EP0868382B1 - Verfahren zum überwachen der abtastverhältnisse beim steuern einer fadenliefervorrichtung - Google Patents

Verfahren zum überwachen der abtastverhältnisse beim steuern einer fadenliefervorrichtung Download PDF

Info

Publication number
EP0868382B1
EP0868382B1 EP96942317A EP96942317A EP0868382B1 EP 0868382 B1 EP0868382 B1 EP 0868382B1 EP 96942317 A EP96942317 A EP 96942317A EP 96942317 A EP96942317 A EP 96942317A EP 0868382 B1 EP0868382 B1 EP 0868382B1
Authority
EP
European Patent Office
Prior art keywords
signal
threshold value
sensor device
circuit component
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96942317A
Other languages
English (en)
French (fr)
Other versions
EP0868382A1 (de
Inventor
Friedrich Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memminger IRO GmbH
Original Assignee
Memminger IRO GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memminger IRO GmbH filed Critical Memminger IRO GmbH
Publication of EP0868382A1 publication Critical patent/EP0868382A1/de
Application granted granted Critical
Publication of EP0868382B1 publication Critical patent/EP0868382B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/20Devices for temporarily storing filamentary material during forwarding, e.g. for buffer storage
    • B65H51/22Reels or cages, e.g. cylindrical, with storing and forwarding surfaces provided by rollers or bars
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/38Devices for supplying, feeding, or guiding threads to needles
    • D04B15/48Thread-feeding devices
    • D04B15/482Thread-feeding devices comprising a rotatable or stationary intermediate storage drum from which the thread is axially and intermittently pulled off; Devices which can be switched between positive feed and intermittent feed
    • D04B15/486Monitoring reserve quantity
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • D03D47/36Measuring and cutting the weft
    • D03D47/361Drum-type weft feeding devices
    • D03D47/367Monitoring yarn quantity on the drum

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a thread delivery device according to the preamble of claim 7.
  • the output signal of a sensor becomes a speed signal derived for the control circuit.
  • a certain quality of light transmission is required for the sensor device to work. Pollution when processing thread inevitable fluff accumulation worsens with increasing Operating time the light transmission quality.
  • the sensor device fails and to empty the storage area. This can lead to an error in the Guide the product in the textile machine by the thread delivery device with thread is supplied. It is therefore common for an operator to have experience based cleaning of the light transmission path, e.g. with compressed air or by wiping. However, these cleaning operations either done more often than necessary or it happens due to lack of care the operator occasionally to a fault.
  • the invention has for its object a method of the type mentioned and to specify a thread delivery device, with the structurally and technically simple and reliable such a deterioration in the sampling ratios is determined and displayed , which still allows proper functioning of the sensor device and itself without damage to the product of the textile machine supplied by the thread delivery device can be eliminated.
  • the method uses an object output signal generated for control purposes also for checking the quality of the sampling ratios, e.g. the quality of light transmission, used, with surface areas of the storage area and / or an object Thread can apply.
  • This does not require any noteworthy additional components in the sensor device or on the storage surface.
  • It will be the one for the function decisive sampling ratios of the sensor device, e.g. the light transmission quality, checked in the scanning zone, i.e. exactly where they are required for the function of the Sensor device for control, e.g. the drive motor, are crucial, and not at a location away from the scan zone.
  • the scanning conditions are checked exactly in the thread delivery device the location where the object is scanned, i.e. where the quality of the sampling ratio crucial for the correct functioning of the sensor device Has. Because the object output signal itself is additionally used as the basis for the test signal there are no additional sensor parts or tools on the storage area required. It will be the components that are already available for object scanning also used for the test routine. This also ensures that the sampling ratio only checked during working periods and that the operating personnel alarm signal prompting for fault elimination is generated, in which a Deterioration of the sampling ratio disturb the operation of the sensor device can, and not permanently, i.e. not during unimportant periods in which the sampling ratio anyway has no influence on the operation of the sensor device Has.
  • the structural features provided are both for a thread delivery device with storage area driven by the drive motor (rotary driven storage body) as well as for thread delivery devices with a storage area that is stationary during operation (stationary storage drum and rotary winding element) useful to be able to reliably determine when to rectify a fault is required.
  • a simple logical evaluation of the occurrence or non-occurrence of the two signals is carried out to prevent the Generate alarm signal at the right time and based on the right sampling condition.
  • the object output signal both the test signal and that usable for control purposes of the drive motor Speed signal formed.
  • the sampling ratios are only checked then when the drive motor is to be driven and the danger of emptying the storage space. Although from the Failure of the test signal the alarm signal is generated the speed signal is still for unobstructed use on.
  • the comparison is of the signals reliable because the output signal and that Test signal can be compared to a threshold value.
  • the higher threshold represents the just allowed Deterioration of the sampling ratios.
  • the output signal and the test signal are not only synchronous, but also in their decisive for the comparison with the threshold Signal level equal. Because the threshold for that Test signal is higher, the test signal remains off as soon as the just acceptable deterioration has occurred.
  • the Output signal is still present and can be used for control purposes use the predetermined manner. In the absence of the test signal, however, the alarm signal is generated.
  • the low threshold can be conveniently set to a stronger one Deterioration of the sampling ratios can be set at the proper functioning of the sensor device is not more is guaranteed. Should not respond to the alarm signal then the thread delivery device, and expediently also the textile machine supplied with thread, if there is also no output or speed signal be turned off to empty the storage area avoid.
  • both signals compared with the same threshold, but previously the signal level of the test signal changes so that off its comparison with the alarm threshold provides a precise statement the need for the alarm signal is obtained.
  • the method can be particularly useful in the case of optoelectronic and non-contact scanning in one with one opto-electronic sensor device equipped thread delivery device apply, according to claims 6 and 9, because between the signal level and the light transmission quality there is a predictable relationship.
  • this is the Object output signal representing the rotation speed of the drum used for the test routine, which is only due to the absence of the thread in the scanning zone Drum rests.
  • the alarm signal can then be generated simply and reliably, if the sampling ratios deteriorate accordingly to have. It is particularly useful that the operational security is only checked when the drive motor is driven and complements the thread supply. Because then there is the risk of emptying the storage area because the Limit of the thread supply depending on consumption behind the scanning zone has decreased. However, the drive motor no drive, no check is carried out. This is irrelevant, because then there will be a large thread supply anyway located on the storage area that extends into the scan zone enough. The troubleshooting or cleaning takes place expediently when the drive motor is at a standstill, so that the thread delivery device does not turn off needs and the production process of the textile machine does not have to be interrupted by the thread delivery device is supplied with thread.
  • test signal fails to appear as before applied output signal as speed signal for control considered and generates the alarm signal separately. It is advisable to use the already existing one Microprocessor of the control of the thread delivery device to use as linkage or monitoring device, because the microprocessor is usually one for this extra Program routine has sufficient capacity and only a software adjustment is required.
  • the device switches the thread delivery device via the shutdown element and expediently also on the textile machine supplied by it as soon as the opposite of the threshold value Speed signal fails because for some reason If the alarm signal occurs, the fault has not been rectified. This is a double security function.
  • the voltage divider generates the same signal level for the output signal and the test signal.
  • the two comparators set the two Signal level against two different threshold values. This means that what may be required for the control Speed signal even when a just permissible is reached Deterioration of the sampling ratio is still present, although the test signal has dropped and the alarm signal is produced.
  • the signal level for that is already in the voltage divider Test signal changed compared to the signal level of the output signal. From the output signal this can still be done if necessary speed signal required for control derived be while while reaching a just allowed Deterioration of the sampling ratio the test signal drops and the alarm signal is generated.
  • a thread delivery device F according to FIG. 1, in particular one Thread delivery device for a knitting machine, has a housing 13 for an electric drive motor 15 with which A drum 1 can be driven in rotation via a shaft 16.
  • an opto-electronic Sensor device 7 with (Fig. 2) several in the circumferential direction spaced apart on a scanning zone 12 (dash-dotted lines) aligned sensors S, e.g. adjustable, arranged parallel to the drum axis.
  • the sensor device 7 is via a control circuit L with a Control C of the drive motor 15 connected. Every sensor can, for example, from its own light source, e.g. For infrared light, and a receiver, e.g. a photodiode, exist that respond to reflection light.
  • the drum 1 defines a storage area 2 for a thread supply 5, which consists of turns 6 of a thread Y, the from the textile machine (not shown) (e.g. knitting machine) subtracted from the drum 1 as required becomes.
  • the thread Y is in an upper region of the drum 1 1 and wound up by the rotation of the drum 1, the drive motor 15 being controlled so that despite varying consumption of the Y thread, the thread supply 5 tried to maintain a size with which the thread supply 5 extends into the scanning zone 12.
  • the drive motor 15 Located in the scan zone 12 thread before, the drive motor 15 is stopped or delayed. If there is no thread in the scanning zone 12 before, then the drive motor 15 is driven or accelerated.
  • the drive speed is controlled via control C. of the drive motor 15 approximately the thread consumption customized.
  • the drum 1 can be designed as a rod cage with longitudinal rods R, which are separated by spaces Z from each other are separated. Instead of continuous spaces Z could also open longitudinal grooves in the drum 1 be provided. It is also conceivable to have a drum 1 smooth surface to use, the alternating in the circumferential direction Surface areas A, B with each other clearly various, e.g. optical, scanning properties. In the embodiment shown, the bars define R and the spaces Z first and second peripheral sections 8, 9 with clearly different scanning properties for sensors S of sensor device 7. Distribution of Surface areas A, B should be regular in the circumferential direction his. In the sensor device are in this embodiment three sensors S spaced apart in the circumferential direction, that at least one sensor S has a first circumferential section 8 and at least one second sensor S simultaneously a second one Circumferential section 9 scans.
  • the spokes 18 through the gaps Z extend up to a rotary bearing 17 on the shaft 16.
  • the pivot bearing 17 and the spoke star 19 are inclined to the axis 3 of the drum 1. Since the pivot bearing 17 on a Sleeve 17a is arranged to rotate with the Shaft 16 is prevented, the spoke star 19 pushes the thread supply 5 axially forward towards the scanning zone 12.
  • the feed effect could be a conical one Formation of the drum 1 can be achieved on the thread feed side.
  • the sensors S are housed together in a housing 30.
  • Translucent cover plates 31 or one for all Sensors S common cover window protect sensors S against direct pollution.
  • Fig. 3 schematically illustrates a possible block diagram Embodiment of the control circuit L, with the drive control signals for the drive motor 15 from the output signal of the sensor device 7 or the output signals of the sensors S are generated.
  • the sensors S consist of transmitters D7, D8 and D9 and receiver elements T1, T2 and T3, which preferably work with infrared light.
  • the sensors, the receivers and operational amplifiers 20, 21 and 22 cooperating with them connected together to a constant voltage source.
  • the received infrared radiation generates a photo current, which is the voltage across the working resistors influenced.
  • the voltages are amplified in the operational amplifiers 20, 21 and 22.
  • the outputs of the operational amplifiers 20, 21 and 22 are via a diode network connected to a central load resistor 40.
  • the diodes are like this polarized that the positive voltages at the upper point of the Working resistance 40 and the negative voltages at the base of the Working resistance 40 arrive.
  • a maximum is thus formed at the working resistor 40 Differential voltage between the maximum highest positive voltage and the maximum lowest negative voltage.
  • the positive value is about one Amplifier 38, the negative value, however, via an amplifier 39 to a differential amplifier 41 headed.
  • the voltage at the output of differential amplifier 41 corresponds to the proportional portion of the thread supply on the storage area.
  • the Voltage at the output of differential amplifier 41 is via a diode and a resistor network fed to a comparator 43. On a potentiometer 44 leaves the nominal value of the thread supply is set.
  • the comparator 43 provides control of the drive motor 15 the commands: run or stop.
  • the output signal of a sensor element S (D7, T1) is on the operational amplifier 20 additionally tapped over 14 and a circuit part D and a parallel circuit part E fed.
  • a line 24 leads from point 23 to an input of a Comparator 26, the other input of which is adjustable Threshold element 27 is connected.
  • the output of the comparator 26 is to a linkage or monitoring device V connected, preferably in a microprocessor M is integrated.
  • a warning signal generator is connected to it 4 and possibly a shutdown element 11.
  • the parallel circuit part E branches at point 23 with a line 25 from connected to an input of a second comparator 28 is the other entrance with a second Threshold element 29 is connected.
  • the exit of the second Comparator 28 is also connected to device V.
  • the threshold value element 27 is at a low threshold value which corresponds, for example, to a signal level, below that, e.g. due to deteriorated light transmission quality, the sensor device 7 is no longer functional is.
  • the threshold value element 29, however, is on one higher threshold value set, which is just a permissible Represents deterioration in light transmission quality, where the sensor device is still working properly can, an elimination of the light transmission quality
  • a test signal becomes synchronous and essentially at the same time and formed with the same signal level as the output signal.
  • the threshold value element 29 has a higher threshold value is set as the threshold 27, it remains Test signal on the device V off as soon as its level below the threshold drops.
  • the signal generator 4 activates, preferably, an optical one or emit an acoustic signal. Will the pollution not eliminated, then the microprocessor M can fail also activate the shutdown element 11 of the speed signal and turn off the thread delivery device and the textile machine, to avoid emptying the drum 1 if necessary.
  • Fig. 4 illustrates a variation of the circuit part D and of the parallel circuit part E.
  • line 14 is a Voltage divider provided from resistors 32, 33, 34. in the Point 35 between resistors 32 and 33 branches the line 24 to an input of the comparator 26. From point 37 however, the line branches between resistors 33 and 34 25 to an input of the second comparator 28.
  • the Signal level (voltage level) from the output signal at the point 37 (test signal) is lower than at point 35.
  • the respective other input of the first and second comparators 26, 28 is connected to a common threshold element 36 which is set to a certain threshold (a reference voltage).
  • the threshold 36 is exactly on point set, at which the pollution just barely permissible, but too high for the signal level of the test signal Limit reached.
  • the comparator 28 switches at a higher threshold than that Comparator 26. If the sensor device is contaminated accordingly, so the comparator 28 can no longer switch through. By checking the equivalency of the output voltages of the comparators 26, 28 is determined in the microprocessor M that a Warning signal is to be issued. The warning signal generator 4 is activated.
  • FIG. 5 illustrates the object output signal 38 'in a U / t diagram. in line 14, as determined by sensor S, D7, T1 depending on the passage of the circumferential sections 8, 9 or of the different surface areas A, B is generated.
  • the light transmission quality is at the first two signal levels still flawless.
  • the quality of the Light transmission off. 3 - as in the diagram 5A - a signal 39 'on.
  • the one set on the threshold 27 Threshold is indicated by U1.
  • the comparator 26 results a signal sequence C according to FIG. 5C.
  • the comparator 28 results however, a signal sequence G according to FIG. 5C.
  • the signal sequence is G not available anymore.
  • a check for the equality of the signal sequences results in a logical one Signal sequence H in Fig. 5C.
  • the microprocessor M activates this Doubletree 4.
  • the threshold value U2 represents a just acceptable deterioration of the Sampling ratios, i.e. the light transmission quality at which the sensor device 7 still working properly, as indicated by the one in Fig. 5A below signal 39 'still present after time X and signal sequence C in FIG. 5C is made clear. It should be noted that the light transmission quality usually deteriorates within a significantly longer period of time than it can be derived from FIGS. 5, 5A, 5B, 5C. These figures are in terms of time To be better understood as a schematic only.
  • the diagram according to FIG. 5B belongs to the variant according to FIG. 4.
  • a signal 39 "corresponding to signal 39 'of FIG. 5A is present.
  • the threshold U1 corresponds to the threshold value U1 of FIG. 5A. It can be seen at the top in FIG. 5B that how due to the voltage divider the signal level from the object output signal 38 'derived test signal 40 "are respectively lower than the signal levels of signal 39 ", but the same for test signal 40" Threshold value U1 is taken into account as for signal 39 ". The first three signal levels of the test signal 40 "are still high enough to close the second comparator 28 happen. However, the fourth signal level is lower than the threshold value U1, so that then the test signal 40 "does not appear at the logic device V and the warning signal is produced.
  • An antivalence control device is used to evaluate the components Matching the test signal with the speed signal created.
  • This antivalence control device can be easily implemented in the microprocessor M on the software side. The quality of the light transmission is only checked if if the drive motor is driven to supplement the thread supply, because at idle drum anyway the sensor device only scans the thread and the reflective rods R does not see or the quality of the reflection light transmission cannot judge reliably.
  • the method can also be used with other physical scanning principles, e.g. when scanning using sound, induction, magnetism, capacitance or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Forwarding And Storing Of Filamentary Material (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1 sowie eine Fadenliefervorrichtung gemäß dem Oberbegriff des Patentanspruchs 7.
Bei einem aus US 4 865 085 (entsprechend EP-0 199 059 B1) bekannten Verfahren dieser Art arbeitet die Sensorvorrichtung mit einem die axiale Bewegung von Fadenwindungen auf einer stillstehenden Speichertrommel überwachenden Empfänger und einem zweiten, die Qualität der Lichtübertragung überwachenden, nur für diesen Zweck vorgesehenen Empfänger. Ein Ausgangssignal des zweiten Empfängers wird einem Schwellwert gegenübergesetzt, um ein zusätzliches Nutzsignal zu erhalten, mit dem die Lichtstärke für beide Empfänger bei Verschlechterung der Lichtübertragung gesteigert wird. Es kann auch ein Warnsignal für eine Bedienungsperson erzeugt werden, das auf die Notwendigkeit der Reinigung des Lichtübertragungsweges von die Lichtübertragung beeinträchtigenden Verschmutzungen hinweist.
Auch nach einem aus US-A-4 963 757 bekannten Verfahren speist eine Lichtquelle zwei Empfänger, von denen der eine einen Faden und der andere nur die Lichtübertragungsqualität abtastet, um die Relation zwischen den Ausgangssignalen der beiden Empfänger im wesentlichen konstant halten und eine Verschlechterung der Lichtübertragung kompensieren zu können.
Bei einem aus US-A-3 907 440 bekannten Verfahren werden mit zwei gepulsten Lichtquellen phasenverschobene Lichtimpulse für einen Empfänger erzeugt, wobei nur mit den Lichtimpulsen der einen Lichtquelle ein Faden abgetastet wird. Die Ausgangssignale aus den nicht für die Fadenabtastung benutzten Lichtimpulsen werden mit einem Nominalsignalwert verglichen, um eine bestimmte Relation zwischen den beiden Signalen einhalten und Störeinflüsse kompensieren zu können.
Aus GB-A-22 27 092 ist es bekannt, einen opto-elektronischen Sensor aus Lichtquelle und Empfänger in einem Banknoten-Empfangs- und Ausgabegerät bezüglich der momentanen Abtasteigenschaften zu überprüfen, ehe der Sensor bei der Untersuchung einer Banknote mitwirkt. In einer Prüfroutine wird durch steuerungsseitig vorgenommenes Abdunkeln der Lichtquelle gegenüber deren normaler Lichtstärke ein Zustand simuliert, wie er später bei der Überprüfung einer Banknote auftreten kann. Der Pegel dabei auftretender Ausgangssignale des Empfängers wird mit einem Schwellwertpegel verglichen, den die Steuerung aus denjenigen Ausgangssignalen des Empfängers errechnet, die sich ohne und mit Abdunklung ergeben. Liegt der Pegel des abgedunkelten Ausgangssignals unterhalb des Schwellwertpegels, dann wird Alarm ausgelöst.
Bei einem, dem Oberbegriff der Ansprüche 1 und 7 zugrundeliegenden, aus WO95/16628 bekannten Verfahren zum Steuern des Antriebsmotors einer Strickmaschinen-Fadenliefervorrichtung mit drehantreibbarer Speichertrommel und stationärer Sensorvorrichtung werden in der Abtastzone in Umfangsrichtung versetzte Oberflächenbereiche der Speicherfläche mit mehreren Sensoren gleichzeitig opto-elektronisch abgetastet. Befindet sich der Faden in der Abtastzone, dann geben die Sensoren gleichzeitig gleiche Ausgangssignale ab. Bei Abwesenheit des Fadens in der Abtastzone erzeugen die Sensoren hingegen gleichzeitig unterschiedliche Ausgangssignale. Durch Diskriminieren zwischen den Ausgangssignalen werden Steuersignale abgeleitet und wird der Antriebsmotor bei fadenfreier Abtastzone angetrieben, bis der Faden wieder die Abtastzone erreicht. Beim Ergänzen des Fadenvorrats, d.h. bei angetriebenem Antriebsmotor, wird aus dem Ausgangssignal eines Sensors ein Drehzahlsignal für die Steuerschaltung abgeleitet. Eine bestimmte Qualität der Lichtübertragung ist für das Arbeiten der Sensorvorrichtung erforderlich. Verschmutzungen beim Verarbeiten von Faden unvermeidlicher Flusenanfall verschlechtem mit zunehmender Betriebsdauer die Lichtübertragungsqualität. Es kommt zum Ausfall der Sensorvorrichtung und zum Leeren der Speicherfläche. Dies kann zu einem Fehler im Produkt in der Textilmaschine führen, die von der Fadenliefervorrichtung mit Faden versorgt wird. Es ist deshalb üblich, daß eine Bedienungsperson in auf Erfahrungswerten basierenden Abständen eine Reinigung des Lichtübertragungswegs vornimmt, z.B. mit Druckluft oder durch Abwischen. Jedoch werden diese Reinigungsvorgänge entweder häufiger als nötig durchgeführt oder es kommt aufgrund mangelnder Sorgfalt der Bedienungsperson fallweise zu einer Störung.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art sowie eine Fadenliefervorrichtung anzugeben, mit der auf baulich und schaltungstechnisch einfache Weise und zuverlässig eine derartige Verschlechterung der Abtastverhältnisse festgestellt und angezeigt wird, die noch eine ordnungsgemäße Funktion der Sensorvorrichtung erlaubt und sich ohne Schaden für das Produkt der von der Fadenliefervorrichtung versorgten Textilmaschine beseitigen läßt.
Die gestellte Aufgabe wird erfindungsgemäß mit den Merkmalen des Patentanspruchs 1 und den Merkmalen des Patentanspruchs 7 gelöst.
Bei dem Verfahren wird ein zu Steuerungszwecken erzeugtes Objekt-Ausgangssignal auch zum Prüfen der Qualität der Abtastverhältnisse, z.B. der Lichtübertragungsqualität, eingesetzt, wobei als Objekt Oberflächenbereiche der Speicherfläche und/oder ein Faden gelten können. Dies erfordert keine nennenswerten zusätzlichen Komponenten in der Sensorvorrichtung bzw. an der Speicherfläche. Es werden die für die Funktion der Sensorvorrichtung entscheidenden Abtastverhältnisse, z.B. die Lichtübertragungsqualität, in der Abtastzone überprüft, d.h. exakt dort, wo sie für die Funktion der Sensorvorrichtung zur Steuerung, z.B. des Antriebsmotors, entscheidend sind, und nicht an einer von der Abtastzone entfernten Stelle. Durch eine Verschlechterung der Abtastverhältnisse ändert sich der Signalpegel des Ausgangssignals und auch des Prüfsignals, das dem auf eine gerade noch zulässige Verschlechterung der Abtastverhältnisse abgestimmten Schwellwert gegenübergesetzt wird und schließlich unter diesen abfällt. Dies führt zum Alarmsignal. Damit wird eine Bedienungsperson rechtzeitig, d.h. weder zu früh noch zu spät, alarmiert, den Arbeitsbereich der Sensorvorrichtung, d.h. beispielsweise den Lichtübertragungsweg, zu reinigen. Es kann das Alarmsignal jedoch in besonders zweckmäßiger Weise auch dazu verwendet werden, automatisch eine Reinigungsvorrichtung für die Sensorvorrichtung zu aktivieren, die selbständig den Reinigungsvorgang durchführt, z.B. durch Wegblasen oder Wegwischen von Verunreinigungen.
In der Fadenliefervorrichtung erfolgt die Überprüfung der Abtastverhältnisse exakt an dem Ort, an dem das Objekt abgetastet wird, d.h., dort, wo die Qualität des Abtastverhältnisses für das korrekte Arbeiten der Sensorvorrichtung entscheidende Bedeutung hat. Da das Objektausgangssignal selbst zusätzlich als Basis für das Prüfsignal benutzt wird, sind keine zusätzlichen Sensorteile oder Hilfsmittel an der Speicherfläche erforderlich. Es werden die ohnedies für die Objektabtastung vorhandenen Komponenten auch für die Prüfroutine benutzt. Damit wird ferner erreicht, daß das Abtastverhältnis nur während Arbeitsperioden überprüft und daß das das Bedienungspersonal zur Störungsbeseitigung auffordernde Alarmsignal erzeugt wird, in denen eine Verschlechterung des Abtastverhältnisses das Arbeiten der Sensorvorrichtung stören kann, und nicht permanent, d.h., nicht während unwichtiger Zeitperioden, in denen das Abtastverhältnis ohnedies keinen Einfluß auf das Arbeiten der Sensorvorrichtung hat. Die vorgesehenen baulichen Merkmale sind sowohl bei einer Fadenliefervorrichtung mit vom Antriebsmotor angetriebener Speicherfläche (drehangetriebener Speicherkörper) als auch für Fadenliefervorrichtungen mit im Betrieb stationärer Speicherfläche (stationärer Speichertrommel und drehangetriebenem Aufwickelelement) zweckmäßig, um zuverlässig feststellen zu können, wann eine Störungsbeseitigung erforderlich ist.
Bei der Verfahrensvariante gemäß Anspruch 2 wird eine einfache logische Auswertung des Auftretens oder Nichtauftretens der beiden Signale durchgeführt, um das Alarmsignal zum richtigen Zeitpunkt und aufgrund der richtigen Abtastkondition zu erzeugen.
Bei der Verfahrensvariante gemäß Anspruch 3 wird aus dem Objekt-Ausgangssignal sowohl das Prüfsignal als auch das für Steuerzwecke des Antriebsmotors brauchbare Drehzahlsignal gebildet. Es erfolgt die Überprüfung der Abtastverhältnisse nur dann, wenn auch der Antriebsmotor anzutreiben ist und die Gefahr des Leerens der Speicherfläche besteht. Obwohl aus dem Ausbleiben des Prüfsignals das Alarmsignal erzeugt wird, liegt das Drehzahlsignal weiterhin zur unbehinderten Nutzung an.
Bei der Verfahrensvariante gemäß Anspruch 4 ist der Vergleich der Signale zuverlässig, weil das Ausgangssignal und das Prüfsignal jeweils einem Schwellwert gegenübergestellt werden. Der höhere Schwellwert repräsentiert die gerade noch zulässige Verschlechterung der Abtastverhältnisse. Das Ausgangssignal und das Prüfsignal sind nicht nur synchron, sondern auch in ihren für den Vergleich mit dem Schwellwert entscheidenden Signalpegel gleich. Da der Schwellwert für das Prüfsignal höher ist, bleibt das Prüfsignal aus, sobald die gerade noch zulässige Verschlechterung eingetreten ist. Das Ausgangssignal liegt weiterhin an und läßt sich für Steuerungszwecke der vorbestimmten Weise nutzen. Beim Ausbleiben des Prüfsignals wird jedoch das Alarmsignal erzeugt. Der niedrige Schwellwert kann zweckmäßigerweise auf eine stärkere Verschlechterung der Abtastverhältnisse eingestellt sein, bei der eine ordnungsgemäße Funktion der Sensorvorrichtung nicht mehr gewährleistet ist. Sollte auf das Alarmsignal nicht reagiert werden, dann kann die Fadenliefervorrichtung, und zweckmäßigerweise auch die davon mit Faden versorgte Textilmaschine, beim Ausbleiben auch des Ausgangs- oder Drehzahlsignals abgestellt werden, um ein Leeren der Speicherfläche zu vermeiden.
Alternativ werden bei der Verfahrensvariante gemäß Anspruch 5 beide Signale mit gleichem Schwellwert verglichen, zuvor jedoch der Signalpegel des Prüfsignals so verändert, daß aus dessen Vergleich mit dem Alarmschwellwert eine präzise Aussage zur Notwendigkeit des Alarmsignals gewonnen wird.
Das Verfahren läßt sich besonders zweckmäßig bei optoelektronischer und berührungsloser Abtastung in einer mit einer opto-elektronischen Sensorvorrichtung ausgestatteten Fadenliefervorrichtung anwenden, gemäß den Ansprüchen 6 und 9, weil zwischen dem Signalpegel und der Lichtübertragungsqualität ein gut vorhersehbares Verhältnis vorliegt.
Dabei ist die Anwendbarkeit dieses Verfahrens und der baulichen Merkmale zum Durchführen des Verfahrens nicht auf eine opto-elektronische Abtastung beschränkt, sondern es ist auch möglich, das Prinzip, ein ohnedies für einen bestimmten Steuerungszweck erzeugtes Ausgangssignal für eine Prüfroutine zu verwenden, bei anderen berührungslosen Abtastarten (Schall, Induktion etc.) und sogar bei berührender Fadenabtastung zu realisieren. Entscheidend ist, daß das für die Prüfroutine verwendete Ausgangssignal von der Abtastung des Objekts in der Abtastzone stammt und einen gut auszuwertenden Signalpegel besitzt, der sich bei Verschlechterung der Abtastverhältnisse, z.B. durch abgelagerte Verschmutzungen, entsprechend verändert. Das Prinzip ist auch für Fadenliefervorrichtungen brauchbar, die eine stationäre Speicherfläche für den Faden besitzen. Das Ausgangssignal braucht nicht unbedingt eine Signalkette zu sein, obwohl dies in manchen Fällen günstig ist.
Bei der Fadenliefervorrichtung gemäß Anspruch 8 wird das die Drehgeschwindigkeit der Trommel repräsentierende Objekt-Ausgangssignal für die Prüfroutine benutzt, das nur bei aufgrund der Abwesenheit des Fadens in der Abtastzone angetriebener Trommel anliegt. Mittels des nachgebildeten Prüfsignals läßt sich das Alarmsignal einfach und zuverlässig dann erzeugen, wenn sich die Abtastverhältnisse entsprechend verschlechtert haben. Besonders zweckmäßig ist, daß die Betriebssicherheit nur überprüft wird, wenn der Antriebsmotor angetrieben wird und den Fadenvorrat ergänzt. Denn dann besteht die Gefahr einer Leerung der Speicherfläche, weil die Grenze des Fadenvorrats verbrauchsabhängig hinter die Abtastzone zurückgegangen ist. Wird der Antriebsmotor hingegen nicht angetrieben, wird auch keine Überprüfung durchgeführt. Dies ist unerheblich, weil sich dann ohnedies ein großer Fadenvorrat auf der Speicherfläche befindet, der bis in die Abtastzone reicht. Die Störungsbeseitigung bzw. Reinigung erfolgt zweckmäßigerweise bei gerade stehendem Antriebsmotor, so daß die Fadenliefervorrichtung nicht abgeschaltet zu werden braucht und der Produktionsprozeß der Textilmaschine nicht unterbrochen werden muß, die von der Fadenliefervorrichtung mit Faden versorgt wird.
Bei der Ausführungsform der Fadenliefervorrichtung gemäß Anspruch 10 wird das bei Ausbleiben des Prüfsignals nach wie vor anliegende Ausgangssignal als Drehzahlsignal zur Steuerung berücksichtigt und getrennt davon das Alarmsignal erzeugt. Dabei ist es zweckmäßig, den ohnedies zumeist vorhandenen Mikroprozessor der Steuerung der Fadenliefervorrichtung als Verknüpfungs- bzw. Überwachungseinrichtung zu benutzen, weil der Mikroprozessor in der Regel eine für diese zusätzliche Programmroutine ausreichende Kapazität aufweist und nur eine software-seitige Anpassung benötigt.
Bei der Ausführungsform gemäß Anspruch 11 schaltet die Einrichtung über das Abschaltglied die Fadenliefervorrichtung und zweckmäßigerweise auch auf die davon versorgte Textilmaschine ab, sobald auch das dem Schwellwert gegenübergesetzte Drehzahlsignal ausbleibt, weil aus irgendwelchen Gründen nach Auftreten des Alarmsignals die Störung nicht behoben wurde. Dies ist eine doppelte Sicherheitsfunktion.
Bei der Ausführungsform gemäß Anspruch 12 erzeugt der Spannungsteiler den gleichen Signalpegel für das Ausgangssignal und das Prüfsignal. Die beiden Komparatoren setzen die beiden Signalpegel zwei unterschiedlichen Schwellwerten gegenüber. Dadurch wird das für die Steuerung gegebenenfalls benötigte Drehzahlsignal auch bei Erreichen einer gerade noch zulässigen Verschlechterung der Abtastverhältnisse weiterhin anliegen, obwohl das Prüfsignal abgefallen ist und das Alarmsignal erzeugt wird.
Bei der alternativen Ausführungsform gemäß Anspruch 13 wird hingegen bereits im Spannungsteiler der Signalpegel für das Prüfsignal gegenüber dem Signalpegel des Ausgangssignals verändert. Aus dem Ausgangssignal kann nach wie vor das gegebenenfalls zur Steuerung benötigte Drehzahlsignal abgeleitet werden, während bei Erreichen einer gerade noch zulässigen Verschlechterung der Abtastverhältnisse das Prüfsignal abfällt und das Alarmsignal erzeugt wird.
Bei der Ausführungsform gemäß Anspruch 14 wird eine sehr zuverlässige, vorzugsweise opto-elektronische, Fadenabtastung mit präziser Steuerung des Antriebsmotors durch die mehreren Einzelsensoren erreicht, wobei nur das Ausgangssignal eines Einzelsensors für die Prüfroutine herangezogen wird.
Anhand der Zeichnung werden Ausführungsformen des Erfindungsgegenstandes erläutert. Es zeigen:
Fig. 1
einen Längsschnitt einer Fadenliefervorrichtung,
Fig. 2
einen Horizontalschnitt in der Ebene II-II von Fig. 1,
Fig. 3
ein Blockschaltbild einer Steuerschaltung,
Fig. 4
eine Detailvariante zu Fig. 3, und
Fig.5,5A 5B,5C
schematische U/t-Signaldiagramme.
Eine Fadenliefervorrichtung F gemäß Fig. 1, insbesondere eine Fadenliefervorrichtung für eine Strickmaschine, weist ein Gehäuse 13 für einen elektrischen Antriebsmotor 15 auf, mit dem über eine Welle 16 eine Trommel 1 drehantreibbar ist. In einem gehäusefesten Ausleger 13' ist eine opto-elektronische Sensorvorrichtung 7 mit (Fig. 2) mehreren in Umfangsrichtung mit Zwischenabständen angeordneten, auf eine Abtastzone 12 (strichpunktiert angedeutet) ausgerichteten Sensoren S, z.B. parallel zur Trommelachse verstellbar, angeordnet. Die Sensorvorrichtung 7 ist über eine Steuerschaltung L mit einer Steuerung C des Antriebsmotors 15 verbunden. Jeder Sensor kann beispielsweise aus einer eigenen Lichtquelle, z.B. für infrarotes Licht, und einem Empfänger, z.B. einer Fotodiode, bestehen, die auf Reflektionslicht anspricht.
Die Trommel 1 definiert eine Speicherfläche 2 für einen Fadenvorrat 5, der aus Windungen 6 eines Fadens Y besteht, der von der nicht dargestellten Textilmaschine (z.B. Strickmaschine) bedarfsabhängig überkopf der Trommel 1 abgezogen wird. Der Faden Y wird in einem oberen Bereich der Trommel 1 in Fig. 1 zugeführt und durch die Drehung der Trommel 1 aufgewickelt, wobei der Antriebsmotor 15 so gesteuert wird, daß er trotz variierenden Verbrauchs des Fadens Y den Fadenvorrat 5 in einer Größe aufrechtzuhalten versucht, mit der der Fadenvorrat 5 in die Abtastzone 12 reicht. Liegt in der Abtastzone 12 Faden vor, so wird der Antriebsmotor 15 angehalten oder verzögert. Liegt kein Faden in der Abtastzone 12 vor, dann wird der Antriebsmotor 15 angetrieben oder beschleunigt. Über die Steuerung C wird die Antriebsgeschwindigkeit des Antriebsmotors 15 annähernd dem Fadenverbrauch angepaßt.
Die Trommel 1 kann als Stabkäfig ausgebildet sein mit längsverlaufenden Stäben R, die durch Zwischenräume Z voneinander getrennt sind. Anstelle durchgehender Zwischenräume Z könnten auch nach außen offene Längsnuten in der Trommel 1 vorgesehen sein. Ferner ist es denkbar, eine Trommel 1 mit glatter Oberfläche zu benutzen, die in Umfangsrichtung abwechselnde Oberflächenbereiche A, B mit voneinander deutlich verschiedenen, z.B. optischen, Abtasteigenschaften aufweist. Bei der gezeigten Ausführungsform definieren die Stäbe R und die Zwischenräume Z erste und zweite Umfangsabschnitte 8, 9 mit voneinander klar verschiedenen Abtasteigenschaften für die Sensoren S der Sensorvorrichtung 7. Die Verteilung der Oberflächenbereiche A, B sollte in Umfangsrichtung regelmäßig sein. In der Sensorvorrichtung sind bei dieser Ausführungsform drei Sensoren S in Umfangsrichtung derart beabstandet, daß zumindest ein Sensor S einen ersten Umfangsabschnitt 8 und wenigstens ein zweiter Sensor S gleichzeitig einen zweiten Umfangsabschnitt 9 abtastet.
In der Trommel 1 ist ein Speichenstern 19 als Vorschubelement G angeordnet, dessen Speichen 18 sich durch die Zwischenräume Z bis zu einer Drehlagerung 17 auf der Welle 16 erstrecken. Die Drehlagerung 17 und der Speichenstern 19 stehen schräg zur Achse 3 der Trommel 1. Da die Drehlagerung 17 auf einer Hülse 17a angeordnet ist, die an einer Drehbewegung mit der Welle 16 gehindert ist, schiebt der Speichenstern 19 den Fadenvorrat 5 axial in Richtung zur Abtastzone 12 vorwärts. Eine Vorschubwirkung könnte alternativ auch durch eine konische Ausbildung der Trommel 1 an der Fadenzulaufseite erzielt werden.
Die Sensoren S sind gemeinsam in einem Gehäuse 30 untergebracht. Lichtdurchlässige Abdeckscheiben 31 oder ein für alle Sensoren S gemeinsames Abdeckfenster schützen die Sensoren S gegen eine direkte Verschmutzung. Auf oder vor diesen Abdeckscheiben 31 bzw. auf dem Abdeckfenster und/oder in der Abtastzone der Trommel 1 können sich Verschmutzungen ablagern.
Fig. 3 verdeutlicht schematisch als Blockschaltbild eine mögliche Ausführungsform der Steuerschaltung L, mit der Antriebssteuersignale für den Antriebsmotor 15 aus dem Ausgangssignal der Sensorvorrichtung 7 bzw. den Ausgangssignalen der Sensoren S erzeugt werden.
Die Sensoren S bestehen aus Sendern D7, D8 und D9 und Empfängerelementen T1, T2 und T3, die, vorzugsweise, mit infrarotem Licht arbeiten. Die Sensoren, die Empfänger und mit diesen zusammenarbeitende Operationsverstärker 20, 21 und 22 sind gemeinsam an eine Konstantspannungsquelle angeschlossen. Die empfangene Infrarotstrahlung erzeugt einen Fotostrom, der die Spannung an den Arbeitswiderständen beeinflußt. Die Spannungen werden in den Operationsverstärkern 20, 21 und 22 verstärkt. Die Ausgänge der Operationsverstärker 20, 21 und 22 sind über ein Diodennetzwerk mit einem zentralen Arbeitswiderstand 40 verbunden. Die Dioden sind so polarisiert verschaltet, daß die positiv wirkenden Spannungen am oberen Punkt des Arbeitswiderstandes 40 und die negativ wirkenden Spannungen am Fußpunkt des Arbeitswiderstandes 40 ankommen. So bildet sich am Arbeitswiderstand 40 eine maximale Differenzspannung zwischen der maximal höchsten positiven Spannung und der maximal niedrigsten negativen Spannung aus. Der positive Wert wird über einen Verstärker 38, der negative Wert hingegen über einen Verstärker 39 zu einem Differenzverstärker 41 geleitet. Die Spannung am Ausgang des Differenzverstärkers 41 entspricht dem proportionalen Anteil des Fadenvorrats auf der Speicherfläche. Die Spannung am Ausgang des Differenzverstärkers 41 wird über eine Diode und ein Widerstandsnetzwerk einem Komparator 43 zugeleitet. An einem Potentiometer 44 läßt sich der Sollwert des Fadenvorrats einstellen. Der Komparator 43 liefert der Steuerung des Antriebsmotors 15 die Kommandos: Laufen oder Anhalten.
Das Ausgangssignal eines Sensorelements S (D7, T1) wird am Operationsverstärker 20 zusätzlich über 14 abgegriffen und einem Schaltungsteil D sowie einem Parallelschaltungsteil E zugeführt.
Vom Punkt 23 führt eine Leitung 24 zu einem Eingang eines Komparators 26, dessen anderer Eingang an ein einstellbares Schwellwertglied 27 angeschlossen ist. Der Ausgang des Komparators 26 ist an eine Verknüpfungs- bzw. Überwachungseinrichtung V angeschlossen, die vorzugsweise in einen Mikroprozessor M integriert ist. Daran angeschlossen ist ein Warnsignalgeber 4 und gegebenenfalls ein Abschaltglied 11. Der Parallelschaltungsteil E zweigt am Punkt 23 mit einer Leitung 25 ab, die an einen Eingang eines zweiten Komparators 28 angeschlossen ist, dessen anderer Eingang mit einem zweiten Schwellwertglied 29 verbunden ist. Der Ausgang des zweiten Komparators 28 ist ebenfalls an die Einrichtung V angeschlossen. Das Schwellwertglied 27 ist auf einen niedrigen Schwellwert eingestellt, der, z.B., einem Signalpegel entspricht, unterhalb dessen, z.B. aufgrund verschlechterter Lichtübertragungsqualität, die Sensorvorrichtung 7 nicht mehr funktionsfähig ist. Das Schwellwertglied 29 ist hingegen auf einen höheren Schwellwert eingestellt, der eine gerade noch zulässige Verschlechterung der Lichtübertragungsqualität repräsentiert, bei der die Sensorvorrichtung noch ordnungsgemäß arbeiten kann, eine Beseitigung der die Lichtübertragungsqualität beeinträchtigenden Verschmutzungen jedoch schon angeraten ist.
In dem Schaltungsteil D wird aus dem Ausgangssignal ein die Geschwindigkeit der Trommel 1 repräsentierendes Drehzahlsignal erzeugt, das über die Einrichtung V im Mikroprozessor M anliegt und zur Auswertung herangezogen werden kann. Der Mikroprozessor vergleicht in einer Äquivalenzlogik das Vorhandensein beider Signale aus den Komparatoren 28 und 26. Werden beide Signale ungleich bzw. bleibt eines der Signale aus, so ist Alarm zu geben.
Ein Prüfsignal wird synchron und im wesentlichen zeitgleich und mit gleichem Signalpegel gebildet wie das Ausgangssignal. Da jedoch das Schwellwertglied 29 auf einen höheren Schwellwert eingestellt ist als das Schwellwertglied 27, bleibt das Prüfsignal an der Einrichtung V aus, sobald sein Pegel unter den Schwellwert abfällt. Mittels des Mikroprozessors M wird der Signalgeber 4 aktiviert, um, vorzugsweise, ein optisches oder akustisches Signal abzugeben. Werden die Verschmutzungen nicht beseitigt, dann kann der Mikroprozessor M bei Ausbleiben auch des Drehzahlsignals das Abschaltglied 11 aktivieren und die Fadenliefervorrichtung und die Textilmaschine abstellen, um ggfs. ein Leeren der Trommel 1 zu vermeiden.
Fig. 4 verdeutlicht eine Variation des Schaltungsteils D und des Parallelschaltungsteils E. In der Leitung 14 ist ein Spannungsteiler aus Widerständen 32, 33, 34 vorgesehen. Im Punkt 35 zwischen den Widerständen 32 und 33 zweigt die Leitung 24 zu einem Eingang des Komparators 26 ab. Vom Punkt 37 zwischen den Widerständen 33 und 34 zweigt hingegen die Leitung 25 zu einem Eingang des zweiten Komparators 28 ab. Der Signalpegel (Spannungspegel) aus dem Ausgangssignal am Punkt 37 (Prüfsignal) ist niedriger als am Punkt 35. Der jeweils andere Eingang des ersten und des zweiten Komperators 26, 28 ist an ein gemeinsames Schwellwertglied 36 angeschlossen, das auf einen bestimmten Schwellwert eingestellt ist (eine Referenz-Spannung). Der Schwellwert 36 ist genau auf den Punkt eingestellt, an welchem die Verschmutzung einen gerade noch zulässigen, für den Signalpegel des Prüfsignals aber zu hohen Grenzwert erreicht. Durch den Spannungsteiler 32, 33 und 34 schaltet der Komparator 28 bei einer höheren Schwelle als der Komparator 26. Ist die Sensorvorrichtung entsprechend verschmutzt, so kann der Komparator 28 nicht mehr durchschalten. Durch die Äquivalenzprüfung der Ausgangsspannungen der Komparatoren 26, 28 wird im Mikroprozessor M festgestellt, daß ein Warnsignal auszugeben ist. Der Warnsignalgeber 4 wird aktiviert.
Zum besseren Verständnis dieser Prüfroutine ist auf die Figuren 5, 5A, 5B und 5C verwiesen. Fig. 5 verdeutlicht in einem U/t-Diagramm das Objekt-Ausgangssignal 38' in der Leitung 14, wie es durch den Sensor S, D7, T1 in Abängigkeit vom Durchgang der Umfangsabschnitte 8, 9 bzw. der voneinander verschiedenen Oberflächenbereiche A, B erzeugt wird. Bei den beiden ersten Signalpegeln ist die Lichtübertragungs-qualität noch einwandfrei. Ab dem dritten Signalpegel nimmt in Fig. 5 die Qualität der Lichtübertragung ab. In der Steuerschaltung L gemäß Fig. 3 liegt - wie in dem Diagramm der Fig. 5A dargestellt - ein Signal 39' an. Der am Schwellwertglied 27 eingestellte Schwellwert ist mit U1 angedeutet. Am Ausgang des Komparators 26 ergibt sich eine Signalfolge C gemäß Fig. 5C. Am Ausgang des Komparators 28 ergibt sich hingegen eine Signalfolge G gemäß Fig. 5C. Ab dem Zeitpunkt X ist die Signalfolge G nicht mehr vorhanden. Eine Prüfung auf Gleichheit der Signalfolgen ergibt eine logische Signalfolge H in Fig. 5C. Zum Zeitpunkt X aktiviert der Mikroprozessor M das Wamsignalglied 4.
Der Schwellwert U2 repräsentiert eine gerade noch zulässige Verschlechterung der Abtastverhältnisse, d.h. der Lichtübertragungsqualität, bei der die Sensorvorrichtung 7 noch ordnungsgemäß arbeitet, wie durch das in Fig. 5A unten angedeutete, auch nach dem Zeitpunkt X noch anliegende Signal 39' und die Signalfolge C in Fig. 5C verdeutlicht ist. Dabei ist darauf hinzuweisen, daß die Lichtübertragungsqualität sich normalerweise innerhalb einer wesentlichen längeren Zeitspanne verschlechtert, als sie aus den Fig. 5, 5A, 5B, 5C ableitbar ist. Diese Figuren sind bezüglich der Zeitspanne zum besseren Gesamtverständnis nur als schematisch anzusehen.
Das Diagramm gemäß Fig. 5B gehört zur Variante gemäß Fig. 4. Unten in Fig. 5B ist ein Signal 39" entsprechend dem Signal 39' der Fig. 5A vorhanden. Der Schwellwert U1 entspricht dem Schwellwert U1 der Fig. 5A. Oben in Fig. 5B ist erkennbar, wie aufgrund des Spannungsteilers die Signalpegel eines aus dem Objekt-Ausgangssignal 38' abgeleiteten Prüfsignals 40" jeweils entsprechend niedriger sind als die Signalpegel des Signals 39", wobei jedoch für das Prüfsignal 40" derselbe Schwellwert U1 berücksichtigt wird, wie für das Signal 39". Die ersten drei Signalpegel des Prüfsignals 40" sind noch ausreichend hoch, um den zweiten Komperator 28 zu passieren. Der vierte Signalpegel ist jedoch niedriger als der Schwellwert U1, so daß dann an der Verknüpfungseinrichtung V das Prüfsignal 40" ausbleibt und das Warnsignal erzeugt wird.
Mittels des Schaltungsteils D und des Parallelschaltungsteils E und den darin angeordneten Komponenten wird eine Antivalenz-Kontrolleinrichtung zum Auswerten des Übereinstimmens des Prüfsignals mit dem Drehzahlsignal geschaffen. Diese Antivalenz-Kontrolleinrichtung ist software-seitig einfach im Mikroprozessor M zu verwirklichen. Die Überprüfung der Qualität der Lichtübertragung wird nur dann durchgeführt, wenn der Antriebsmotor zum Ergänzen des Fadenvorrates angetrieben wird, weil bei stillstehender Trommel ohnedies die Sensorvorrichtung nur den Faden abtastet und die reflektierenden Stäbe R nicht sieht bzw. die Qualität der Reflektionslichtübertragung nicht zuverlässig beurteilen kann.
Das Verfahren läßt sich auch bei anderen physikalischen Abtastprinzipien verwenden, z.B. bei einer Abtastung mittels Schall, Induktion, Magnetismus, Kapazität oder dgl.

Claims (14)

  1. Verfahren zum Überwachen der Abtastverhältnisse beim Steuern einer Fadenliefervorrichtung (F), die eine Speicherfläche (2) für den in Windungen in einem Fadenvorrat (5) zum Liefern des gespeicherten Faden (Y), einen Antriebsmotor (15) zum ergänzenden Aufwickeln des Fadens, eine mit wenigstens einem Sensor (S) auf eine (12) in der Fadenliefervorrichtung (F) ausgerichtete Sensorvorrichtung (7) und eine mit der Sensorvorrichtung verbundene Steuerschaltung (L) aufweist, bei dem der Sensor in Abhängigkeit von der Bewegung bzw. der Ab- oder Anwesenheit eines Objekts (5, 8, 9) in der Abtastzone ein Objekt-Ausgangssignal (38') zur Steuerung des Antriebsmotors (15) erzeugt, wobei der Signalpegel des Objekt-Ausgangssignals (38') von der Qualität der Abtastverhältnisse abhängt, und bei dem bei Verschlechterung der Abtastverhältnisse ein Alarmsignal erzeugbar ist, dadurch gekennzeichnet, daß aus dem Objekt-Ausgangssignal (38') ein im wesentlichen synchrones Prüfsignal (40', 40") nachgebildet wird, daß der Signalpegel des Prüfsignals mit einem eine gerade noch zulässige Verschlechterung der Abtastverhältnisse repräsentierenden Alarm-Schwellwert (U1, U2) verglichen wird, und daß das Alarmsignal bei einem Abfall des Signalpegels des Prüfsignals (40', 40") unter den Alarm-Schwellwert erzeugt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Alarmsignal aufgrund des Resultats einer Überwachung des dem Alarm-Schwellwert (U1, U2) gegenübergesetzten Prüfsignals (40', 40") und des Objekt-Ausgangssignals (38') gebildet wird, vorzugsweise bei als Überwachungsresultat festgestelltem Ausbleiben des dem Alarmschwellwert gegenübergesetzten Prüfsignals bei weiterhin anliegendem Objekt-Ausgangssignal.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Speicherfläche (2) bei mittels der Sensorvorrichtung (7) festgestellter Abwesenheit des Fadenvorrats (5) in der Abtastzone (12) durch den Antriebsmotor (15) drehangetrieben wird, und daß aus dem Objekt-Ausgangssignal (38') des Sensors (S) der Sensorvorrichtung ein die Drehgeschwindigkeit der Speicherfläche (2) repräsentierendes S ignal (39', 39") und das Prüfsignal (40', 40") gebildet werden.
  4. Verfahren nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei in etwa gleichen Signalpegeln des Signals (39') und des Prüfsignals (40') der Signalpegel des Prüfsignals (40') einem höheren, die gerade noch zulässige Verschlechterung der Abtastverhältnisse repräsentierenden Schwellwert (U2) und der Signalpegel des Signals (39') einem niedrigen Schwellwert (U1) gegenübergestellt wird, der eine nicht mehr zulässige Verschlechterung der Abtastverhältnisse repräsentiert, und daß bei Ausbleiben des Prüfsignals (40') das Alarmsignal und bei Ausbleiben des Signals (39') ein Abschaltsignal erzeugt wird.
  5. Verfahren nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Prüfsignal (40") zeitgleich mit gegenüber dem Signalpegel des Signals (39") verringertem Signalpegel nachgebildet wird, und daß beide Signalpegel dem gleichen Schwellwert (U1) gegenübergesetzt werden.
  6. Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Objekt in der Abtastzone opto-elektronisch abgetastet wird, und daß das Alarmsignal bei einer gerade noch zulässigen Verschlechterung der Qualität der Lichtübertragung bei der Sensorvorrichtung (7) gebildet wird.
  7. Fadenliefervorrichtung, insbesondere für Strickmaschinen, mit einem Gehäuse (13), einer Speicherfläche (2) für einen Fadenvorrat, einem steuerbaren Antriebsmotor (15) zum Antreiben eines Aufwickelelementes, mit dem der Faden (Y) einem aus mehreren Windungen bestehenden Fadenvorrat auf der Speicherfläche (2) zuführbar ist, mit einer stationären, auf zumindest eine Abtastzone (12) der Speicherfläche (2) ausgerichteten, signalerzeugenden Sensorvorrichtung (7) zum Abtasten der Bewegung bzw. der An- oder Abwesenheit eines Objekts in der Abtastzone (12), und mit einer das Objekt-Ausgangssignal (38') der Sensorvorrichtung (7) verarbeitenden Steuerschaltung (L) zum Steuern des Antriebsmotors (15),wobei der Signalpegel des Objekt-Ausgangssignals (38') von den Abtastverhältnissen bei der Sensorvorrichtung (7) abhängt, dadurch gekennzeichet, daß der Steuerschaltung (L) ein Parallelschaltungsteil (E) zum Erzeugen und Auswerten eines aus dem Objekt-Ausgangssignal (38') in etwa synchron nachgebildeten Prüfsignals (40', 40") zugeordnet ist, und daß die Steuerschaltung (L) mit einem Alarmsignalgeber (4) verbunden ist, der bei einer eine gerade noch zulässige Verschlechterung der Abtastverhältnisse repräsentierenden Änderung des Signalpegels des Prüfsignals (40', 40") aktivierbar ist.
  8. Fadenliefervorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Speicherfläche (2) an einer mittels des Antriebsmotors (15) drehantreibbaren, das Aufwikkelelement definierenden Trommel (1) vorgesehen ist, die in der Abtastzone (12) in Umfangsrichtung versetzte Oberflächenbereiche (A, B, 8, 9) mit deutlich voneinander verschiedenen Abtasteigenschaften aufweist, daß die Oberflächenbereiche (A, B, 8, 9) das bei Abwesenheit des Fadens (Y) in der Abtastzone (12) von der Sensorvorrichtung (7) auf Bewegung abgetastete Objekt definieren, daß mit der Sensorvorrichtung (7) bei der Bewegungs-Abtastung der Oberflächenbereiche (A, B) das die Drehgeschwindigkeit der Trommel (1) repräsentierendes Objekt-Ausgangssignal (38') erzeugbar ist, daß der Parallelschaltungsteil (E) ein Schwellwertglied (36, 29) enthält, das einen die gerade noch zulässige Verschlechterung der Abtastverhältnisse bei der Sensorvorrichtung (7) und an wenigstens einem der Oberflächenbereiche repräsentierenden Schwellwert bereitstellt, und daß in dem Parallelschaltungsteil (E) das Prüfsignal (40', 40") aus dem Objekt-Ausgangssignal (38') in etwa zeitgleich nachbildbar und zur Auswertung dem vom Schwellwertglied bereitgestellten Schwellwert (U1, U2) gegenübersetzbar ist.
  9. Fadenliefervorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Sensorvorrichtung (7) eine opto-elektronische Sensorvorrichtung ist, mit der das Objekt-Ausgangssignal (38') mit einem von der Lichtübertragungs-Qualität in der Sensorvorrichtung (7) abhängigen Signalpegel erzeugbar ist.
  10. Fadenliefervorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Steuerschaltung (L) ein Schaltungsteil (D) zum Ableiten eines die Drehzahl repräsentierenden Signals (39', 39") aus dem Objekt-Ausgangssignal (38') zugeordnet ist, daß der Schaltungsteil (D) und der Parallelschaltungsteil (E) gemeinsam an eine signalverarbeitende Verknüpfungs- bzw. Überwachungseinrichtung (V), vorzugsweise einen Mikroprozessor (M), angeschlossen sind, und daß die Einrichtung (V) eine Programmroutine aufweist, innerhalb derer bei Anliegen des Signals (39', 39") und Ausbleiben des Prüfsignals (40', 40") der Alarmsignalgeber (4) aktivierbar ist.
  11. Fadenliefervorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Verknüpfungs- bzw. Überwachungseinrichtung (V) mit einem Abschaltglied (11) verbunden ist, das im Rahmen der Programmroutine aktivierbar ist, sobald bei eingeschaltetem Antriebsmotor (15) auch das Signal (39', 39") ausbleibt.
  12. Fadenliefervorrichtung nach wenigstens einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß der Schaltungsteil (D) und der Parallelschaltungsteil (E) gemeinsam an einen Spannungsteiler angeschlossen sind, daß der Schaltungsteil (D) an einen Eingang eines ersten Komparators (26) angeschlossen ist, dessen Ausgang mit der Verknüpfungs- bzw. Überwachungseinrichtung (V) verbunden und dessen anderer Eingang an ein erstes Schwellwertglied (27) für einen niedrigen Schwellwert (U1), vorzugsweise eine erste Referenzspannung, angeschlossen ist, und daß der Parallelschaltungsteil (E) an einen Eingang eines zweiten Komparators (28) angeschlossen ist, dessen Ausgang ebenfalls mit der Verknüpfungs- bzw. Überwachungseinrichtung (V) verbunden und dessen anderer Eingang an ein zweites Schwellwertglied (29) für einen höheren Schwellwert (U2), vorzugsweise eine zweite Referenzspannung, angeschlossen ist.
  13. Fadenliefervorrichtung nach wenigstens einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß für das Objekt-Ausgangssignal (38') ein Spannungsteiler (32, 33, 34) vorgesehen ist, an den der Schaltungsteil (D) vor einem Widerstand (33)und der Parallelschaltungsteil (E) hinter diesem Widerstand (33) angeschlossen sind, daß der Schaltungsteil (D) an einem Eingang eines mit seinem Ausgang an die Verknüpfungs- bzw. Überwachungseinrichtung (V) angeschlossenen ersten Komparators (26) angeschlossen ist, daß der Parallelschaltungsteil (E) an einen Eingang eines mit einem Ausgang ebenfalls an die Einrichtung (V) angeschlossenen zweiten Komparators (28) angeschlossen ist, und daß die zweiten Eingänge der Komparatoren (26, 28) mit einem gemeinsamen Schwellwertglied (36) für nur einen Schwellwert (U1), vorzugsweise eine einzige Referenzspannung, verbunden sind.
  14. Fadenliefervorrichtung nach wenigstens einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß die Sensorvorrichtung (7) mehrere in Umfangs- und Drehrichtung der Trommel (1) versetzte Einzelsensoren (S), vorzugsweise opto-elektronische Einzelsensoren, jeweils bestehend aus einem Sender (D7, D8, D) und diesem zugeordneten Emfpängerelement (T1, T2, T3), aufweist, und daß der Schaltungsteil (D) und der Parallelschaltungsteil (E) nur an einen Einzelsensor (S) angeschlossen sind.
EP96942317A 1995-12-08 1996-12-03 Verfahren zum überwachen der abtastverhältnisse beim steuern einer fadenliefervorrichtung Expired - Lifetime EP0868382B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19545891 1995-12-08
DE19545891A DE19545891A1 (de) 1995-12-08 1995-12-08 Verfahren zum Überwachen der Abtastverhältnisse beim Steuern einer Fadenliefervorrichtung
PCT/EP1996/005383 WO1997021620A1 (de) 1995-12-08 1996-12-03 Verfahren zum überwachen der abtastverhältnisse beim steuern einer fadenliefervorrichtung

Publications (2)

Publication Number Publication Date
EP0868382A1 EP0868382A1 (de) 1998-10-07
EP0868382B1 true EP0868382B1 (de) 2000-05-03

Family

ID=7779600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96942317A Expired - Lifetime EP0868382B1 (de) 1995-12-08 1996-12-03 Verfahren zum überwachen der abtastverhältnisse beim steuern einer fadenliefervorrichtung

Country Status (7)

Country Link
US (1) US6125663A (de)
EP (1) EP0868382B1 (de)
KR (1) KR100303145B1 (de)
CN (1) CN1103734C (de)
DE (2) DE19545891A1 (de)
TW (1) TW308614B (de)
WO (1) WO1997021620A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010417A1 (de) 2007-03-01 2008-09-04 Memminger-Iro Gmbh Selbstreinigende Nadelüberwachungseinrichtung

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033812A1 (en) * 1997-02-05 1998-08-06 Brigham And Women's Hospital, Inc. Mast cell protease peptide inhibitors
KR100493986B1 (ko) * 2001-09-20 2005-06-27 학교법인 두원학원 방사상태 제어시스템의 제어방법
DE10153856A1 (de) * 2001-11-02 2003-05-15 Iropa Ag Fadenliefervorrichtung und Verfahren zur Fadenlieferung
DE10159227A1 (de) * 2001-12-03 2003-06-18 Iropa Ag Fadenliefergerät
CN1307425C (zh) * 2003-03-13 2007-03-28 鸿富锦精密工业(深圳)有限公司 老化台车测试监控改良装置
CN102677384A (zh) * 2012-06-08 2012-09-19 慈溪太阳洲纺织科技有限公司 储纱器
CN102704165A (zh) * 2012-06-08 2012-10-03 慈溪太阳洲纺织科技有限公司 一种控制储纱器上输线轮运动状态的方法
CN102965799B (zh) * 2012-12-21 2013-11-06 慈溪太阳洲纺织科技有限公司 储纬器
CN103225166A (zh) * 2013-04-23 2013-07-31 慈溪太阳洲纺织科技有限公司 圆桶形针织机和圆桶形针织机上的织针损坏监测方法
EP2907908B1 (de) * 2014-02-13 2016-06-22 L.G.L. Electronics S.p.A. Garnabspulsensor für Garnvorratsvorrichtungen mit Drehtrommel
CN103832879A (zh) * 2014-02-28 2014-06-04 江阴市华方新技术科研有限公司 一种储纱装置
USD931740S1 (en) * 2019-09-06 2021-09-28 Saurer Technologies GmbH & Co. KG Quality sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2337413C3 (de) * 1972-10-16 1979-09-06 Gebrueder Loepfe Ag, Wetzikon (Schweiz) Optoelektrische Messeinrichtung zur Messung der Querdimensionen von laufenden Fäden
IT1184759B (it) * 1985-04-22 1987-10-28 Roy Electrotex Spa Porgitrama per telai di tessitura
US4769532A (en) * 1986-07-11 1988-09-06 Laurel Bank Machines Co., Ltd. Apparatus for adjusting optical sensors with threshold memory
ATE70122T1 (de) * 1987-12-24 1991-12-15 Barco Automation Nv Einrichtung zum messen eines fadens.
US5377922A (en) * 1990-06-06 1995-01-03 Iro Ab Sensing and/or analysis system for thread feeder
SE502175C2 (sv) * 1993-12-17 1995-09-04 Iro Ab Förfarande och anordning för fastställande av trådmagasinets variation på en fournissör
IT1267157B1 (it) * 1994-11-22 1997-01-28 Lgl Electronics Spa Dispositivo e metodo perfezionati per la sorveglianza della riserva di filato negli apparecchi alimentatori di trama.
TW281703B (de) * 1995-01-26 1996-07-21 Toyota Automatic Loom Co Ltd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010417A1 (de) 2007-03-01 2008-09-04 Memminger-Iro Gmbh Selbstreinigende Nadelüberwachungseinrichtung

Also Published As

Publication number Publication date
US6125663A (en) 2000-10-03
WO1997021620A1 (de) 1997-06-19
DE19545891A1 (de) 1997-06-12
CN1103734C (zh) 2003-03-26
CN1207083A (zh) 1999-02-03
EP0868382A1 (de) 1998-10-07
DE59605149D1 (de) 2000-06-08
KR19990071981A (ko) 1999-09-27
TW308614B (de) 1997-06-21
KR100303145B1 (ko) 2001-12-12

Similar Documents

Publication Publication Date Title
EP0868382B1 (de) Verfahren zum überwachen der abtastverhältnisse beim steuern einer fadenliefervorrichtung
EP0530492B1 (de) Verfahren zum Feststellen von Fehlern in einer textilen Warenbahn
WO1993013407A1 (de) Fremdfasererkennung in garnen
CH647999A5 (de) Fadenliefervorrichtung fuer textilmaschinen und verfahren zum betrieb der fadenliefervorrichtung.
CH674379A5 (de)
EP0658507B1 (de) Verfahren zum Ermitteln eines Fadenvorrats in einer Fadenspeicher- und -liefervorrichtung, und Fadenspeicher- und -liefervorrichtung
DE3321261C2 (de) Vorrichtung zur Überwachung von drehenden Teilen auf entstehende Wickel bzw. Aufläufe
DE102016001099A1 (de) Vorrichtung und Verfahren zum Ermitteln des Durchmessers eines durch einen laufenden Faden gebildeten Fadenballons an einer Arbeitsstelle einer fadenballonbildenden Textilmaschine
EP1370720B1 (de) Verfahren zur produktionsüberwachung/einstellung einer strickmaschine, und produktionsüberwachungs/einstellungs-vorrichtung
DE2800083C2 (de) Vorrichtung zur Überwachung der Oberfläche insbesondere einer Zigarette
DE3541142C2 (de) Kontroll- und Korrekturvorrichtung der Querabmessungen von stabförmigen Produkten, insbesondere für Konfektioniermaschinen für Rauchwaren
EP0837829B1 (de) Optoelektronische sensorvorrichtung und schussfaden-messspeichergerät
DE2533754A1 (de) Verfahren und vorrichtung zum verarbeiten von straengen
DE3133494C2 (de) Opto-elektronische Überwachungsvorrichtung
EP1561845B1 (de) Verfahren und Vorrihtung zum Überwachen des Kernelements beim Herstellen von Core-Garn
DE102015005328A1 (de) Vorrichtung und Verfahren zum Ermitteln des Durchmessers eines durch einen laufenden Faden gebildeten Fadenballons an einer Arbeitsstelle einer Textilmaschine
DE60224153T2 (de) Vorrichtung zum Umhüllen von Körpern, insbesondere von Erntegutballen
EP0679599A2 (de) Faserband-Überwachungseinrichtung
DE3635140A1 (de) Optische abtastvorrichtung zur ermittlung einer leerlaufenden vorlagenspule bei einer spinn- oder zwirnmaschine
CH709887B1 (de) Näh- oder Stickmaschine.
DE2050498A1 (de)
DE60107934T2 (de) Verfahren zum fühlen und zählen von wicklungen einer speichertrommel und vorrichtung zur herstellung des verfahrens
DE2059418A1 (de) Vorrichtung zum Steuern von Maschinen zum Verarbeiten von Materialstraengen
DE69819861T2 (de) Vorrichtung zum Liefern eines elastisch ausdehnbaren Fadens zu Strickmaschinen
DE2854760A1 (de) Wandernder fadenspender fuer eine textilmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR IT NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990506

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000503

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000503

REF Corresponds to:

Ref document number: 59605149

Country of ref document: DE

Date of ref document: 20000608

ITF It: translation for a ep patent filed
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031222

Year of fee payment: 8

Ref country code: BE

Payment date: 20031222

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

BERE Be: lapsed

Owner name: *MEMMINGER-IRO G.M.B.H.

Effective date: 20041231

EUG Se: european patent has lapsed
BERE Be: lapsed

Owner name: *MEMMINGER-IRO G.M.B.H.

Effective date: 20041231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151222

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59605149

Country of ref document: DE