WO2021127864A1 - 一种双频双极化分路器 - Google Patents

一种双频双极化分路器 Download PDF

Info

Publication number
WO2021127864A1
WO2021127864A1 PCT/CN2019/127500 CN2019127500W WO2021127864A1 WO 2021127864 A1 WO2021127864 A1 WO 2021127864A1 CN 2019127500 W CN2019127500 W CN 2019127500W WO 2021127864 A1 WO2021127864 A1 WO 2021127864A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
magic
cross
dual
polarization
Prior art date
Application number
PCT/CN2019/127500
Other languages
English (en)
French (fr)
Inventor
王磊
Original Assignee
罗森伯格技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗森伯格技术有限公司 filed Critical 罗森伯格技术有限公司
Priority to EP19957773.5A priority Critical patent/EP4007062A4/en
Priority to PCT/CN2019/127500 priority patent/WO2021127864A1/zh
Publication of WO2021127864A1 publication Critical patent/WO2021127864A1/zh
Priority to US17/838,136 priority patent/US20220384929A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/20Magic-T junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines

Definitions

  • the present invention relates to the technical field of wireless communication, in particular to a dual-frequency dual-polarization splitter.
  • dual-frequency or multi-frequency shared antennas can be used for two or more antennas with only a small increase in cost.
  • Frequency band especially when the antenna diameter is large, this method can significantly reduce the cost of the antenna system, and at the same time reduce the land use area, and facilitate the deployment of user sites.
  • the available bandwidth of the coupling waveguide port of the coaxial turnstile coupler is getting wider and wider, which can already meet the bandwidth requirements of dual-band use.
  • the coaxial inner conductor of the coaxial turnstile coupler is hollow, a circular waveguide can be formed for transmitting signals of higher frequency bands, and the structure is simple and does not require debugging.
  • CN201711361522.4 discloses a coaxial waveguide quadrature mode coupler matched with truncated cone, as shown in Fig. 1, which includes coaxial turnstile 1, U -Shaped curved waveguide element 1, U-shaped curved waveguide element 2 3, U-shaped curved waveguide element 3 4, U-shaped curved waveguide element 4 5, power combiner/distributor 1 6 and power combiner/distributor 2 7.
  • the structural layout is not convenient for product realization.
  • the high-frequency signal in the coaxial turnstile joint 1 is blocked by the waveguide cavity surrounded by four U-shaped curved waveguide elements and cannot be transmitted. ; It is not convenient for the processing of product parts.
  • the intersection of the waveguide cavities in this document is not easy to achieve during the processing of the parts; in addition, the electrical functions are not flexible enough to achieve single and dual flexible switching, such as power combiner/divider 6 and power combiner /The two ports of the distributor 7 are fixed in a single polarization mode.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a dual-frequency dual-polarization splitter.
  • a dual-frequency dual-polarization splitter including a coaxial circular waveguide, a cross-shaped waveguide power splitter, a first waveguide magic T, a second waveguide magic T, and orthogonal Analog converter,
  • the coaxial circular waveguide is located on the central axis of the cross-shaped waveguide power divider and is perpendicular to the top surface of the cross-shaped waveguide power divider.
  • the coaxial circular waveguide includes an outer circular waveguide and an inner circle located in the outer circular waveguide. waveguide;
  • a cross waveguide cavity is formed in the cross waveguide power splitter, the cross waveguide cavity is in communication with the outer circular waveguide, and the inner circular waveguide penetrates the cross waveguide power splitter for transmitting high-frequency signals;
  • the cross-shaped waveguide power splitter has four signal channels connected to the cross-waveguide cavity, and the four signal channels are distributed in a cross shape, wherein the two signal channels located in the first direction are respectively connected to the first waveguide magic T The two input ports are connected, and the other two signal channels located in the second direction perpendicular to the first direction are respectively connected to the two input ports of the second waveguide magic T;
  • the output port of the first waveguide magic T and the output port of the second waveguide magic T are both connected with the input port of the quadrature mode converter;
  • the output end of the orthogonal mode converter forms a circular waveguide interface.
  • the first waveguide magic T is a first E-plane waveguide magic T
  • the second waveguide magic T is a second E-plane waveguide magic T
  • the first waveguide magic T is a first H-plane waveguide magic T
  • the second waveguide magic T is a second H-plane waveguide magic T.
  • a polarization converter is arranged between the second E-plane waveguide magic T and the orthogonal mode converter.
  • the first waveguide magic T and the second waveguide magic T are located on the same plane, and they do not intersect.
  • the splitter further includes a plurality of 90° bent waveguides, and the signal channel of the cross-shaped waveguide power splitter and the input port of the corresponding waveguide magic T are connected through the 90° bent waveguide.
  • the 90° curved waveguide includes an E-face 90° waveguide and an H-face 90° curved waveguide.
  • One end of the E-face 90° waveguide is connected to the signal channel of the cross-shaped waveguide power splitter, and the other end is connected to the H face.
  • One end of the 90° curved waveguide is connected, and the other end of the H-face 90° curved waveguide is connected with the input port of the waveguide magic T.
  • the dual-frequency dual-polarization splitter further includes a circular waveguide, and the circular waveguide communicates with the circular waveguide interface.
  • the outer circular waveguide transmits only the TEM mode and the TE11 mode, and suppresses other high-order modes.
  • the present invention also discloses another technical solution: a dual-frequency dual-polarization splitter, including an upper structure, a lower structure, a middle structure between the upper structure and the lower structure, and a cylinder penetrating the upper, middle and lower three-layer structures tube,
  • the upper structure includes opposite upper and lower end surfaces, a cross waveguide cavity is formed on the lower end surface, and a circular hole penetrating the upper and lower end surfaces of the upper structure is provided in the center of the cross waveguide cavity.
  • the cylindrical tube Pass through the circular hole;
  • the middle layer structure is provided with four through holes corresponding to the cross waveguide cavity and distributed in a cross shape.
  • the four ends of the cross waveguide cavity are communicated with the corresponding through holes, and the through holes penetrate the middle layer. structure;
  • a first waveguide magic T, a second waveguide magic T, and an orthogonal mode converter are formed between the lower end surface of the middle structure and the upper end surface of the lower structure.
  • the two input ports of the first waveguide magic T are connected to the middle layer respectively.
  • two through holes located in the first direction are connected, and the two input ports of the second waveguide magic T are respectively connected to the other two through holes located in the second direction perpendicular to the first direction on the middle structure;
  • the output port of the first waveguide magic T and the output port of the second waveguide magic T are both connected with the input port of the quadrature mode converter;
  • the output end of the orthogonal mode converter forms a circular waveguide interface.
  • a first step corresponding to the cross waveguide cavity is further provided on the upper end surface of the middle layer structure, the first steps are distributed in a cross shape, and the first steps are connected with the outer wall of the cylindrical tube.
  • the ends of the cross waveguide cavity corresponding to the four through holes are each provided with a second step.
  • the number of steps of the second step is 2 to 4 steps.
  • a polarization converter is formed between the lower end surface of the middle structure and the upper end surface of the lower structure, and the polarization converter is disposed between the second waveguide magic T and the orthogonal mode converter.
  • the present invention uses a cross-shaped power divider to cleverly connect the E-plane waveguide magic T and the orthogonal mode coupler through the E/H plane 90° curved waveguide to form a new type of coaxial waveguide orthogonal mode coupler to achieve
  • the structure of coaxial circular waveguide high and low frequency (ie dual frequency) feeding at the same time reduces the length of the high frequency transmission line and reduces the transmission loss.
  • dual-polarization transmission in each frequency band is realized, and when dual-polarization is converted to single-polarization, it can be flexibly converted between vertical polarization and horizontal polarization.
  • the cross-shaped power divider of the present invention adopts a step structure, which can effectively improve the working bandwidth, the flatness of the power divider, and the isolation of each port.
  • the structure of the present invention is simple and compact, which is convenient for miniaturization of products and batch processing and production.
  • Fig. 1 is a schematic diagram of the structure of an existing coaxial waveguide orthogonal mode coupler
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a preferred embodiment of the present invention.
  • Figures 3 and 4 are schematic diagrams of the three-dimensional structure of Figure 2 from the other two perspectives;
  • Figure 5 is a schematic diagram of the split structure of the product of the present invention.
  • FIG. 6 is a schematic diagram of the split structure of FIG. 5 from another perspective of the present invention.
  • Figure 7 is a schematic diagram of the structure of the product of the present invention after assembly.
  • a dual-frequency dual-polarization splitter disclosed in the preferred embodiment of the present invention includes a coaxial circular waveguide 10, a cross-shaped waveguide power splitter 20, and a first E-plane waveguide magic T30, the second E-plane waveguide magic T40, the orthogonal mode converter 50, the polarization converter 60 and the circular waveguide 70.
  • the coaxial circular waveguide 10 is located on the central axis of the cross-shaped waveguide power divider 20, that is, with ten
  • the zigzag waveguide power divider 20 is coaxial and perpendicular to the top surface of the cross-shaped waveguide power divider 20.
  • the coaxial circular waveguide 10 includes an outer circular waveguide 11 and an inner circular waveguide 12 arranged on the same axis.
  • the inner circular waveguide 12 is located in the outer circular waveguide 11 and penetrates the top and bottom surfaces of the cross-shaped waveguide power divider 20, that is, the inner circular waveguide.
  • the lower end of the waveguide 12 penetrates the bottom surface of the cross-shaped waveguide power divider 20, one end (such as the bottom end) of the inner circular waveguide 12 is connected to a high-frequency transmitter (not shown), and the other end (such as the top end) is connected to the antenna reflection surface (not shown) Show), used to transmit high-frequency signals to the antenna reflector.
  • the size ratio of the inner diameter of the outer circular waveguide 11 and the outer diameter of the inner circular waveguide 12 satisfies that only the TEM mode and the TE11 mode are transmitted and other high-order modes are suppressed.
  • a cross waveguide cavity 21 is formed in the cross waveguide power splitter 20, and the outer circular waveguide 11 of the coaxial circular waveguide is communicated with the cross waveguide cavity 21.
  • the cross waveguide power divider 20 has four signal channels distributed in a cross shape. The four signal channels extend from the outer edge of the cross waveguide cavity 21 forward, backward, left, and right, and four signal channels are formed. The channels are all connected to the cross waveguide cavity 21.
  • the four signal channels are defined as front signal channel 22, rear signal channel 23, left signal channel 24, and right signal channel 25.
  • the front signal channel 22 and the rear signal channel 23 are located in the same direction (defined as the first signal channel). In one direction), the left signal channel 24 and the right signal channel 25 are located in the same direction (defined as a second direction perpendicular to the first direction).
  • the front signal channel 22 and the rear signal channel 23 are respectively connected to the two input ports 31 of the first E-plane waveguide magic T30, and the output port 32 of the first E-plane waveguide magic T30 is connected to one of the rectangular waveguides of the orthogonal mode converter 50.
  • the port 51 is connected and used to merge the front and back signal channels 22 and 23 into one channel.
  • the left signal channel 24 and the right signal channel 25 are respectively connected to the two input ports 41 of the second E-plane waveguide magic T40, and the output port 42 of the second E-plane waveguide magic T40 is connected to the other rectangular waveguide of the quadrature mode converter 50.
  • the port 52 is connected and used to merge the left and right signal channels 24 and 25 into one channel.
  • the first E-plane waveguide T30 and the second E-plane waveguide T40 are located on the same plane, and they do not intersect.
  • the input ports 41 are all switched through a 90° curved waveguide.
  • the four signal channels and the corresponding input ports of the E-plane waveguide magic T are all connected through an E-plane 90° waveguide 80 and an H-plane 90° curved waveguide 90.
  • the front signal The channel 22 communicates with one end of the 90° waveguide 80 on the E side, the other end of the 90° waveguide 80 on the E side communicates with one end of the 90° curved waveguide 90 on the H side, and the other end of the 90° curved waveguide 90 on the H side communicates with the first E
  • the input port 31 of the surface waveguide magic T30 is connected.
  • the rear signal channel 23 communicates with one end of the 90° waveguide on the E side, the other end of the 90° waveguide 80 on the E side communicates with one end of the 90° curved waveguide on the H side 90, and the other end of the 90° curved waveguide 90 on the H side is connected to the first
  • the other input port 31 of the E-plane waveguide magic T 30 is connected.
  • the left signal channel 24 communicates with one end of the 90° waveguide 80 on the E side
  • the other end of the 90° waveguide 80 on the E side communicates with one end of the 90° curved waveguide 90 on the H side
  • the other end of the 90° curved waveguide 90 on the H side One end is connected to the input port 41 of the second E-plane waveguide magic T40.
  • the right signal channel 25 communicates with one end of the 90° E-face waveguide 80
  • the other end of the E-face 90° waveguide 80 communicates with one end of the H-face 90° bending waveguide 90
  • the other end of the H-face 90° bending waveguide 90 is connected to the first end.
  • the other input port 41 of the two E-plane waveguide magic T40 is connected.
  • the four signal channels are combined into two signal channels after passing through the first E-plane waveguide T30 and the second E-plane waveguide T40.
  • the two signal channels are respectively connected to the two rectangular waveguide ports 51 of the orthogonal mode converter 50, and finally the two channels are combined into a circular waveguide interface 53, which is used to communicate with the circular waveguide 70 .
  • the circular waveguide 70 is connected to a low-frequency transmitter for transmitting low-frequency signals, and the circular waveguide 70 has both horizontal polarization and vertical polarization.
  • first E-plane waveguide magic T30 and second E-plane waveguide magic T40 can also be replaced by H-plane waveguide magic T, and the structure of the entire waveguide cavity needs to be modified.
  • a polarization converter can be added between the channel before synthesis and the quadrature mode converter 50.
  • the output port 42 of the second E-plane waveguide magic T40 is connected to the quadrature mode converter 50.
  • a polarization converter 60 is arranged between the analog converters 50 to reduce the complexity of the structure layout and facilitate the design of the product shape and structure.
  • the working principle of the present invention is: high-frequency signals can be directly transmitted through the inner circular waveguide 12 and have both vertical and horizontal polarizations, and low-frequency signals pass through the inner wall of the outer circular waveguide 11 and then distribute the signals through the cross-shaped waveguide power divider 20
  • the signals distributed in the four directions are synthesized into two polarization orthogonal signals through two E-plane waveguide magic T30, 40, and the two orthogonal signals pass through the orthogonal mode.
  • the converter 50 synthesizes one signal and can transmit both vertical and horizontal polarization at the same time.
  • the present invention effectively solves the structural interference problem of simultaneous feeding of high and low frequency coaxial circular waveguides through the above-mentioned structural design of dividing and recombining low-frequency signals, as well as the clever connection layout of different types of curved waveguides, and at the same time reduces the high frequency.
  • the length of the transmission line reduces the transmission loss. And it realizes dual-polarization transmission in each frequency band, and can flexibly switch between vertical polarization and horizontal polarization when dual-polarization is converted to single-polarization.
  • the product includes an upper structure 100, a lower structure 300, and is located between the upper structure 100 and the lower structure 300
  • the upper structure 100 includes a first upper end surface 101 and a first lower end surface 102 opposite to each other.
  • a cross waveguide cavity 21 is formed on the first lower end surface 102, and the cross waveguide cavity 21 extends from the first lower end surface 102.
  • a circular hole 103 is provided at the center of the cross waveguide cavity 21 and is formed by a recess near the first upper end surface 101. The circular hole 103 penetrates the first upper end surface 101 and the first lower end surface 102 of the upper structure 100.
  • the middle structure 200 also has a second upper end surface 201 and a second lower end surface 202 opposite to each other, wherein the second upper end surface 201 is the end surface close to the first lower end surface 102 of the upper structure 100.
  • a cylindrical tube 203 is fixed on the second upper end surface 201, the cylindrical tube 203 is perpendicular to the second upper end surface 201 of the middle structure 200, and the cylindrical tube 203 extends upward through the circular hole 103 on the upper structure 100 to the second upper structure 100.
  • the cylindrical tube 203 and the circular hole 103 are coaxial, so that the cylindrical tube 203 and the circular hole 103 form a coaxial inner circular waveguide 12 and an outer circular waveguide 11.
  • the cylindrical tube 203 also penetrates the lower structure 300, that is, the cylindrical tube 203 penetrates the upper structure 100, the middle structure 200 and the lower structure 300.
  • a first step 26 is further provided on the second upper end surface 201 of the middle structure 200.
  • the first step 26 corresponds to the cross waveguide cavity 21 and is also distributed in a cross shape, and the distribution direction of the cross shape is the same as that of the cross waveguide cavity 21.
  • the distribution direction of the cross is the same, the cylindrical tube 203 is located at the center of the first step 26, and the first step 26 is connected to the outer wall of the cylindrical tube 203.
  • the first step 26 is used to optimize the impedance matching of the four ports of the cross-shaped waveguide power splitter 20 to increase the working bandwidth.
  • a certain distance from the end of the first step 26 is provided with a through hole 204 penetrating the middle structure 200.
  • the step 26 has four ends.
  • four through holes 206 are formed.
  • the four through holes 206 are connected to the cross waveguide cavity. 21 are connected, specifically connected with the four output ends of the cross waveguide cavity 21 respectively.
  • the four ends of the cross waveguide cavity 21 and the four through holes 204 are each provided with a second step 104, and the step extension direction of the second step 104 is from the bottom of the cross waveguide cavity 21 to the first step of the upper structure.
  • the number of steps of the second step 104 is usually 2 to 4 steps.
  • the arrangement of the second step 104 facilitates the transition of the signal from the cross waveguide cavity 21 to the corresponding through hole 204.
  • Half of the first low-frequency waveguide cavity 205, the second low-frequency waveguide cavity 206, and the orthogonal mode conversion cavity 207 are provided on the second lower end surface 202 of the middle structure 200 and on the third upper end surface 301 of the lower structure 300 in corresponding positions.
  • the first low-frequency waveguide cavity 205 on the middle structure 200 and the lower structure 300 is combined to form the first E-plane waveguide magic T30, and the second on the middle structure 200 and the lower structure 300
  • the low-frequency waveguide cavity 206 is combined to form the second E-plane waveguide magic T40, and the orthogonal mode conversion cavity 207 on the middle structure 200 and the lower structure 300 are combined to form the orthogonal mode converter 50.
  • two of the first E-plane waveguide magic T30 The input ports 31 are respectively connected to the two through holes 204 in the first direction on the middle structure 200, and the two input ports 41 of the second E-plane waveguide magic T40 are connected to the middle structure 200 in the second perpendicular to the first direction.
  • the other two through holes 204 in the direction are connected.
  • the output port 32 of the first E-plane waveguide T30 and the output port 42 of the second E-plane waveguide T40 are both connected to the quadrature mode converter 50.
  • the second lower end surface 202 of the middle structure 200 and the third upper end surface 301 of the lower structure 300 are each provided with half of the polarization conversion cavity 208 in corresponding positions, and the polarization conversion cavity 208 is provided in the first Between the two low-frequency waveguide cavity 206 and the orthogonal mode conversion cavity 207, after the middle structure 200 and the lower structure 300 are bonded together, the polarization conversion cavity 208 on the middle structure 200 and the lower structure 300 is combined to form the polarization converter 60. In this way, The formed polarization converter 60 is arranged between the second E-plane waveguide magic T40 and the orthogonal mode converter 50.
  • the second lower end surface 202 of the middle structure 200 and the third upper end surface 301 of the lower structure 300 are each provided with half of the circular waveguide half holes 209 in corresponding positions.
  • the circular waveguide half holes 209 and the orthogonal mode conversion cavity 207 are provided.
  • the circular waveguide half-holes 209 on the middle structure 200 and the lower structure 300 combine to form a circular waveguide interface 53, which is used to circumscribe the circular waveguide 70, and
  • the circular waveguide interface 53 is formed at the output port of the orthogonal mode converter 50.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明揭示了一种双频双极化分路器,采用十字形波导功分器通过E/H面90°弯波导巧妙的与E面波导魔T及正交模耦合器连接,形成了一种新型同轴波导正交模耦合器,实现了同轴圆波导高低频同时馈电的结构,减少了高频传输线长度,降低了传输损耗。同时实现了每个频段双极化传输,且在双极化转换为单极化使用时,能够在垂直极化和水平极化之间灵活转换。

Description

一种双频双极化分路器 技术领域
本发明涉及无线通信技术领域,尤其是涉及一种双频双极化分路器。
背景技术
在导航测控、卫星通信等领域收发共用已经普遍使用,而且随着卫星频谱资源的增多,双频共用或多频共用天线可以在仅增加少量成本的情况下实现一个天线使用于两个甚至多个频段,尤其是天线口径较大时,这种方式能显著降低天线系统成本,同时减少土地使用面积,方便用户站址的布设。
此外,随着电磁仿真软件的日渐成熟以及同轴十字转门耦合器技术的发展,同轴十字转门耦合器耦合波导端口的可用带宽越来越宽,已经可以满足双频段使用的带宽要求,此外,由于同轴十字转门耦合器的同轴内导体中空,可以形成圆波导用于传输更高频段的信号,且结构简单、不须调试。
现有在申请号为:CN201711361522.4的专利文献中,公开了一种截顶圆锥匹配的同轴波导正交模耦合器,如图1所示,其包括同轴十字转门接头1、U形弯波导元件一2、U形弯波导元件二3、U形弯波导元件三4、U形弯波导元件四5、功率合成/分配器一6与功率合成/分配器二7,该方案电性能优异,加工简单,可以在将近一个倍频内实现等相极化分离,驻波、隔离、插损等指标优异。
但是,在上述文献中,由于腔体交叉设计,结构布局不便于产品实现,如同轴十字转门接头1中的高频信号被四个U形弯波导元件围成的波导腔挡住,无法传输;也不便于产品部件加工,该文献中波导腔的交叉在部件 加工过程中不易实现;另外,电气功能也不够灵活,不能实现单、双灵活切换,如从功率合成/分配器6和功率合成/分配器7两个口出来的都是固定的一个单极化模式。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种双频双极化分路器。
为实现上述目的,本发明提出如下技术方案:一种双频双极化分路器,包括同轴圆波导、十字形波导功分器、第一波导魔T、第二波导魔T和正交模转换器,
所述同轴圆波导位于十字形波导功分器的中心轴上,且垂直于十字形波导功分器的顶面,所述同轴圆波导包括外圆波导和位于外圆波导内的内圆波导;
所述十字形波导功分器内形成十字波导腔,所述十字波导腔与所述外圆波导连通,所述内圆波导贯穿十字形波导功分器,用于传输高频信号;
所述十字形波导功分器具有四路与十字波导腔相连的信号通道,四路所述信号通道呈十字形交叉分布,其中位于第一方向的两路信号通道分别与第一波导魔T的两个输入端口相连通,位于与第一方向垂直的第二方向的另外两路信号通道分别与第二波导魔T的两个输入端口连接;
所述第一波导魔T的输出端口和第二波导魔T的输出端口均与正交模转换器的输入端口相连通;
所述正交模转换器的输出端形成圆波导接口。
优选地,所述第一波导魔T为第一E面波导魔T,所述第二波导魔T为第二E面波导魔T;或者所述第一波导魔T为第一H面波导魔T,所述第二波导魔T为第二H面波导魔T。
优选地,所述第二E面波导魔T与正交模转换器之间设置一极化转换器。
优选地,所述第一波导魔T和第二波导魔T位于同一平面上,且两者 不相交。
优选地,所述分路器还包括若干90°弯波导,所述十字形波导功分器的信号通道与对应的波导魔T的输入端口之间通过所述90°弯波导相连通。
优选地,所述90°弯波导包括E面90°波导和H面90°弯波导,所述E面90°波导的一端与十字形波导功分器的信号通道相连通,另一端与H面90°弯波导的一端相连通,所述H面90°弯波导的另一端与波导魔T的输入端口相连通。
优选地,所述双频双极化分路器还包括圆波导,所述圆波导与圆波导接口相连通。
优选地,所述外圆波导只传输TEM模和TE11模,并抑止其他高阶模。
本发明还揭示了另外一种技术方案:一种双频双极化分路器,包括上层结构、下层结构、位于上层结构和下层结构之间的中层结构及贯穿上中下三层结构的圆柱管,
所述上层结构包括相对的上端面和下端面,所述下端面上形成有十字波导腔,所述十字波导腔的中心位置设置有一贯穿上层结构的上、下端面的圆孔,所述圆柱管穿过所述圆孔;
所述中层结构上设置四个与所述十字波导腔相对应且呈十字形分布的通孔,所述十字波导腔的四个末端与对应的所述通孔相连通,所述通孔贯穿中层结构;
所述中层结构的下端面上及下层结构的上端面之间形成第一波导魔T、第二波导魔T、正交模转换器,所述第一波导魔T的两个输入端口分别与中层结构上位于第一方向的两个通孔相连通,所述第二波导魔T的两个输入端口分别与中层结构上位于与第一方向垂直的第二方向的另外两个通孔相连通;
所述第一波导魔T的输出端口和第二波导魔T的输出端口均与正交模转换器的输入端口相连通;
所述正交模转换器的输出端形成圆波导接口。
优选地,所述中层结构的上端面上还设置有与十字波导腔相对应的第一台阶,所述第一台阶呈十字形分布,且所述第一台阶与圆柱管的外壁相连接。
优选地,所述十字波导腔与四个通孔相对应的末端各设置一第二台阶。
优选地,所述第二台阶的台阶数为2~4阶。
优选地,所述中层结构的下端面上及下层结构的上端面之间还形成极化转换器,所述极化转换器设置于所述第二波导魔T与正交模转换器之间。
本发明的有益效果是:
1、本发明采用十字形功分器通过E/H面90°弯波导巧妙的与E面波导魔T及正交模耦合器连接,形成了一种新型同轴波导正交模耦合器,实现了同轴圆波导高低频(即双频)同时馈电的结构,减少了高频传输线长度,降低了传输损耗。同时实现了每个频段双极化传输,且在双极化转换为单极化使用时,能够在垂直极化和水平极化之间灵活转换。
2、本发明的十字形功分器采用台阶结构,可以有效的提高工作带宽,功分平坦度,以及各端口隔离度。
3、本发明结构简单、紧凑,便于产品的小型化以及批量加工生产。
附图说明
图1是现有同轴波导正交模耦合器的结构示意图;
图2是本发明优选实施例的立体结构示意图;
图3、图4分别是图2另外两个视角的立体结构示意图;
图5是本发明产品的分体结构示意图;
图6是本发明图5另一视角的分体结构示意图;
图7是本发明产品组装后的结构示意图。
附图标记:
10、同轴圆波导,11、外圆波导,12、内圆波导,20、十字形波导功分器,21、十字波导腔,22、前信号通道,23、后信号通道,24、左信号通道,25、右信号通道,26、第一台阶,30、第一E面波导魔T,31、输入端口,32、输出端口,40、第二E面波导魔T,41、输入端口,42、输出端口,50、正交模转换器,51/52、矩形波导端口,53、圆波导接口,60、极化转换器,70、圆波导,80、E面90°波导,90、H面90°弯波导,100、上层结构,101、第一上端面,102、第一下端面,103、圆孔,104、第二台阶,200、中层结构,201、第二上端面,202、第二下端面,203、圆柱管,204、通孔,205、第一低频波导腔,206、第二低频波导腔,207、正交模转换腔,208、极化转化腔,209、圆波导半孔,300、下层结构,301、第三上端面。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
结合图2~图7所示,本发明最佳实施例所揭示的一种双频双极化分路器,包括同轴圆波导10、十字形波导功分器20、第一E面波导魔T30、第二E面波导魔T40、正交模转换器50、极化转换器60和圆波导70,其中,同轴圆波导10位于十字形波导功分器20的中心轴上,即与十字形波导功分器20同轴,且垂直于十字形波导功分器20的顶面。
同轴圆波导10包括相同轴设置的外圆波导11和内圆波导12,内圆波导12位于外圆波导11内,且其贯穿十字形波导功分器20的顶面和底面,即内圆波导12的下端穿出十字形波导功分器20的底面,内圆波导12一端(如底端)连接高频发射器(图未示),另一端(如顶端)连接天线反射面(图未示),用于传输高频段信号至天线反射面。其中,所述的外圆波导11的内直径和内圆波导12的外直径的尺寸比,满足只传输TEM模和TE11模并抑止其他高阶模。
十字形波导功分器20内形成十字波导腔21,同轴圆波导的外圆波导11与该十字波导腔21相连通。十字形波导功分器20具有四路呈十字形交叉分布的信号通道,四路信号通道分别自十字波导腔21的外边沿向前、后、左、右四个方向延伸形成,且四路信号通道均与十字波导腔21相连通。为了便于描述,定义这四路信号通道分别为前信号通道22、后信号通道23、左信号通道24和右信号通道25,其中,前信号通道22与后信号通道23位于同一方向(定义为第一方向)上,左信号通道24和右信号通道25位于同一方向(定义为与第一方向相垂直的第二方向)上。
前信号通道22与后信号通道23分别与第一E面波导魔T30的两个输入端口31相连通,第一E面波导魔T30的输出端口32与正交模转换器50的其中一个矩形波导端口51相连通,用于将前、后两路信号通道22、23合并成为一路通道。
左信号通道24与右信号通道25分别与第二E面波导魔T40的两个输入端口41相连通,第二E面波导魔T40的输出端口42与正交模转换器50的另一矩形波导端口52相连通,用于将左、右两路信号通道24、25合并成为一路通道。优选地,第一E面波导魔T30和第二E面波导魔T40位于同一平面上,且两者不相交。
实施时,前信号通道22和后信号通道23与第一E面波导魔T30的两个输入端口31之间,以及左信号通道24和右信号通道25与第二E面波导魔T40的两个输入端口41之间均通过90°弯波导转接。本实施例1中,四路信号通道和对应的E面波导魔T的输入端口之间均通过一E面90°波导80结合一H面90°弯波导90相转接,具体地,前信号通道22与E面90°波导80的一端相连通,E面90°波导80的另一端与H面90°弯波导90的一端相连通,H面90°弯波导90的另一端与第一E面波导魔T30的输入端口31相连通。后信号通道23与E面90°波导的一端相连通,E面90°波导 80的另一端与H面90°弯波导90的一端相连通,H面90°弯波导90的另一端与第一E面波导魔T 30的另一输入端口31相连通。
同样的,左信号通道24与E面90°波导80的一端相连通,E面90°波导80的另一端与H面90°弯波导90的一端相连通,H面90°弯波导90的另一端与第二E面波导魔T40的输入端口41相连通。右信号通道25与E面90°波导80的一端相连通,E面90°波导80的另一端与H面90°弯波导90的一端相连通,H面90°弯波导90的另一端与第二E面波导魔T40的另一输入端口41相连通。
这样,四路信号通道经过第一E面波导魔T30、第二E面波导魔T40后,合并为两路信号通路。这两路信号通道分别再与正交模转换器50的两个矩形波导端口51相连接,最终将两路通道合成为一个圆波导接口53,该圆波导接口53用于与圆波导70相连通,实施时,圆波导70连接低频发射器,用于传输低频段信号,且圆波导70同时存在水平极化和垂直极化。
作为可替换地,上述第一E面波导魔T30、第二E面波导魔T40也可以用H面波导魔T来替代,整个波导腔的结构需作修改。
优选地,合成前的一路通道与正交模转换器50之间,可以增加一个极化转换器,具体地,本实施例1中,在第二E面波导魔T40的输出端口42与正交模转换器50之间设置一极化转换器60,降低结构布局复杂度,且便于产品外形结构设计。
本发明的工作原理为:高频段信号可以直接通过内圆波导12传输且同时具有垂直和水平两个极化,低频段信号通过外圆波导11内壁再通过十字形波导功分器20将信号分配到前后左右四个方向,再通过两个E面波导魔T30、40将分配到四个方向的信号分别合成为两路极化正交的信号,这两路正交的信号再通过正交模转换器50合成为一路信号且可以同时传输垂直和水平两个极化。
本发明通过上述将低频段信号先分再合的结构设计,以及通过不同类型的弯波导巧妙的连接布局,有效的解决同轴圆波导高低频同时馈电的结构干涉问题,同时减少了高频传输线长度,降低了传输损耗。并且实现了每个频段双极化传输,且在双极化转换为单极化使用时,能够在垂直极化和水平极化之间灵活转换。
结合图5~图7所示,为本发明双频双极化分路器的具体产品结构示意图,具体地,该产品包括上层结构100、下层结构300及位于上层结构100和下层结构300之间的中层结构200,其中,上层结构100包括相对的第一上端面101和第一下端面102,第一下端面102上形成有十字波导腔21,该十字波导腔21自第一下端面102向靠近第一上端面101的方向凹陷形成的,在十字波导腔21的中心位置处设置有一圆孔103,该圆孔103贯穿上层结构100的第一上端面101、第一下端面102。
中层结构200同样具有相对的第二上端面201和第二下端面202,其中,第二上端面201即为靠近上层结构100的第一下端面102的那一端面。第二上端面201上固定有一圆柱管203,该圆柱管203垂直于中层结构200的第二上端面201,且该圆柱管203通过上层结构100上的圆孔103向上延伸至上层结构100的第一上端面101,圆柱管203与圆孔103同轴,这样,圆柱管203与圆孔103形成同轴的内圆波导12和外圆波导11。且该圆柱管203也贯穿下层结构300,即圆柱管203贯穿上层结构100、中层结构200和下层结构300。
优选地,中层结构200的第二上端面201上还设置有第一台阶26,第一台阶26与十字波导腔21相对应,也呈十字形分布,且十字形分布方向与十字波导腔21的十字形分布方向相同,圆柱管203位于该第一台阶26的中心位置处,且第一台阶26与圆柱管203的外壁相连接。第一台阶26用于优化十字形波导功分器20的四个端口的阻抗匹配,提高工作带宽。
另外,距离第一台阶26末端的一定距离设有贯穿中层结构200的通孔204,台阶26具有四个末端,对应的,通孔206也形成四个,四个通孔206均与十字波导腔21相连通,具体分别与十字波导腔21的四个输出端相连通。
优选地,十字波导腔21与四个通孔204相对应的四个末端各设置一第二台阶104,第二台阶104的台阶延伸方向为自十字波导腔21的底部向靠近上层结构的第一下端面102的延伸方向,通常第二台阶104的台阶数为2~4阶。第二台阶104的设置有利于信号自十字波导腔21到对应通孔204的过渡。
中层结构200的第二下端面202上和下层结构300的第三上端面301上各设置一半的且位置相对应的第一低频波导腔205、第二低频波导腔206、正交模转换腔207,这样,中层结构200和下层结构300贴合后,中层结构200和下层结构300上的第一低频波导腔205组合形成第一E面波导魔T30,中层结构200和下层结构300上的第二低频波导腔206组合形成第二E面波导魔T40,中层结构200和下层结构300上的正交模转换腔207组合形成正交模转换器50,其中,第一E面波导魔T30的两个输入端口31分别与中层结构200上位于第一方向的两个通孔204相连通,第二E面波导魔T40的两个输入端口41分别与中层结构200上位于与第一方向垂直的第二方向的另外两个通孔204相连通。
第一E面波导魔T30的输出端口32和第二E面波导魔T40的输出端口42均与正交模转换器50相连通。
优选地,中层结构200的第二下端面202上和下层结构300的第三上端面301上各设置一半的且位置相对应的极化转化腔208,该极化转换腔208设置于所述第二低频波导腔206与正交模转换腔207之间,中层结构200和下层结构300贴合后,中层结构200和下层结构300上的极化转化 腔208组合形成极化转换器60,这样,形成的极化转换器60设置于第二E面波导魔T40与正交模转换器50之间。
中层结构200的第二下端面202上和下层结构300的第三上端面301上还各设置一半的且位置相对应的圆波导半孔209,该圆波导半孔209与正交模转换腔207相连通,这样,中层结构200和下层结构300贴合后,中层结构200和下层结构300上的圆波导半孔209组合形成圆波导接口53,该圆波导接口53用于外接圆波导70,且该圆波导接口53形成于正交模转换器50的输出端口。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (10)

  1. 一种双频双极化分路器,其特征在于,其包括同轴圆波导、十字形波导功分器、第一波导魔T、第二波导魔T和正交模转换器,
    所述同轴圆波导位于十字形波导功分器的中心轴上,且垂直于十字形波导功分器的顶面,所述同轴圆波导包括外圆波导和位于外圆波导内的内圆波导;
    所述十字形波导功分器内形成十字波导腔,所述十字波导腔与所述外圆波导连通,所述内圆波导贯穿十字形波导功分器,用于传输高频信号;
    所述十字形波导功分器具有四路与十字波导腔相连的信号通道,四路所述信号通道呈十字形交叉分布,其中位于第一方向的两路信号通道分别与第一波导魔T的两个输入端口相连通,位于与第一方向垂直的第二方向的另外两路信号通道分别与第二波导魔T的两个输入端口连接;
    所述第一波导魔T的输出端口和第二波导魔T的输出端口均与正交模转换器的输入端口相连通;
    所述正交模转换器的输出端形成圆波导接口。
  2. 根据权利要求1所述的双频双极化分路器,其特征在于,所述第一波导魔T为第一E面波导魔T,所述第二波导魔T为第二E面波导魔T;或者所述第一波导魔T为第一H面波导魔T,所述第二波导魔T为第二H面波导魔T。
  3. 根据权利要求2所述的双频双极化分路器,其特征在于,所述第二E面波导魔T与正交模转换器之间设置一极化转换器。
  4. 根据权利要求1~3任意一项所述的双频双极化分路器,其特征在于,所述第一波导魔T和第二波导魔T位于同一平面上,且两者不相交。
  5. 根据权利要求1所述的双频双极化分路器,其特征在于,所述分路器还包括若干90°弯波导,所述十字形波导功分器的信号通道与对应的波导魔 T的输入端口之间通过所述90°弯波导相连通。
  6. 根据权利要求5所述的双频双极化分路器,其特征在于,所述90°弯波导包括E面90°波导和H面90°弯波导,所述E面90°波导的一端与十字形波导功分器的信号通道相连通,另一端与H面90°弯波导的一端相连通,所述H面90°弯波导的另一端与波导魔T的输入端口相连通。
  7. 一种双频双极化分路器,其特征在于,其包括上层结构、下层结构、位于上层结构和下层结构之间的中层结构及贯穿上中下三层结构的圆柱管,
    所述上层结构包括相对的上端面和下端面,所述下端面上形成有十字波导腔,所述十字波导腔的中心位置设置有一贯穿上层结构的上、下端面的圆孔,所述圆柱管穿过所述圆孔;
    所述中层结构上设置四个与所述十字波导腔相对应且呈十字形分布的通孔,所述十字波导腔的四个输出端与对应的所述通孔相连通,所述通孔贯穿中层结构;
    所述中层结构的下端面上及下层结构的上端面之间形成第一波导魔T、第二波导魔T、正交模转换器,所述第一波导魔T的两个输入端口分别与中层结构上位于第一方向的两个通孔相连通,所述第二波导魔T的两个输入端口分别与中层结构上位于与第一方向垂直的第二方向的另外两个通孔相连通;
    所述第一波导魔T的输出端口和第二波导魔T的输出端口均与正交模转换器的输入端口相连通;
    所述正交模转换器的输出端形成圆波导接口。
  8. 根据权利要求7所述的双频双极化分路器,其特征在于,所述中层结构的上端面上还设置有与十字波导腔相对应的第一台阶,所述第一台阶呈十字形分布,且所述第一台阶与圆柱管的外壁相连接。
  9. 根据权利要求7所述的双频双极化分路器,其特征在于,所述十字波 导腔与四个通孔相对应的末端各设置一第二台阶。
  10. 根据权利要求7所述的双频双极化分路器,其特征在于,所述中层结构的下端面上及下层结构的上端面之间还形成极化转换器,所述极化转换器设置于所述第二波导魔T与正交模转换器之间。
PCT/CN2019/127500 2019-12-23 2019-12-23 一种双频双极化分路器 WO2021127864A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19957773.5A EP4007062A4 (en) 2019-12-23 2019-12-23 DUAL FREQUENCY AND DUAL POLARIZATION DIVIDER
PCT/CN2019/127500 WO2021127864A1 (zh) 2019-12-23 2019-12-23 一种双频双极化分路器
US17/838,136 US20220384929A1 (en) 2019-12-23 2022-06-10 Dual-band dual-polarization splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127500 WO2021127864A1 (zh) 2019-12-23 2019-12-23 一种双频双极化分路器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/838,136 Continuation US20220384929A1 (en) 2019-12-23 2022-06-10 Dual-band dual-polarization splitter

Publications (1)

Publication Number Publication Date
WO2021127864A1 true WO2021127864A1 (zh) 2021-07-01

Family

ID=76573386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127500 WO2021127864A1 (zh) 2019-12-23 2019-12-23 一种双频双极化分路器

Country Status (3)

Country Link
US (1) US20220384929A1 (zh)
EP (1) EP4007062A4 (zh)
WO (1) WO2021127864A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785300A (zh) * 2022-06-22 2022-07-22 成都浩翼创想科技有限公司 一种220ghz功率放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140159977A1 (en) * 2012-12-07 2014-06-12 Andrew Llc Ultra-Wideband 180 Degree Hybrid For Dual-Band Cellular Basestation Antenna
CN204067545U (zh) * 2014-07-30 2014-12-31 中国电子科技集团公司第二十七研究所 一种Ka频段的六分路器
CN107959098A (zh) * 2017-12-18 2018-04-24 中国电子科技集团公司第五十四研究所 一种截顶圆锥匹配的同轴波导正交模耦合器
CN108123200A (zh) * 2017-12-18 2018-06-05 中国电子科技集团公司第五十四研究所 一种基于同轴十字转门耦合器的多频馈源网络

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870060A (en) * 1996-05-01 1999-02-09 Trw Inc. Feeder link antenna
WO2015058784A1 (en) * 2013-10-21 2015-04-30 Esa European Space Agency Very compact tm01 mode extractor
EP3561949B1 (en) * 2018-04-27 2023-08-23 Nokia Shanghai Bell Co., Ltd. Multiband antenna feed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140159977A1 (en) * 2012-12-07 2014-06-12 Andrew Llc Ultra-Wideband 180 Degree Hybrid For Dual-Band Cellular Basestation Antenna
CN204067545U (zh) * 2014-07-30 2014-12-31 中国电子科技集团公司第二十七研究所 一种Ka频段的六分路器
CN107959098A (zh) * 2017-12-18 2018-04-24 中国电子科技集团公司第五十四研究所 一种截顶圆锥匹配的同轴波导正交模耦合器
CN108123200A (zh) * 2017-12-18 2018-06-05 中国电子科技集团公司第五十四研究所 一种基于同轴十字转门耦合器的多频馈源网络

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785300A (zh) * 2022-06-22 2022-07-22 成都浩翼创想科技有限公司 一种220ghz功率放大器

Also Published As

Publication number Publication date
EP4007062A4 (en) 2023-04-26
US20220384929A1 (en) 2022-12-01
EP4007062A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
KR101444659B1 (ko) 3중 대역 위성 통신용 안테나 시스템
US7511678B2 (en) High-power dual-frequency coaxial feedhorn antenna
CN110289483B (zh) 双频双圆极化导航测控天线馈源
CN107910650A (zh) 一种双频天线馈电系统及双频天线
CN207852871U (zh) 一种宽频带十字型正交模转换器
CN112886173B (zh) 一种双波段正交模耦合器
CN109473775A (zh) Ku/E波段双频一体馈源
CN210866445U (zh) 一种双频双极化分路器
CN110247668B (zh) 一种Ka/EHF宽带收发共用馈源网络
CN113241533A (zh) Ku/Ka双频双极化有源相控阵天线
CN114188688B (zh) 一种小型化同轴波导正交模耦合器
US20220384929A1 (en) Dual-band dual-polarization splitter
CN113097678A (zh) 一种双频双极化分路器
CN105024175B (zh) 一种Ku宽频带线极化四端口馈电网络
KR20090105441A (ko) 오프셋 턴스타일 정합을 이용한 다중대역 급전 전송기
CN111224229B (zh) 一种基于镜像子阵列的卫星阵列天线
CN116154480A (zh) 一种基于3d打印的双圆极化馈源天线
CN216354714U (zh) 一种基于同轴波导的正交模式耦合器omt
CN114204268B (zh) 一种C/Ku双频共用圆极化同轴馈源网络
CN112993571B (zh) 一种天线单元、阵列天线及通信装置
CN114188689B (zh) 一种宽带收发共用型同轴波导双工器
CN115764261A (zh) 振子馈电装置、通信天线和基站天线
CN109378592A (zh) 一种具有稳定波束宽度和低副瓣的宽带天线阵列馈电网络
CN212412209U (zh) 一种后馈式大口径反射面天线用双频段馈源
EP3849015A1 (en) Antenna and mobile terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019957773

Country of ref document: EP

Effective date: 20220225

NENP Non-entry into the national phase

Ref country code: DE