EP0873041A1 - Digitaler Tonprozessor - Google Patents

Digitaler Tonprozessor Download PDF

Info

Publication number
EP0873041A1
EP0873041A1 EP97106519A EP97106519A EP0873041A1 EP 0873041 A1 EP0873041 A1 EP 0873041A1 EP 97106519 A EP97106519 A EP 97106519A EP 97106519 A EP97106519 A EP 97106519A EP 0873041 A1 EP0873041 A1 EP 0873041A1
Authority
EP
European Patent Office
Prior art keywords
sound processor
signals
control
digital
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97106519A
Other languages
English (en)
French (fr)
Other versions
EP0873041B1 (de
Inventor
Martin Dipl.-Phys. Winterer
Miodrag Prof. Dr.-Ing. Temerinac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micronas Semiconductor Holding AG
Original Assignee
Micronas Semiconductor Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micronas Semiconductor Holding AG filed Critical Micronas Semiconductor Holding AG
Priority to EP97106519A priority Critical patent/EP0873041B1/de
Priority to DE59710047T priority patent/DE59710047D1/de
Priority to US09/061,465 priority patent/US6141646A/en
Priority to JP10962498A priority patent/JP4145989B2/ja
Publication of EP0873041A1 publication Critical patent/EP0873041A1/de
Application granted granted Critical
Publication of EP0873041B1 publication Critical patent/EP0873041B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/007Two-channel systems in which the audio signals are in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/13Aspects of broadcast communication characterised by the type of broadcast system radio data system/radio broadcast data system [RDS/RBDS]

Definitions

  • the invention relates to a digital sound processor for processing Multistandard sound signals that are input as analog or digital signals at least one source to the sound processor in baseband or higher Frequency position are supplied.
  • Such sound processors are suitable for sound signals to process a wide variety of transmission standards for the entertainment sector, for example sound signals from a wide variety of television standards, satellite receivers, VCRs, traffic receivers, etc., but also audio signals special sound cards are generated by personal computers.
  • Via control inputs the processing in the digital sound processor to the respective transmission standard or sound source adapted and the desired via internal processors Sound impression, with regard to highs, lows, volume, space, etc., set.
  • control input in respective sound processor is coupled to an internal audio signal source which automatically generates audio signals using the signals supplied at the control input, the existing sound reproduction equipment or others Sound reproduction devices are supplied.
  • the internal audio signal source with the associated circuits which essentially comprise memory devices easily added to the monolithically integrated circuit of the digital sound processor can be.
  • existing functional units can, for example digital filters and tone control stages as well as digital / analog converter and amplifiers in the output area.
  • the generated audio signals are either defined by a data sequence, which is supplied by means of a suitable data format via the external control lines, or are read out from an internal memory device.
  • the storage device can also be a buffer memory in the internal control device, with which the data transfer from the external control device is usually decoupled in time.
  • the decoupling with regard to the data rate and the clock systems and the digital processing protocol for detecting the readiness to send and receive is also called Handshake data transfer procedure "or short Handshake protocol ".
  • the audio signals are composed of individual stored audio components which are called up by means of a microprogram.
  • Individual audio components are Tone frequencies or signal sequences, such as noise, can be called in. Further information contained in the microprogram relates to the respective duration, amplitude or envelope of these individual audio modules.
  • Such synthetic processes per se have long been known. With appropriate Execution can even be done using the synthesis method of a speech synthesizer realize digital sound processor. This can be particularly interesting Applications in connection with other functional units in the respective device or be carried out in the respective device combination.
  • the single Control commands or operating states can be identification melodies or acoustic Identification signals are assigned.
  • speech synthesis application-related information or prompts are triggered. For example, it can be decoded in conjunction with a teletext processor Convert text information into speech.
  • the digital sound processor 1 shown in the figure shows the essential internal and external functional units that work together.
  • the Electronic connections are only simple lines with an arrow shown to indicate the direction of signal flow. Whether it is the Transmission of analog or digital signals is from the description forth.
  • the digital sound processor 1 contains a first, second and third internal Sound processor 2,3,4, the input side with a first, second and third external Signal source 4,5,6 are connected.
  • the first signal source 4 corresponds to the Input and frequency conversion circuits of a television receiver, which as Output signal the complex television signal mixture in analog form in the Deliver baseband or an intermediate frequency position. This analog signal will digitized by means of a first analog / digital converter 7 and for processing fed to the first sound processor 2. It is also conceivable that the first sound processor 2 is already fed with previously digitized signals.
  • the second signal source 5 represents, for example, a satellite receiver that already delivers digital output signals or its analog output signal is quantized and easily by means of a simple analog / digital converter 8 for the second sound processor 3 can be converted into a data stream.
  • the third signal source 6 represents, for example, a video recorder, its analog one Output signal is digitized by means of an analog / digital converter 9 and the third sound processor 4 feeds.
  • All sound processors 2,3,4 are internal Control lines 110, 120 connected to an internal control processor 10, which the controls the respective operating mode of the digital sound processor 1. He evaluates for control once the information from the individual sound processors 2,3,4, however in particular also information that is supplied to it via an external control bus 11 are connected to the corresponding input and / or output sockets 100, 105 is connected. External to these unidirectional or bidirectional control bus 11 Control devices connected, for example a remote control receiver 12 in a television or control devices 13 of a personal computer.
  • the digital sound processor 1 in the figure contains a matrix and mixer stage 14 which on the input side with all sound processors 2, 3, 4 and on the output side with the Various outputs for sound reproduction devices via digital / analog converter 15,18,21 and / or amplifier is coupled.
  • a matrix and mixer stage 14 which on the input side with all sound processors 2, 3, 4 and on the output side with the Various outputs for sound reproduction devices via digital / analog converter 15,18,21 and / or amplifier is coupled.
  • Another exit passes via the digital / analog converter 18, an amplifier 19 to one Headphones 20 and an output passes through the digital / analog converter 21, one Amplifier 22 to a linear output socket 23 of the digital sound processor 1.
  • the linear output socket 23 corresponds to a digital one
  • the functional units described so far essentially correspond to Functional units of the MSP 3410D digital sound processor mentioned at the beginning.
  • the Output signals of the audio signal source 27 can be through the matrix and mixer device 14 switched to any signal outputs of the sound processor 1 or mixed into the existing signals, whereby these may be lowered in level by the internal control processor 10. If the sound processor 1, for example, for audio signal processing in one Car radio, then this way you can make traffic announcements or Traffic information or acoustic identification or warning signals overlay existing audio signals.
  • the internal Audio signal source 27 does not receive these signals from one of the externally connected ones Signal sources 4,5,6 received directly or in a coded form, but that the internal audio signal source 27 generates these signals on demand itself.
  • a single command word on the control bus 11 is sufficient to give an acoustic signal or even trigger a synthesized speech information.
  • a memory device 28 is required for this, in which the digitized Signal sequence is stored, the stored data individually or in groups are available.
  • Trigger command determines, for example Start address of an address generator, which then stores the stored signal sequence reads sequentially from the memory device 28.
  • Another trigger command the is assigned to another externally supplied control signal, reads another Audio signal sequence.
  • control signal is usually assigned control sequence in the digital sound processor 1 essentially unchanged expires if the control signal is recognized as such.
  • these are Control signals programmable by the device manufacturer or by the received transmission standard specified or correspond to standardized Control commands.
  • the invention effects one additional function of these known control commands, or the invention used new control commands that have no effect on previous sound processors, because they are not recognized there.
  • the sound processors according to the invention can therefore be interchangeable with existing sound processors.
  • Simple tone or sound sequences can also be used as a control command sequence, the beginning of which and end is characterized by the data format, via the control bus 11 and the Input and output circuit 26 in the memory device 28 or one Buffer memory 280 can be loaded. For example, you can use it to create your own tone sequences in Connection to a personal computer connected as an external control device 13 be programmed.
  • playing these sound sequences is in the Regulate the relatively low data rate on the control bus 11 by a temporal Compression of data before digital / analog conversion for playback too increase or by temporal interpolation of the signal content to a higher one Adapt data rate.
  • the system clock frequency in the digital sound processor 1 is in usually high enough, e.g.
  • Feeded digital Audio signals for example from a satellite receiver 5, are in the Frequency range much lower, namely at 32 kHz, 44 kHz or 48 kHz, so that the System clock frequency is also sufficiently high.
  • the internal audio signal source 27 works as a synthesizer, then it takes effect also on stored signals, as specified as audio or signal modules are referred to in the memory device 28. Only reading out the individual memory addresses are no longer sequential, but in a predetermined one Sequence.
  • the sequence of this sequence is as a micro program in one Microprogram memory 29 stored as part of the figure Storage device 28 is shown.
  • the use of the microprogram allows the stored signal blocks to be used multiple times, both in the signal to be synthesized as well as in different signals.
  • a The implementation is a very interesting application example for speech synthesis at least the alphanumeric output signals of a teletext processor 150 or a PC screen display with text information in speech signals.
  • the internal audio signal source 27 generates special control signals which are led via the amplifier 30 to corresponding outputs 31. There they can serve, for example, as control signals for a multi-segment display Any signals to be reproduced can thus be called up from the memory device 28 by means of the audio signal source 27.
  • This brief list shows that the invention can be advantageously used in many ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

Digitaler Tonprozessor (1) mit einer zusätzlichen Audiosignalquelle (27), die an einen digitalen Steuereingang (100) des Tonprozessors (1) angeschlossen ist und über extern und/oder intern zugeführte Steuersignale ein akustisches Signal oder eine akustische Signalfolge erzeugt, die über die Ausgangseinrichtungen des Tonprozessors (1) an Wiedergabeeinrichtungen (17,20) gelangen. <IMAGE>

Description

Die Erfindung betrifft einen digitalen Tonprozessor zur Verarbeitung von Multistandard-Tonsignalen, die als analoge oder digitale Signale eingangsseitig aus mindestens einer Quelle dem Tonprozessor in Basisbandlage oder einer höheren Frequenzlage zugeführt sind. Derartige Tonprozessoren sind geeignet, Tonsignale der verschiedensten Übertragungsnormen für den Unterhaltungsbereich zu verarbeiten, beispielsweise Tonsignale der verschiedensten Fernsehstandards, Satellitenempfänger, Videorekorder, Verkehrsfunkempfänger etc., aber auch Tonsignale die mittels spezieller Tonkarten von Personal Computern erzeugt werden. Über Steuereingänge wird die Verarbeitung im digitalen Tonprozessor an die jeweilige Übertragungsnorm oder Tonquelle angepaßt und über interne Prozessoren der gewünschte Klangeindruck, bezüglich Höhen, Tiefen, Lautstärke, Raum usw., eingestellt.
Ein Beispiel für einen derartigen digitalen Tonprozessor stellt der
Figure 00010001
Multistandard Sound Processor MSP 3410D" von ITT Semiconductors dar, der als käuflicher Baustein in Geräten der Unterhaltungsindustrie verwendet wird. Eine ausführliche Beschreibung dieses flexiblen Tonprozessors findet sich beispielsweise in dem gleichlautenden Datenblatt, Edition Februar 12,1997, Bestell-Nr.: 6251-422-1PD.
Trotz der vielseitigen Verwendbarkeit des gesamten Tonprozessors und anderer Tonprozessoren ist es wünschenswert, daß diese elektronischen Bausteine nicht nur extern zugeführte Tonsignale verarbeiten, sondern daß sie selbst in die Lage versetzt werden, Tonsignale der verschiedensten Art selbst zu erzeugen.
Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß der Steuereingang im jeweiligen Tonprozessor mit einer internen Audiosignalquelle gekoppelt ist, die mittels der am Steuereingang zugeführten Signale selbständig Audiosignale erzeugt, die den vorhandenen Tonwiedergabeeinrichtungen oder weiteren Tonwiedergabeeinrichtungen zugeführt sind.
Von Vorteil für die Erfindung ist dabei, daß die interne Audiosignalquelle mit den zugehörigen Schaltungen, die im wesentlichen Speichereinrichtungen umfassen, auf der monolithisch integrierten Schaltung des digitalen Tonprozessors leicht ergänzt werden kann. Weil bereits vorhandene Funktionseinheiten mitverwendet werden können, beispielsweise digitale Filter und Klangregelstufen sowie Digital/Analog-Umsetzer und Verstärker im Ausgangsbereich.
Die generierten Audiosignale sind entweder durch eine Datenfolge definiert, die mittels eines geeigneten Datenformats über die externen Steuerleitungen zugeführt ist oder aus einer internen Speichereinrichtung ausgelesen wird. Dabei ist die gespeicherte Information zu einem vorherigen Zeitpunkt über die Steuerleitungen in einen Schreib/Lesespeicher (=RAM) geladen worden oder die Information ist bereits fest in einem Nurlesespeicher (=ROM) enthalten. Für kurze Audiosignale kann die Speichereinrichtung dabei auch ein Pufferspeicher in der internen Steuereinrichtung sein, mit dem üblicherweise die Datenübernahme aus der externen Steuereinrichtung zeitlich entkoppelt wird. Die Entkopplung bezüglich der Datenrate und der Taktsystemen und das digitale Abwicklungsprotokoll zur Erkennung der Sende- und Empfangsbereitschaft wird auch als Handshake-Datenübernahmeverfahren" oder kurz Handshake-Protokoll" bezeichnet. Längere Audiosignale benötigen bei der sequentiellen Speicherung jedoch sehr viel Speicherplatz, so daß Syntheseverfahren zweckmäßiger sind, bei denen die Audiosignale aus einzelnen abgespeicherten Audio-Bausteinen zusammengesetzt sind, die mittels eines Mikroprogramms abgerufen werden. Als Audio-Bausteine sind einzelne Tonfrequenzen oder Signalfolgen, wie z.B. Rauschen, abrufbar. Weitere im Mikroprogramm enthaltene Informationen betreffen die jeweilige Zeitdauer, Amplitude oder Umhüllende dieser einzelnen Audio-Bausteine.
Derartige Syntheseverfahren an sich sind schon lange bekannt. Bei entsprechender Ausführung läßt sich sogar mittels des Syntheseverfahrens ein Sprachsynthesizer im digitalen Tonprozessor realisieren. Damit können besonders interessante Anwendungen in Verbindung mit weiteren Funktionseinheiten im jeweiligen Gerät oder in der jeweiligen Gerätekombination durchgeführt werden. Den einzelnen Steuerbefehlen oder Betriebszuständen können Kennungsmelodien oder akustische Kennungssignale zugeordnet werden. Mittels der Sprachsynthese können anwendungsbezogene Hinweise oder Aufforderungen ausgelöst werden. Beispielsweise läßt sich in Verbindung mit einem Teletextprozessor dessen dekodierte Textinformation in Sprache umsetzen. In Verbindung mit einem Personal-Computer ergeben sich vorteilhafte Anwendungen für den Synthesizer und/oder den Sprachsynthesizer, insbesondere zur akustischen Unterstützung der verschiedensten Software-Programme und Computerspiele. Es ist sogar möglich, daß mittels eines optischen Abtasters (=Scanner) Texte für Blinde auf diese Weise hörbar gemacht werden können.
Die Erfindung und weitere vorteilhafte Ausgestaltungen werden nun anhand eines in der Figur der Zeichnung schematisch als Blockschaltbild dargestellten Ausführungsbeispieles des digitalen Tonprozessors näher erläutert.
Der in der Figur dargestellte digitale Tonprozessor 1 zeigt die wesentlichen internen und externen Funktionseinheiten die miteinander zusammenwirken. Die elektronische Verbindungen sind dabei nur als einfache Linien mit einem Pfeil dargestellt, um die Signalflußrichtung anzugeben. Ob es sich dabei um die Übertragung von analogen oder digitalen Signalen handelt, geht aus der Beschreibung hervor. In der Figur sind ebenfalls der besseren Übersicht wegen mehrfach vorhandene Funktionseinheiten nicht dargestellt, beispielsweise ist nur ein externes Lautsprechersymbol vorhanden, obwohl für eine Stereo- oder gar eine Stereo-Surround-Wiedergabe mindestens zwei räumlich getrennte Lautsprechersysteme und zugehörige Signalausgänge vorhanden sein müssen.
Der digitale Tonprozessor 1 enthält einen ersten, zweiten und dritten internen Tonprozessor 2,3,4, die eingangsseitig mit einer ersten, zweiten und dritten externen Signalquelle 4,5,6 verbunden sind. Die erste Signalquelle 4 entspricht dabei den Eingangs- und Frequenzumsetzungsschaltungen eines Fernsehempfängers, die als Ausgangssignal das komplexe Fernsehsignalgemisch in analoger Form in der Basisbandlage oder einer Zwischenfrequenzlage liefern. Dieses analoge Signal wird mittels eines ersten Analog/Digital-Umsetzers 7 digitalisiert und zur Verarbeitung dem ersten Tonprozessor 2 zugeführt. Es ist auch denkbar, daß der erste Tonprozessor 2 bereits mit zuvor digitalisierten Signalen gespeist ist.
Die zweite Signalquelle 5 stellt beispielsweise einen Satellitenempfänger dar, der bereits digitale Ausgangssignale liefert oder dessen analoges Ausgangssignal quantisiert ist und leicht mittels eines einfachen Analog/Digital-Umsetzers 8 für den zweiten Tonprozessor 3 in einen Datenstrom umgesetzt werden kann.
Die dritte Signalquelle 6 stellt beispielsweise einen Videorekorder dar, dessen analoges Ausgangssignal mittels eines Analog/Digital-Umsetzers 9 digitalisiert wird und den dritten Tonprozessor 4 speist. Alle Tonprozessoren 2,3,4 sind über interne Steuerleitungen 110,120 mit einem internen Steuerprozessor 10 verbunden, der die jeweiligen Betriebsart des digitalen Tonprozessors 1 steuert. Zur Steuerung wertet er einmal die Informationen aus den einzelnen Tonprozessoren 2,3,4 aus, aber insbesondere auch Informationen, die ihm über einen externen Steuerbus 11 zugeführt sind, der an entsprechende Ein- und/oder Ausgangsbuchsen 100,105 angeschlossenen ist. An diesen uni- oder bidirektionalen Steuerbus 11 sind externe Steuereinrichtungen angeschlossen, beispielsweise ein Fernbedienungsempfänger 12 in einem Fernsehgerät oder Steuereinrichtungen 13 eines Personal Computers.
Der digitale Tonprozessor 1 in der Figur enthält eine Matrix-und- Mischerstufe 14, die eingangsseitig mit allen Tonprozessoren 2,3,4 und ausgangsseitig mit den verschiedensten Ausgängen für Tonwiedergabeeinrichtungen über Digital/Analog-Umsetzer 15,18,21 und/oder Verstärker gekoppelt ist. Beispielsweise ist ein Ausgang der Matrix-und-Mischerstufe 14 über den Digital/Analog-Umsetzer 15 und einen Verstärker 16 mit einem Lautsprecher 17 verbunden. Ein weiterer Ausgang gelangt über den Digital/Analog-Umsetzer 18, einen Verstärker 19 auf einen Kopfhörer 20 und ein Ausgang gelangt über den Digital/Analog-Umsetzer 21, einen Verstärker 22 an eine lineare Ausgangsbuchse 23 des digitalen Tonprozessors 1. Derartige Buchsen sind beispielsweise Buchsen von standardisierten Steckverbindungen (= SCART) für die Zusammenschaltung von Fernsehempfängern und Videorekordern. Der linearen Ausgangsbuchse 23 entspricht eine digitale Ausgangsbuchse 25, die über einen Verstärker 24 ebenfalls mit der Matrix-und-Mischereinrichtung 14 verbunden ist. Bei der zunehmenden digitalen Verarbeitung ist es sinnvoll, die Signale mittels digitaler Ausgangsbuchsen in digitaler Form weiterzugeben.
Die bisher beschriebenen Funktionseinheiten entsprechen im wesentlichen den Funktionseinheiten des eingangs genannten digitalen Tonprozessors MSP 3410D. Die Erfindung besteht nun darin, daß der interne Steuerprozessor 10 direkt oder mittels seiner Ein-und-Ausgangsschaltung 26 (=I/O-Schaltung) zusätzlich mit einer internen Audiosignalquelle 27 gekoppelt ist, die wie die vorhandenen Tonprozessoren 2,3,4 ausgangsseitig an die Matrix-und-Mischerstufe 14 angeschlossen ist. Die Ausgangssignale der Audiosignalquelle 27 können durch die Matrix-und-Mischereinrichtung 14 auf beliebige Signalausgänge des Tonprozessors 1 geschaltet oder zu den vorhandenen Signalen hinzugemischt werden, wobei diese gegebenenfalls im Pegel durch den internen Steuerprozessor 10 abgesenkt werden. Wird der Tonprozessor 1 beispielsweise zur Audiosignalaufbereitung in einem Autoradio verwendet, dann lassen sich auf diese Weise Verkehrsdurchsagen oder Verkehrsinformationen oder akustische Kennungs- oder Warnsignale den vorhandenen Audiosignalen überlagern. Es spielt dabei keine Rolle, welche der Signalquellen 4,5,6, z.B. eine Tonkassette, gerade aktiv ist. Der wesentliche Unterschied gegenüber bekannten Verfahren besteht darin, daß die interne Audiosignalquelle 27 diese Signale nicht von einer der extern angeschlossenen Signalquellen 4,5,6 direkt oder in einer codierten Form empfängt, sondern daß die interne Audiosignalquelle 27 diese Signale auf Abruf hin selbst erzeugt. Im Grenzfall genügt ein einziges Befehlswort auf dem Steuerbus 11, um ein akustisches Signal oder gar eine synthetisierte Sprachinformation auszulösen. Selbstverständlich ist in der Regel hierzu eine Speichereinrichtung 28 erforderlich, in der die digitalisierte Signalfolge abgelegt ist, wobei die gespeichertern Daten einzeln oder gruppenweise abrufbar sind. Wird von der internen Audiosignalquelle 27 ein derartiger Auslösebefehl erkannt, dann bestimmt dieser Auslösbefehl beispielsweise die Startadresse eines Adressengenerators, der dann die gespeicherte Signalfolge sequentiell aus der Speichereinrichtung 28 ausliest. Ein anderer Auslösebefehl, der einem anderen extern zugeführten Steuersignal zugeordnet ist, liest eine andere Audiosignalfolge aus.
Es wird hier nochmals darauf hingewiesen, daß der dem Steuersignal üblicherweise zugeordnete Steuerablauf im digitalen Tonprozessor 1 im wesentlichen unverändert abläuft, sofern das Steuersignal als solches erkannt wird. In der Regel sind diese Steuersignale durch den Gerätehersteller programmierbar oder durch den empfangenen Übertragungsstandard vorgegeben oder entsprechen standardisierten Steuerbefehlen. Neben diesem normalen Steuerablauf bewirkt die Erfindung eine zusätzliche Funktion dieser bekannten Steuerbefehle, oder die Erfindung verwendet neue Steuerbefehle, die keinerlei Auswirkungen bei bisherigen Tonprozessoren haben, weil sie dort nicht erkannt werden. Die Tonprozessoren nach der Erfindung können daher zu bereits vorhandenen Tonprozessoren austauschbar sein.
Einfache Ton- oder Klangfolgen können auch als Steuerbefehlsfolge, deren Anfang und Ende durch das Datenformat gekennzeichnet ist, über den Steuerbus 11 und die Ein-und-Ausganggsschaltung 26 in die Speichereinrichtung 28 oder einen Pufferspeicher 280 geladen werden. Damit können beispielsweise eigene Tonfolgen in Verbindung mit einem als externe Steuereinrichtung 13 angeschlossenen Personal-Computer programmiert werden. Bei der Wiedergabe dieser Tonfolgen ist in der Regel die relativ geringe Datenrate auf dem Steuerbus 11 durch eine zeitliche Komprimierung der Daten vor der Digital/Analog-Umsetzung für die Wiedergabe zu erhöhen oder durch eine zeitliche Interpolation des Signalinhalts an eine höhere Datenrate anzupassen. Die Systemtaktfrequenz im digitalen Tonprozessor 1 liegt in der Regel hoch genug, z.B. bei 18,4 MHz, so daß analoge Zwischenfrequenzsignale von 7 MHz und höher ohne weiteres verarbeitet werden können. Zugeführte digitale Audiosignale, beispielsweise aus einem Satellitenempfänger 5, liegen im Frequenzbereich wesentlich tiefer, nämlich bei 32 kHz, 44 kHz oder 48 kHz, so daß die Systemtaktfrequenz ebenfalls ausreichend hoch ist. Die Datenrate auf dem Steuerbus 11 ist beispielsweise mit 8 kHz gegenüber der Systemtaktfrequenz sehr niedrig. Durch eine Komprimierung oder Interpolation der zugeführten oder gespeicherten Daten wird der Verarbeitungstakt in der Audiosignalquelle 27 an den Verarbeitungstakt der anderen Tonprozessoren 2,3,4 angepaßt, damit wird die Mischung aller Signale in der Matrix-und-Mischerstufe 14 ermöglicht.
Wenn die interne Audiosignalquelle 27 als Synthesizer arbeitet, dann greift sie ebenfalls auf gespeicherte Signale, die wie angegeben als Audio- oder Signalbausteine bezeichnet werden, in der Speichereinrichtung 28 zu. Nur erfolgt das Auslesen der einzelnen Speicheradressen nicht mehr sequentiell, sondern in einer vorgegebenen Reihenfolge. Der Ablauf dieser Reihenfolge ist als ein Mikroprogramm in einem Mikroprogrammspeicher 29 abgespeichert, der in der Figur als Teil der Speichereinrichtung 28 dargestellt ist. Die Verwendung des Mikroprogrammes erlaubt, daß die gespeicherten Signalbausteine mehrfach verwendbar sind, sowohl in dem jeweils zu synthetisierenden Signal als auch in unterschiedlichen Signalen. Ein sehr interessantes Anwendungsbeispiel für die Sprachsynthese ist die Umsetzung mindestens der alphanumerischen Ausgangssignale eines Teletextprozessors 150 oder einer PC-Bildschirmanzeige mit Textinformation in Sprachsignale.
Als vorteilhafte Verwendungen für die Erfindung lassen sich weiter folgende Beispiele angeben: Wave-table"-Synthese oder Übernahme von Wave-Files", die in Personal-Computern generiert sind; Benutzerführungen über synthetisierte Sprachhinweise, insbesondere in Verbindung mit Computeranwendungen; Ansagen von Uhrzeit; Termin- und Weckfunktionen, wobei eine Steigerung der Wirkung mittels Sprachsynthese möglich ist; Warnmeldungen, wenn auf einen kritischen Zustand oder ein kritisches externes Ereignis hingewiesen werden soll. Es ist aber auch möglich, daß die interne Audiosignalquelle 27 spezielle Steuersignale erzeugt, die über den Verstärker 30 an entsprechende Ausgänge 31 geführt sind. Dort können sie beispielsweise als Steuersignale für eine Mehrsegmentanzeige dienen. Anstatt der akustisch wiederzugebenden Signale können so mittels der Audiosignalquelle 27 beliebige Steuersignale oder Steuersignalfolgen aus der Speichereinrichtung 28 abgerufen werden. Diese kurze Aufstellung zeigt, daß die Erfindung auf vielerlei Weise vorteilhaft angewendet werden kann.

Claims (9)

  1. Digitaler Tonprozessor (1) zur Verarbeitung von Multistandard-Tonsignalen, die als analoge oder digitale Signale eingangsseitig aus mindestens einer Signalquelle (4,5,6) den Tonprozessor (1) in Basisbandlage oder einer höheren Frequenzlage zugeführt sind und aus denen getrennte Ausgangssignale für Tonwiedergabeeinrichtungen (19,20) gebildet sind,
    mit einem Steuersignaleingang (100), der mit mindestens einer externen Steuereinrichtung (12,13) gekoppelt ist, die Steuersignale an einen im Tonprozessor (1) vorhandenen internen Steuerprozessor (10) sendet, der die vom jeweiligen Tonstandard abhängige Betriebsart des Tonprozessors (1) steuert,
    dadurch gekennzeichnet, daß
    der Steuereingang (100) ferner im Tonprozessor (1) mit einer internen Audiosignalquelle (27) gekoppelt ist, die mittels der am Steuereingang (100) zugeführten Steuersignale weitere Audiosignale erzeugt, die den Tonwiedergabeeinrichtungen (17,20) und/oder weiteren Tonwiedergabeeinrichtungen (23,25) zugeführt sind.
  2. Digitaler Tonprozessor (1) nach Anspruch 1, dadurch gekennzeichnet, daß die interne Audiosignalquelle (27) die weiteren Audiosignale aus einer Speichereinrichtung (28) als Datenfolge abruft.
  3. Digitaler Tonprozessor (1) nach Anspruch 2, dadurch gekennzeichnet, daß die Datenrate der Datenfolge in der internen Audiosignalquelle (27) zeitlich gegenüber der Datenrate der dem Steuereingang (100) zugeführten Steuersignale komprimiert und/oder interpoliert ist.
  4. Digitaler Tonprozessor nach Anspruch 1, dadurch gekennzeichnet, daß die interne Audiosignalquelle (27) einen Synthesizer enthält, der die weiteren Audiosignale aus gespeicherten Signalbausteinen zusammensetzt, deren zeitliche Abfolge durch ein Mikroprogramm festgelegt ist, das durch das am Steuereingang (100) zugeführte Steuersignal aktiviert ist.
  5. Digitaler Tonprozessor nach Anspruch 4, dadurch gekennzeichnet, daß der Synthesizer als ein Sprachsynthesizer ausgebildet ist.
  6. Digitaler Tonprozessor nach Anspruch 5, dadurch gekennzeichnet, daß der Synthesizer durch Steuersignale gesteuert ist, die alphanumerischen Zeichen zugeordnet sind, die in einem Farbfernsehsignalgemisch oder auf einem PC-Bildschirm als Textinformation enthalten sind.
  7. Digitaler Tonprozessor nach Anspruch 1, dadurch gekennzeichnet, daß durch die interne Audiosignalquelle (27) in klanglicher und/oder sprachlicher und/oder visueller Form Hinweise und/oder Aufforderungen ausgelöst werden.
  8. Digitaler Tonprozessor nach Anspruch 7, dadurch gekennzeichnet, daß die Hinweise und/oder Aufforderungen wählbar und austauschbar sind.
  9. Digitaler Tonprozessor nach Anspruch 8, dadurch gekennzeichnet, daß die Hinweise und Aufforderungen durch das Zusammenwirken des digitalen Tonprozessors (1) mit einem Personal-Computer (13) ausgelöst sind, wobei der Personal Computer über einen externen Steuerbus (11) mit dem Steuereingang (100) des digitalen Tonprozessors (1) verkoppelt ist.
EP97106519A 1997-04-19 1997-04-19 Digitaler Tonprozessor Expired - Lifetime EP0873041B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97106519A EP0873041B1 (de) 1997-04-19 1997-04-19 Digitaler Tonprozessor
DE59710047T DE59710047D1 (de) 1997-04-19 1997-04-19 Digitaler Tonprozessor
US09/061,465 US6141646A (en) 1997-04-19 1998-04-16 Digital sound processor for processing multiple standard sound signals and capable of generating additional audio signals
JP10962498A JP4145989B2 (ja) 1997-04-19 1998-04-20 デジタル音響プロセッサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97106519A EP0873041B1 (de) 1997-04-19 1997-04-19 Digitaler Tonprozessor

Publications (2)

Publication Number Publication Date
EP0873041A1 true EP0873041A1 (de) 1998-10-21
EP0873041B1 EP0873041B1 (de) 2003-05-07

Family

ID=8226709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97106519A Expired - Lifetime EP0873041B1 (de) 1997-04-19 1997-04-19 Digitaler Tonprozessor

Country Status (4)

Country Link
US (1) US6141646A (de)
EP (1) EP0873041B1 (de)
JP (1) JP4145989B2 (de)
DE (1) DE59710047D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340070B2 (en) 2003-06-06 2008-03-04 Mitsubishi Denki Kabushiki Kaisha Voice-data processing circuit and voice-data processing method
WO2011061036A1 (de) 2009-11-18 2011-05-26 Robert Bosch Gmbh Schaltungsanordnung für einen rundfunkempfänger mit digitaler signalverarbeitung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59814289D1 (de) * 1998-07-21 2008-10-30 Micronas Gmbh Audioquellenauswahlschaltung
US20090132585A1 (en) * 2007-11-19 2009-05-21 James Tanis Instructional lesson customization via multi-media data acquisition and destructive file merging
US9307426B2 (en) 2008-06-13 2016-04-05 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for testing mobile terminals in an OFDM system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503154A2 (de) * 1991-03-14 1992-09-16 Pioneer Electronic Corporation RDS-Empfänger
EP0725504A2 (de) * 1995-02-03 1996-08-07 Robert Bosch Gmbh Radiodatenempfänger mit Einrichtung zur Ausgabe von empfangenen digital codierten Verkehrsmeldungen
DE19513005A1 (de) * 1995-03-08 1996-09-12 Technotrend Systemtechnik Gmbh Einrichtung zum Hörfunkempfang und zur Anzeige und Verwertung von Informationen aus dem Hörfunk
EP0756258A1 (de) * 1995-07-26 1997-01-29 Philips Patentverwaltung GmbH RDS-TMC-Rundfunkempfänger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524051A (en) * 1994-04-06 1996-06-04 Command Audio Corporation Method and system for audio information dissemination using various modes of transmission
US5592588A (en) * 1994-05-10 1997-01-07 Apple Computer, Inc. Method and apparatus for object-oriented digital audio signal processing using a chain of sound objects
JPH08263094A (ja) * 1995-03-10 1996-10-11 Winbond Electron Corp メロディを混合した音声を発生する合成器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503154A2 (de) * 1991-03-14 1992-09-16 Pioneer Electronic Corporation RDS-Empfänger
EP0725504A2 (de) * 1995-02-03 1996-08-07 Robert Bosch Gmbh Radiodatenempfänger mit Einrichtung zur Ausgabe von empfangenen digital codierten Verkehrsmeldungen
DE19513005A1 (de) * 1995-03-08 1996-09-12 Technotrend Systemtechnik Gmbh Einrichtung zum Hörfunkempfang und zur Anzeige und Verwertung von Informationen aus dem Hörfunk
EP0756258A1 (de) * 1995-07-26 1997-01-29 Philips Patentverwaltung GmbH RDS-TMC-Rundfunkempfänger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340070B2 (en) 2003-06-06 2008-03-04 Mitsubishi Denki Kabushiki Kaisha Voice-data processing circuit and voice-data processing method
WO2011061036A1 (de) 2009-11-18 2011-05-26 Robert Bosch Gmbh Schaltungsanordnung für einen rundfunkempfänger mit digitaler signalverarbeitung
EP2502369A1 (de) * 2009-11-18 2012-09-26 Robert Bosch GmbH Schaltungsanordnung für einen rundfunkempfänger mit digitaler signalverarbeitung

Also Published As

Publication number Publication date
EP0873041B1 (de) 2003-05-07
JPH1152960A (ja) 1999-02-26
DE59710047D1 (de) 2003-06-12
US6141646A (en) 2000-10-31
JP4145989B2 (ja) 2008-09-03

Similar Documents

Publication Publication Date Title
DE3210893C2 (de) Geräteanordnung mit einem Fernsehempfangsgerät und einem Videdoaufnahme- und/oder -wiedergabegerät
DE69126655T2 (de) Verfahren und Vorrichtung zur gleichzeitig Erzeugung eines Ausgangssignals aus digitalen Audio-Daten und durch MIDI synthesierter Musik
DE60028458T2 (de) Audiosystem,Steuerungsverfahren und Speichermedium
DE2030987A1 (de) Elektronisches Sprechansagesystem
DE3036552A1 (de) Fernsehempfangsanlage
DE3782959T2 (de) Erzeuger von niederfrequenten toenen.
DE60038471T2 (de) Audiosystem mit Steuerung und Audiogerät
DE69018663T2 (de) Aufzeichnungs- und/oder Wiedergabemethode für ein Bandaufzeichnungsgerät.
EP0873041A1 (de) Digitaler Tonprozessor
EP1316955A1 (de) Zwischenspeichereinrichtung
WO1990010351A1 (de) Verfahren zur titeleinblendung während eines fernsehsendebeitrags
EP0938090A1 (de) Audioabspielgerät
DE69731355T2 (de) Übertragung eines digitalen informationssignals mit einer ersten spezifischen abtastrate
DE10232368A1 (de) Volldigitalisiertes Audiosystem
EP1067773A2 (de) Bild- und Tonwiedergabegerät und Verfahren für dessen Betrieb
DE19539034A1 (de) Audioverstärkeranordnung für mehr als zwei Wiedergabekanäle
DE3807597A1 (de) Schaltungsanordnung fuer einen audio-empfaenger mit einer aufnahmeeinrichtung
EP0075852A2 (de) Pulscodemodulationssystem
DE19630330C2 (de) Audiosignalprozessor
DE4102078C2 (de) Toneffektgerät zur Erzeugung von Nachhalleffekten
DE19513005A1 (de) Einrichtung zum Hörfunkempfang und zur Anzeige und Verwertung von Informationen aus dem Hörfunk
EP0690615A2 (de) Bildwiedergabeanordnung
DE8913030U1 (de) Bordgerät zum Aufzeichnen und Wiedergeben von Verkehrsfunkdurchsagen
EP1297684A1 (de) Vorrichtung zum empfang von digitalen rundfunksignalen
EP0310880A1 (de) Einrichtung zur Wiedergabe eines auf einem Magnetband eines Videorecorders aufgezeichneten Videosignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19990421

AKX Designation fees paid

Free format text: DE FR GB IT NL

17Q First examination report despatched

Effective date: 20010723

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICRONAS SEMICONDUCTOR HOLDING AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030507

REF Corresponds to:

Ref document number: 59710047

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20091126 AND 20091202

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20100311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100428

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59710047

Country of ref document: DE

Effective date: 20110426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120529

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710047

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER, PATENTANWALTSGESELLSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710047

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER, PATENTANWALTSGESELLSCH, DE

Effective date: 20121023

Ref country code: DE

Ref legal event code: R081

Ref document number: 59710047

Country of ref document: DE

Owner name: ENTROPIC COMMUNICATIONS, INC., US

Free format text: FORMER OWNER: TRIDENT MICROSYSTEMS (FAR EAST) LTD., GRAND CAYMAN, KY

Effective date: 20121023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120825

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130429

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131101

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20131107 AND 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710047

Country of ref document: DE

Effective date: 20131101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140419