vis-à-vis.
  • an additional emergent slot is formed in the envelope of the orthogonal mode junction coupler.
  • This slot is placed vis-à-vis the third coupling slot 101. It passes through the transverse plane ⁇ and is aligned with the third coupling slot along the transverse axis ⁇ T1 .
  • the section of this image slot has dimensions and orientation substantially identical to those of the third coupling slot 101.
  • One end of this image slot opens into the coupling cavity and the other end is closed by a short circuit plane.
  • This image slot does not form a coupling access but serves to refine the current lines. Of Advantageously, it avoids dissymmetrizing the current lines and thus avoids the generation of higher modes.
  • the figure 6 represents a transverse sectional plane of an exemplary embodiment of the polarization and frequency separator 40 in a transverse plane passing through the three coupling slots 101, 102.
  • Each of the two coupling slots 102 facing each other is extended by a filtering arm 15. These two arms are then joined together with an adder 41 also called “magic T” or divider. The access of the summator 41 not connected to the filtering arms 15 forms an access 18 to the polarization transmitted through the arms 15.
  • a filter arm 15 is also connected to the third coupling slot 101.
  • the other end of the filter arm 15 provides access 18 to the transmitted polarization.
  • the recombination system namely, the stubs of the filtering arms 15 and the adder 41 can be realized in waveguide technology, coaxial technology or microstrip technology (or barline according to the Anglosaxon terminology).
  • the example shown in figure 6 corresponds to a multiband use.
  • the coupling slots 101, 102 may not include filtering arm 15. It is the same for a polarization and frequency separator 40 located at the end of a duplexer chain 40 set cascading in a multiband use as shown in the figure 4 .
  • FIG. 4 illustrates dual-use.
  • a first coupler 10 connected to the horn antenna 12, separates (or couples) the horizontal and vertical polarizations of the high frequency band.
  • the sub-cut filter 13 between the two couplers 10 attenuates the low frequencies (filter high pass) and only the high frequencies propagate in the second coupler 10 of smaller dimensions.
  • This second coupler 10 will separate (or couple) the polarizations of the high frequency band.
  • the sub-cut filter 13 is connected to one of the two input / output ports 105 of the coupler 10 and a short circuit plane is connected to the second input / output port.
  • the orthogonal mode coupling coupler with three coupling slots 101, 102 makes it possible to simplify the recombination system of the polarization and frequency separator 40.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Description

  • La présente invention concerne le domaine des télécommunications spatiales. La présente invention concerne plus particulièrement un coupleur de jonction à mode orthogonal et un séparateur de polarisations et de fréquences associé.
  • La présente invention s'applique aux sources à polarisation linéaire mono ou multi bandes pour tous les types d'antennes à réflecteur en mono et multi faisceaux. L'invention peut trouver par exemple, une application dans le domaine spatial pour des antennes à bord d'un satellite ou pour des antennes dans des stations terrestre dites stations sol.
  • Dans le domaine des télécommunications spatiales, les antennes demandent des niveaux de découplage de polarisation inférieurs à -50 dB pour les applications mono faisceau et inférieurs à -35 dB en multifaisceaux. Pour atteindre ces niveaux de performance, il est nécessaire d'utiliser des architectures radiofréquences complexes notamment au niveau des chemins de recombinaison des signaux à polarisation verticale et horizontale.
  • Pour atteindre ces performances, il est connu d'utiliser, au niveau des sources pour les antennes, des excitateurs à quatre bras à base de coupleur de jonction à mode orthogonal (également connu sous le sigle anglosaxon OMJ pour « OrthoMode Junction ») comprenant quatre accès de couplage et des systèmes de recombinaison des polarisations. Le coupleur de jonction à mode orthogonal a pour fonction d'extraire ou exciter les deux modes de polarisation linéaire.
  • Cependant ce dispositif rend complexe le système de recombinaison des polarisations notamment au niveau du routage des guides avec une implantation sur deux couches pour réaliser cette fonction. Ce système de recombinaison complexe pénalise donc l'encombrement et la masse des sources. De plus, l'utilisation d'une telle architecture sur des antennes grégoriennes est plus difficile à aménager en raison de l'encombrement de la source et des mauvais champs de vue générés impactant les diagrammes de rayonnement. Le document de l'art antérieur WO0016431 décrit un transducteur à mode orthogonal.
  • D'autre part, le document de l'art antérieur le plus proche US2010/0207702 décrit un coupleur très large bande à modes orthogonaux.
  • A titre d'illustration, la figure 1 représente un exemple de mode de réalisation d'une telle architecture dans une configuration bibande. Le dispositif comprend un coupleur de jonction à mode orthogonal 10 dont une extrémité est connectée à un cornet 12 par l'intermédiaire d'un dispositif de transformation. Une deuxième extrémité est connectée à un séparateur de polarisation 14 (également connu sous le sigle anglosaxon OMT pour « OrthoMode Transducer») par l'intermédiaire d'un filtre sous coupure 13. Chacun des quatre accès de couplage du coupleur 10 est connecté à un bras de filtrage 15. Les sorties de ces bras de filtrage 15 sont recombinées 2 à 2 par l'intermédiaire d'un diviseur "H" 17 également appelé "T magique" avec charge 19. Le dernier accès de chaque sommateur 17 correspond à un port d'entrée/sortie du dispositif. De même, les deux accès du séparateur de polarisation 14 non connectés au filtre sous coupure 13 correspondent à deux autres ports d'entrée/sortie du dispositif.
  • La figure 2 représente un deuxième type d'architecture connu de l'art antérieur permettant d'obtenir les performances requises. Ce dispositif comprend un cornet 12 connecté à un séparateur de polarisation 14 afin de séparer les deux modes de polarisation du signal et chacun des deux bras du dit séparateur de polarisation 14 est ensuite connectée à un duplexeur 16 afin d'extraire les deux bandes de fréquence présentes dans le signal.
  • Cette deuxième architecture a l'avantage de présenter un nombre réduit de composants hyperfréquence pour réaliser la fonction de séparation des bandes de fréquences et des polarisations. Cependant, elle s'applique uniquement lorsque les bandes de fréquences sont suffisamment rapprochées. De plus, l'utilisation d'un séparateur de polarisation 14 asymétrique rend la séparation des polarisations plus sensible en raison de l'excitation possible de modes supérieurs.
  • Il est également connu l'utilisation d'un coupleur de jonction à mode orthogonal 10 à deux accès de couplage. La figure 3 en illustre un exemple de mode de réalisation. Dans cette figure, une extrémité du coupleur de jonction à mode orthogonal 10 est connectée à un cornet 12 par l'intermédiaire d'un dispositif de transformation de polarisation 11 et une deuxième extrémité est connectée à un séparateur de polarisation 14 par l'intermédiaire d'un filtre sous coupure 13. Chaque accès de couplage du coupleur 10 est connecté à un bras de filtrage 15. Les deux sorties du séparateur de polarisation et les sorties des bras de filtrage 15 définissent des ports d'entrée/sortie du dispositif.
  • Cette architecture a l'avantage d'être simple et peu encombrante cependant elle offre un niveau de découplage entre les modes de polarisation relativement réduit. Cette configuration offre seulement un niveau de découplage de polarisation Horizontale/Vertical d'environ -18 ∼ -22 dB alors que les besoins sont de -50 dB pour les missions à couverture mono-faisceau formée et -35 dB en multifaisceaux. Ce mauvais découplage peut s'expliquer par le déséquilibre du champ électrique lié à l'utilisation d'une seule fente de couplage par polarisation au niveau du coupleur de jonction à mode orthogonal.
  • Un but de l'invention est notamment de corriger tout ou partie des inconvénients précités en proposant une solution permettant de réduire à la fois l'encombrement et la masse des sources en polarisation linéaire tout en garantissant un niveau de performances au moins équivalents aux sources actuelles en polarisation linéaire.
  • A cet effet, l'invention a pour objet un coupleur de jonction à mode orthogonal comportant une enveloppe délimitant une cavité de couplage, des signaux électromagnétiques polarisés suivant au moins deux modes de polarisations linéaires orthogonales étant aptes à se propager à l'intérieur de la cavité de couplage,
    ledit coupleur comprenant deux accès, dits accès d'entrée/sortie, traversant ladite enveloppe et débouchant dans ladite cavité de couplage, lesdits deux accès d'entrée/sortie étant alignés selon un axe dit longitudinal au coupleur de jonction et disposés à des extrémités opposées du coupleur de jonction, ledit axe longitudinal étant définit par la direction de propagation des signaux électromagnétiques,
    trois fentes débouchantes, dites fentes de couplage, sont pratiquées dans l'enveloppe du coupleur de jonction, lesdites trois fentes de couplage traversant un plan dit transversal au coupleur de jonction, ledit plan transversal étant sensiblement perpendiculaire à l'axe longitudinal,
    deux desdites trois fentes de couplage étant alignées selon un premier axe dit transverse au coupleur de jonction, la section desdites deux fentes de couplage étant de même dimensions et de même orientation, les deux fentes de couplage étant configurées pour se coupler avec une des deux polarisations linéaires orthogonales des signaux électromagnétiques se propageant entre les deux accès d'entrée/sortie,
    la troisième fente de couplage étant située sur un deuxième axe dit transverse au coupleur de jonction, ledit deuxième axe transverse étant sensiblement orthogonal au premier axe transverse.
  • Suivant un mode de réalisation, une fente, dite fente image, est pratiquée dans l'enveloppe du coupleur, ladite fente image traversant le plan transversal et étant en vis-à-vis de la troisième fente de couplage, la section de ladite fente image étant de même dimensions et de même orientation que la section de la troisième fente de couplage, une extrémité de ladite fente image débouchant dans la cavité de couplage et l'autre extrémité étant fermée par un plan de court circuit.
  • Suivant un mode de réalisation, les deux fentes de couplage alignés selon l'axe transverse sont configurées pour se coupler avec la polarisation linéaire verticale, la troisième fente de couplage étant configurée pour se coupler avec la polarisation horizontale.
  • Suivant un mode de réalisation, les deux fentes de couplage alignés selon l'axe transverse sont configurées pour se coupler avec la polarisation linéaire horizontale, la troisième fente de couplage étant configurée pour se coupler avec la polarisation verticale.
  • Suivant un mode de réalisation, la section transversale de la cavité de couplage est prise parmi une forme sensiblement carré, rectangulaire, circulaire ou l'elliptique.
  • Suivant un mode de réalisation, les fentes de couplage sont orientées de façon à permettre un couplage électrique.
  • Suivant un mode de réalisation, les fentes de couplage sont orientées de façon à permettre un couplage magnétique.
  • Suivant un mode de réalisation, un accès d'entrée/sortie est connecté à un plan de court circuit ou un filtre sous coupure.
  • L'invention a également pour objet un séparateur de polarisations et de fréquences comprenant un coupleur de jonction à mode orthogonal selon un des modes de réalisation précédent, ledit coupleur comprenant deux accès d'entrée/sortie et trois fentes de couplage, un accès d'entrée/sortie étant connecté à une antenne et l'autre accès étant connecté à un plan de court-circuit, une fente de couplage formant un accès de polarisation et les deux autre fentes de couplage étant réunies par l'intermédiaire d'un sommateur pour former un autre accès de polarisation.
  • Suivant un mode de réalisation, un bras de filtrage est connecté à chaque fente de couplage et le plan de court circuit connecté à un accès d'entrée/sortie est remplacé par un filtre sous coupure.
  • Suivant un mode de réalisation, les bras de filtrage et le sommateur sont réalisés selon une technologie prise parmi la technologie guide d'onde, la technologie coaxiale ou la technologie microruban.
  • D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après, donnée à titre illustratif et non limitatif, et faite en référence aux dessins annexés, dans lesquels :
    • Les figures 1 à 3 représentent des exemples de mode de réalisation de séparateurs de polarisations et de fréquences connus de l'art antérieur ;
    • La figure 4 représente un exemple de source d'émission/réception comprenant au moins un mode de réalisation d'un séparateur de polarisations et de fréquences selon l'invention ;
    • La figure 5 représente un exemple de mode de réalisation d'un coupleur de jonction à mode orthogonal selon l'invention ;
    • La figure 6 représente une coupe transversale d'un exemple de mode de réalisation d'un séparateur de polarisations et de fréquences selon l'invention ;
  • La figure 4 présente un exemple de mode de réalisation d'une source d'émission/réception. Cette source peut être placée devant le réflecteur d'une antenne L'exemple de source présentée est configurée pour fonctionner sur deux bandes de fréquences, une bande de fréquence en émission et une seconde bande en réception. A cet effet, la source comprend deux séparateurs de polarisations et de fréquences 40, chaque séparateur de polarisations et de fréquences étant configuré pour fonctionner sur des bandes de fréquences distinctes. Cet exemple n'est nullement limitatif et la source peut être mono bande ou multi bandes avec un nombre de bandes de fréquence supérieur à deux.
    Les séparateurs de polarisation et de fréquences 40 sont configurés pour séparer ou coupler les signaux à polarisations orthogonales (verticales et horizontales) se propageant à l'intérieur de ces derniers. On rappelle que par convention, si on considère une base orthogonale directe ( e x, e y, e z) et si on considère que le signal électromagnétique se propage selon la direction du vecteur e z, on parle de polarisation verticale, ou V, si le champ électrique dudit signal électromagnétique est orienté selon la direction du vecteur e x et de polarisation horizontale s'il est orienté selon la direction du vecteur e y.
  • Dans le cas où le cornet 12 fonctionne sous une polarisation différente de celle du séparateur de polarisations et fréquences 40, la source peut comprendre un dispositif de transformation de polarisation 11 entre le séparateur de polarisations et de fréquences 40 et l'antenne 12. Par exemple, dans l'exemple illustré figure 4, l'antenne cornet 12 fonctionne en polarisation circulaire et le dispositif de transformation 11 est configuré pour transformer les ondes linéaires (horizontales ou verticales) provenant du séparateur de polarisations et de fréquences 40 en ondes en polarisation circulaire et inversement.
  • Le séparateur de polarisations et de fréquences 40 comprend un coupleur de jonction à mode orthogonal 10. Un tel coupleur 10 est également connu sous le terme anglosaxon « OrthoMode Junction » ou OMJ. A titre d'exemple, la figure 5 illustre un mode de réalisation d'un tel coupleur 10. Ce dispositif est destiné à extraire ou exciter les deux modes de polarisation des signaux électromagnétiques se propageant à l'intérieur dudit coupleur 10.
  • Le coupleur de jonction 10 comprend une enveloppe permettant de délimiter un volume intérieur formant une cavité de couplage. La section transverse de cette cavité de couplage peut être par exemple de forme sensiblement carré, sensiblement rectangulaire, sensiblement circulaire ou sensiblement elliptique. La cavité de couplage est configurée pour permettre la propagation de signaux électromagnétiques polarisés suivant au moins deux modes de polarisations linéaires orthogonales vertical et horizontal.
  • Le coupleur de jonction à mode orthogonal 10 comprend deux accès dits accès d'entrée/sortie 105. Ces accès 105 traversent ladite enveloppe et débouchent dans la cavité de couplage. Des signaux électromagnétiques polarisés suivant deux modes de polarisations linéaires orthogonales est apte à se propager entre ces deux accès d'entrée/sortie 105. Ces accès d'entrée/sortie 105 sont sensiblement alignés selon un axe ΔL dit longitudinal au coupleur de jonction 10 et disposés à des extrémités opposées dudit coupleur de jonction 10. L'axe (ΔL) longitudinal est définit par la direction de propagation des signaux électromagnétiques entre les accès d'entrée/sortie 105.
  • Trois fentes débouchantes, dites fentes de couplage 101, 102 sont pratiquées dans l'enveloppe du coupleur de jonction 10. Ces trois fentes de couplage 101, 102 traversent un plan π dit transversal au coupleur de jonction 10. Ce plan transversal π est sensiblement perpendiculaire à l'axe ΔL longitudinal. Les trois fentes 101, 102 débouchent chacune dans la cavité de couplage. Ces fentes de couplage 101, 102 sont orientées de façon à permettre un couplage électrique ou un couplage magnétique. Ces trois fentes de couplage 101, 102 forment trois accès de couplage pour le coupleur de jonction à mode orthogonal 10. A titre d'exemple, des fentes orientées selon une direction longitudinale de la cavité de couplage permettent un couplage magnétique. Le couplage électrique sera obtenu avec une rotation de 90° de la fente.
  • Deux desdites trois fentes de couplage sont alignées selon un premier axe ΔT2 dit transverse au coupleur de jonction 10. Les deux fentes de couplage 102 sont sensiblement identiques. Les dimensions de leur section et l'orientation des fentes sont sensiblement identiques. Ces deux fentes de couplage 102 sont toutes les deux configurées pour se coupler avec une des deux polarisations linéaires orthogonales des signaux électromagnétiques se propageant entre les deux accès d'entrée/sortie 105, soit toutes les deux selon la polarisation verticale, soit toutes les deux selon la polarisation horizontale.
  • La troisième fente de couplage 101 est située sur un deuxième axe ΔT1, dit transverse au coupleur de jonction 10. Ce deuxième axe transverse ΔT1 est de direction sensiblement orthogonale au premier axe transverse ΔT2. Cette fente unique de couplage 101 est configurée pour se coupler avec la polarisation différente de celle se couplant avec les deux fentes de couplage 102 en vis-à-vis.
  • Le fait de coupler (ou séparer) le signal électromagnétique selon une polarisation avec deux fentes de couplage sensiblement identiques et selon l'autre polarisation avec une seule fente de couplage permet d'améliorer le découplage entre les deux polarisations. Le couplage (ou la séparation) d'une polarisation particulière à l'aide de deux fentes permet d'affiner les lignes de champs de ce signal et de favoriser cette polarisation par rapport à l'autre.
  • Suivant un mode de réalisation particulier, une fente débouchante supplémentaire, dite fente image, est pratiquée dans l'enveloppe du coupleur de jonction à mode orthogonal. Cette fente est placée en vis-à-vis de la troisième fente de couplage 101. Elle traverse le plan transversal π et est alignée avec la troisième fente de couplage selon l'axe transverse ΔT1. La section de cette fente image possède des dimensions et une orientation sensiblement identiques à celles de la troisième fente de couplage 101. Une extrémité de cette fente image débouche dans la cavité de couplage et l'autre extrémité est fermée par un plan de court circuit. Cette fente image ne forme pas un accès de couplage mais sert à affiner les lignes de courant. De façon avantageuse, elle évite de dissymétriser les lignes de courant et permet donc d'éviter la génération de modes supérieurs.
  • La figure 6 représente un plan de coupe transversal d'un exemple de mode de réalisation du séparateur de polarisations et de fréquences 40 selon un plan transversal passant par les trois fentes de couplage 101, 102.
  • Chacune des deux fentes de couplage 102 en vis-à-vis est prolongée par un bras de filtrage 15. Ces deux bras sont ensuite réunis à l'aide d'un sommateur 41 également appelé "T magique" ou diviseur. L'accès du sommateur 41 non connecté aux bras de filtrage 15 forme un accès 18 à la polarisation transmise à travers les bras 15.
  • Un bras de filtrage 15 est également connecté à la troisième fente de couplage 101. L'autre extrémité du bras de filtrage 15 forme un accès 18 à la polarisation transmise.
  • Le système de recombinaison, à savoir, les stubs des bras de filtrage 15 et le sommateur 41 peut être réalisé en technologie guide d'onde, en technologie coaxiale ou en technologie microruban (ou barline selon la terminologie anglosaxone).
  • L'exemple illustré à la figure 6 correspond à une utilisation multibande. Dans le cas d'une utilisation monobande les fentes de couplage 101, 102 peuvent ne pas comprendre de bras de filtrage 15. Il en est de même pour un séparateur de polarisations et de fréquences 40 situé en bout d'une chaine de duplexeur 40 mis en cascade dans une utilisation multibande comme illustré à la figure 4.
  • Dans une utilisation pour une source multi bandes de fréquences, différents séparateurs de polarisations et fréquences 40 peuvent être connectés en cascade. Chaque séparateur de polarisations et de fréquences 40 est séparé par un filtre sous coupure 13 afin de filtrer les signaux électromagnétiques en fréquence. Le dernier duplexeur de polarisation 40 de la chaine est terminé par un plan de court circuit. A titre d'exemple, la figure 4 illustre une utilisation bibande. Un premier coupleur 10, connecté à l'antenne cornet 12, sépare (ou couple) les polarisations horizontale et verticale de la bande de fréquence haute. Le filtre sous coupure 13 entre les deux coupleurs 10 atténue les basses fréquences (filtre passe haut) et seules les fréquences hautes se propagent dans le second coupleur 10 de dimensions plus réduites. Ce second coupleur 10 va séparer (ou coupler) les polarisations de la bande de fréquence haute. Le filtre sous coupure 13 est connecté à un des deux accès d'entrée/sortie 105 du coupleur 10 et un plan de court circuit est connecté au second accès d'entrée/sortie.
  • De façon avantageuse, le coupleur de jonction 10 à mode orthogonal à trois fentes de couplage 101, 102 selon l'invention permet de simplifier le système de recombinaison du séparateur de polarisations et de fréquences 40.

Claims (10)

  1. Coupleur de jonction (10) à mode orthogonal comportant une enveloppe délimitant une cavité de couplage, des signaux électromagnétiques polarisés suivant au moins deux modes de polarisations linéaires orthogonales étant aptes à se propager à l'intérieur de la cavité de couplage,
    ledit coupleur (10) comprenant deux accès, dits accès d'entrée/sortie (105), traversant ladite enveloppe et débouchant dans ladite cavité de couplage, lesdits deux accès d'entrée/sortie (105) étant alignés selon un axe (ΔL) dit longitudinal au coupleur de jonction (10) et disposés à des extrémités opposées du coupleur de jonction, ledit axe (ΔL) longitudinal étant définit par la direction de propagation des signaux électromagnétiques,
    en ce que trois fentes débouchantes, dites fentes de couplage (101, 102), sont pratiquées dans l'enveloppe du coupleur de jonction (10), lesdites trois fentes de couplage (101, 102) traversant un plan (π) dit transversal au coupleur de jonction (10), ledit plan transversal (π) étant sensiblement perpendiculaire à l'axe (ΔL) longitudinal,
    deux desdites trois fentes de couplage étant alignées selon un premier axe (ΔT2) dit transverse au coupleur de jonction (10), la section desdites deux fentes de couplage (102) étant de même dimensions et de même orientation, les deux fentes de couplage (102) étant configurées pour se coupler avec une des deux polarisations linéaires orthogonales des signaux électromagnétiques se propageant entre les deux accès d'entrée/sortie (105),
    la troisième fente de couplage (101) étant située sur un deuxième axe (ΔT1) dit transverse au coupleur de jonction (10), ledit deuxième axe transverse (ΔT1) étant sensiblement orthogonal au premier axe transverse (ΔT2), la troisième fente de couplage étant la seule fente de couplage configurée pour se coupler avec l'autre polarisation linéaire orthogonale, ledit coupleur étant caractérisé en ce qu'il comprend une fente dite fente image pratiquée dans l'enveloppe du coupleur, ladite fente image traversant le plan transversal (π) et étant en vis-à-vis de la troisième fente de couplage (101), la section de ladite fente image étant de même dimensions et de même orientation que la section de la troisième fente de couplage (101), une extrémité de ladite fente image débouchant dans la cavité de couplage et l'autre extrémité étant fermée par un plan de court circuit..
  2. Coupleur de jonction selon la revendication 1 dans lequel les deux fentes de couplage (102) alignées selon l'axe transverse (ΔT2) sont configurées pour se coupler avec la polarisation linéaire verticale, la troisième fente de couplage étant configurée pour se coupler avec la polarisation horizontale.
  3. Coupleur de jonction (10) selon la revendication 1 dans lequel les deux fentes de couplage (102) alignées selon l'axe transverse (ΔT2) sont configurées pour se coupler avec la polarisation linéaire horizontale, la troisième fente de couplage étant configurée pour se coupler avec la polarisation verticale.
  4. Coupleur de jonction (10) selon une des revendications précédentes dans lequel la section transversale de la cavité de couplage est prise parmi une forme sensiblement carré, rectangulaire, circulaire ou l'elliptique.
  5. Coupleur de jonction (10) selon une des revendications précédentes dans lequel les fentes de couplage sont orientées de façon à permettre un couplage électrique.
  6. Coupleur de jonction (10) selon une des revendications 1 à 4 dans lequel les fentes de couplage sont orientées de façon à permettre un couplage magnétique.
  7. Coupleur de jonction selon une des revendications précédentes dans lequel un accès d'entrée/sortie (105) est connecté à un plan de court circuit ou un filtre sous coupure (13).
  8. Séparateur de polarisations et de fréquences (40) caractérisé en ce qu'il comprend un coupleur de jonction (10) à mode orthogonal selon une des revendications précédentes, ledit coupleur comprenant deux accès d'entrée/sortie (105) et trois fentes de couplage (101, 102), un accès d'entrée/sortie (105) étant connecté à une antenne (12) et l'autre accès (105) étant connecté à un plan de court-circuit, une fente de couplage (101) formant un accès de polarisation (18) et les deux autre fentes de couplage (102) étant réunies par l'intermédiaire d'un sommateur (41) pour former un autre accès de polarisation (18).
  9. Séparateur de polarisations et de fréquences (40) selon la revendication précédente dans lequel un bras de filtrage (15) est connecté à chaque fente de couplage (101, 102) et dans lequel le plan de court circuit connecté à un accès d'entrée/sortie (105) est remplacé par un filtre sous coupure (13).
  10. Séparateur de polarisations et de fréquences (40) selon la revendication précédente dans lequel les bras de filtrage (15) et le sommateur (41) sont réalisés selon une technologie prise parmi la technologie guide d'onde, la technologie coaxiale ou la technologie microruban.
EP15200108.7A 2014-12-19 2015-12-15 Coupleur de jonction a mode orthogonal et separateur de polarisations et de frequences associe Active EP3035445B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1402932A FR3030907B1 (fr) 2014-12-19 2014-12-19 Coupleur de jonction a mode orthogonal et separateur de polarisations et de frequences associe

Publications (2)

Publication Number Publication Date
EP3035445A1 EP3035445A1 (fr) 2016-06-22
EP3035445B1 true EP3035445B1 (fr) 2019-01-30

Family

ID=53191717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15200108.7A Active EP3035445B1 (fr) 2014-12-19 2015-12-15 Coupleur de jonction a mode orthogonal et separateur de polarisations et de frequences associe

Country Status (5)

Country Link
US (1) US10069210B2 (fr)
EP (1) EP3035445B1 (fr)
CA (1) CA2915266C (fr)
ES (1) ES2721027T3 (fr)
FR (1) FR3030907B1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016431A1 (fr) * 1998-09-11 2000-03-23 Channel Master Llc Transducteur orthomode planaire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323819B1 (en) * 2000-10-05 2001-11-27 Harris Corporation Dual band multimode coaxial tracking feed
FR2920915B1 (fr) * 2007-09-07 2009-10-23 Thales Sa Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences.
US20100007432A1 (en) * 2008-07-14 2010-01-14 Jaroslaw Uher Orthomode junction assembly with associated filters for use in an antenna feed system
FR2939971B1 (fr) * 2008-12-16 2011-02-11 Thales Sa Ensemble d'excitation compact pour la generation d'une polarisation circulaire dans une antenne et procede d'elaboration d'un tel ensemble d'excitation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016431A1 (fr) * 1998-09-11 2000-03-23 Channel Master Llc Transducteur orthomode planaire

Also Published As

Publication number Publication date
FR3030907A1 (fr) 2016-06-24
US10069210B2 (en) 2018-09-04
CA2915266A1 (fr) 2016-06-19
CA2915266C (fr) 2023-11-14
US20160181702A1 (en) 2016-06-23
EP3035445A1 (fr) 2016-06-22
ES2721027T3 (es) 2019-07-26
FR3030907B1 (fr) 2016-12-23

Similar Documents

Publication Publication Date Title
EP2869396B1 (fr) Répartiteur de puissance comportant un coupleur en Té dans le plan E, réseau rayonnant et antenne comportant un tel réseau rayonnant
EP2202839B1 (fr) Ensemble d'excitation compact pour la génération d'une polarisation circulaire dans une antenne et procédé d'élaboration d'un tel ensemble d'excitation
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
EP3179551B1 (fr) Ensemble d'excitation compact bipolarisation pour un element rayonnant d'antenne et reseau compact comportant au moins quatre ensembles d'excitation compacts
EP0880193B1 (fr) Source d'antenne pour l'emission et la réception d'ondes hyperfréquences
EP3726642B1 (fr) Ecran polariseur a cellule(s) polarisante(s) radiofrequence(s) large bande
EP2195877B1 (fr) Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
FR3035546A1 (fr) Module structural d'antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
EP3026754A1 (fr) Module compact d'excitation radiofréquence à cinématique intégrée et antenne compacte biaxe comportant au moins un tel module compact
WO2016023919A1 (fr) Source multibande a cornet coaxial avec systemes de poursuite monopulse pour antenne a reflecteur
EP3035445B1 (fr) Coupleur de jonction a mode orthogonal et separateur de polarisations et de frequences associe
EP3910729B1 (fr) Transducteur orthomode large bande
EP3249823B1 (fr) Excitateur radiofréquence compact bi-polarisation et multi-fréquences pour source primaire d'antenne et une source primaire d'antenne equipée d'un tel excitateur radiofréquence
EP0192186B1 (fr) Duplexeur de polarisations
EP0068940B1 (fr) Source primaire à réutilisation de fréquences
FR3083014A1 (fr) Excitateur radiofrequence d'antenne en reception et transmission
FR2929796A1 (fr) Coupleur pour systeme radio frequences multibandes.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161117

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180815

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1093989

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015023948

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2721027

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1093989

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015023948

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

26N No opposition filed

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231128

Year of fee payment: 9

Ref country code: FR

Payment date: 20231122

Year of fee payment: 9

Ref country code: DE

Payment date: 20231114

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240115

Year of fee payment: 9