EP0861211B1 - Verfahren und vorrichtung zur aufbereitung von phosphorsäure - Google Patents

Verfahren und vorrichtung zur aufbereitung von phosphorsäure Download PDF

Info

Publication number
EP0861211B1
EP0861211B1 EP96938152A EP96938152A EP0861211B1 EP 0861211 B1 EP0861211 B1 EP 0861211B1 EP 96938152 A EP96938152 A EP 96938152A EP 96938152 A EP96938152 A EP 96938152A EP 0861211 B1 EP0861211 B1 EP 0861211B1
Authority
EP
European Patent Office
Prior art keywords
mixing tube
inlet
phosphoric acid
gas supply
supply nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96938152A
Other languages
English (en)
French (fr)
Other versions
EP0861211A1 (de
Inventor
Siegfried Piesslinger-Schweiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poligrat Holding GmbH
Original Assignee
POLIGRAT - Holding GmbH
Poligrat Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by POLIGRAT - Holding GmbH, Poligrat Holding GmbH filed Critical POLIGRAT - Holding GmbH
Publication of EP0861211A1 publication Critical patent/EP0861211A1/de
Application granted granted Critical
Publication of EP0861211B1 publication Critical patent/EP0861211B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/906Phosphorus containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/01Waste acid containing iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/01Waste acid containing iron
    • Y10S423/02Sulfuric acid

Definitions

  • the invention relates to a method and an apparatus for Treatment of phosphoric acid, especially mixtures of phosphoric acid.
  • Phosphoric acid and mixtures of phosphoric acid with other acids such as sulfuric acid fall in large quantities when processing metallic Surfaces.
  • Metal surfaces are often pure phosphoric acid or as a mixture with other mineral acids such as e.g. sulfuric acid used. She is both focused, as well in all degrees of dilution, both chemically (without current), as well as used electrochemically using electricity.
  • the aim of the processing is to clean the metal surfaces by removing the contaminants or removing them the contaminated layers of material.
  • the worn out Metal and the impurities it contains go with it largely in the acid in solution and accumulate in it on.
  • the metal surfaces are removed after the treatment Rinsing with water cleaned of the adhering acid residues and dried. The resulting rinse water contains residues of the acids and the metal ions and impurities dissolved in them.
  • the acids and acid mixtures lose with increasing metal content effectiveness and must therefore be wholly or partially be replaced by fresh acid.
  • the resulting one Waste acid and the rinse water must be treated in this way that they can be disposed of harmlessly for the environment.
  • the dissolved heavy metals must be landfillable Solids are transferred. Such solids should be neutral to slightly alkaline and must not or only slightly soluble in water.
  • the preparation is carried out in this way according to the prior art contaminated phosphoric acid and phosphoric acid mixtures Dilute with water, followed by neutralization with alkalis, especially calcium hydroxide, and failures of it formed salts and metal hydroxides. Then the Solids are separated from the water by sedimentation and filtration, thickened and stored in hazardous waste landfills. The remaining water contains the acid and the rinse water originally contained pollutants in reduced concentration and will, provided the concentration of pollutants the to the environment handed over, or partially recycled. Overall, however, the solid waste to be landfilled in their quantity usually a multiple of the acid to be processed represents.
  • radioactive contained in the acids and rinse water Of course, impurities must not be allowed into the Environment, but must be complete and immobilized sent to a repository for radioactive waste in solid form become. In practice, this means that the waste before storage in a separate process by concreting, Bitumen coating, fixing in ion exchangers or glazing have to be elaborately conditioned, from which again a considerable increase in volume results. The available one However, space for the radioactive waste landfill is limited and the associated costs are extremely high.
  • the object of the present invention is a Process for the direct and complete transfer of waste acids and rinsing water including all contained therein Provide impurities in which a landfill capable Solid accumulates, so that compared to the state the technology, a substantial increase in the volume of waste acid etc. is avoided and without special complex Facilities and facilities will be required, in turn can be contaminated.
  • this object is achieved by a method in which the mixtures containing phosphoric acid, as from the Machining of metal surfaces can be obtained, aluminum-containing alkaline solutions added in such an amount be that there is a formation of a solid. It was surprisingly found that the obtained Solids are mostly water-insoluble and consequently can be easily spent in landfills.
  • the invention thus relates to a method for processing and solidification of solutions containing phosphoric acid, especially from the machining of metal surfaces, whereby the solutions that have a phosphoric acid content of 10 to 100 Wt .-%, with alkaline aluminum-containing solutions, which have an aluminum content of 1.5 to 20 wt .-%, preferably 4 to 10 wt .-%, in such a ratio with each other be mixed so that a pH of 5 to 9 results.
  • the pH should be set that in the gradually solidifying mixture between pH 9 and pH 5, preferably pH 8 to pH 6, more preferably pH 7 to pH 8.
  • Preferred aluminum concentrations are 4 to 8% by weight.
  • the Phosphoric acid solution already has aluminum contents on the order of magnitude from 0 to 4% by weight.
  • Such mixtures contain phosphoric acid-containing acid mixtures proven in chemical or electrochemical pickling, Cleaning or polishing occur, but especially such Acid mixtures used to decontaminate metal surfaces were used.
  • Phosphoric acid in a concentration of 0 to 70 wt .-% also Sulfuric acid present.
  • the concentration is preferably the sulfuric acid in a range of 15 to 50 wt .-%.
  • a Aluminum-containing solution that can be used to carry out the process an aqueous solution of Alkali hydroxides with a concentration of 1 to 60% by weight, preferably 10 to 40% by weight, alkali hydroxide content.
  • a very special advantage of the present invention lies in that waste solutions from different metalworking, in which on the one hand acidic mixtures containing phosphoric acid and on the other hand, aluminum-containing solutions arise, without any problems can be disposed of.
  • acidic mixtures containing phosphoric acid and on the other hand, aluminum-containing solutions arise without any problems can be disposed of.
  • alkaline earth metal ions such as Ca ++ can be added, for example in the form of calcium aluminate.
  • the alkaline earth metal concentration is then preferably in the same range as the aluminum concentration.
  • Calcium aluminate is preferably used.
  • the ones to be processed Acids or acid mixtures by adding an alkaline aluminum-containing solution in a water-insoluble Solid transferred, which has the property considerable To be able to bind quantities of foreign substances and water.
  • the water is bound as crystal water.
  • the ability to water to bind increases if aluminum ions are added before processing into the phosphoric acid or the phosphoric acid mixture be introduced. This can be through chemical or anodic Dissolution.
  • Calcium aluminate are suitable as additives for solidification, Sodium aluminate and potassium aluminate or mixtures thereof.
  • phosphate content and water content in the mixture this solidifies in a period of a few seconds to half an hour to a mineral Substance.
  • the pH value is advantageously set in the range from pH 7 to pH 8. With low water content or high aluminum content in connection with high phosphate content, the solidification already occur at lower pH values.
  • the reaction can be highly exothermic.
  • the temperature is advantageous by the speed of the addition of the components to control. Excess water can flow up to one evaporated to some extent by the heating during the reaction become. Furthermore, the water content and thus the weight of the solidified mixture by heating afterwards be reduced.
  • the amount of water that is bound as crystal water may depend on the amount of phosphoric acid present in the mixture from. If the water content is too high, the acid mixtures Concentrate by evaporating before conditioning. Not only is the proportion of free water too but also the amount of water in the lye and the one that is free in neutralizing the acid becomes.
  • This device includes a Mixing tube that extends along a central longitudinal axis and having an inlet and an outlet, the outlet preferably opposite the inlet.
  • In the mixing tube inlet open at least two liquid supply nozzles and at least one gas supply nozzle.
  • the liquid supply nozzles lead to a central one based on the inlet cross-section Area of the inlet while the at least one gas supply nozzle radially outside of the at least two liquid supply nozzles opens into the inlet near the inner wall of the mixing tube.
  • the Longitudinal axis of the gas supply nozzle is inclined so that the angle between the longitudinal axis of the gas supply nozzle and the central longitudinal axis of the mixing tube is at least about 5 °, wherein the longitudinal axis of the gas supply nozzle the central longitudinal axis of the Mixing tube does not cut.
  • the gas supply nozzle is blowing tangential to the inner wall of the mixing tube into the mixing tube.
  • a device is through a liquid supply nozzle the solution containing phosphoric acid and by the other liquid supply nozzle the alkaline, aluminum-containing Solution fed to the mixing tube.
  • the at least one gas supply nozzle is used to inject a gas, for example Compressed air, in the area of the mixing tube inner wall and tangentially to the central longitudinal axis of the mixing tube, so that the gas Mixing tube flows through helically.
  • a gas for example Compressed air
  • the so generated Swirl of the gas flow in the mixing tube ensures that the injected into the core area of the mixing tube Liquids divided into drops, mixed homogeneously and in Direction to be transported to the outlet of the mixing tube.
  • the reaction of the two injected liquids occurring heat and the resulting water vapor are from added to the gas flow and discharged in a controlled manner. Because of the turbulence present in the mixing tube is formed at solid resulting from the reaction in the form of granules, which is blown out of the mixing tube by the gas stream without to touch the inner wall of the mixing tube to a significant degree. A Blockage of the mixing tube is avoided and the resultant Solid can be easily assembled.
  • the mixing device ensures one controlled, continuous and stable mixing process, to constant product quality and uniform Product discharge leads. It is small at high power, handy and very reliable. Beyond that it is inexpensive to manufacture, low maintenance and inexpensive to operate, because only relatively small amounts of under pressure gas and some electricity to drive the liquid metering pumps are needed.
  • the liquid metering pumps need not be expensive high pressure pumps, it is enough Dosing pumps that operate in a relatively low pressure range.
  • Mixing device open two gas supply nozzles in the mixing tube inlet, the angle between the longitudinal axis of each gas supply nozzle and the central longitudinal axis of the mixing tube in one Range of between 5 ° and 60 °.
  • Multiple gas supply nozzles available they open in relation to the inlet cross-section the mixing tube, which is preferably circular is in different quadrants.
  • each gas supply nozzle advantageously opens somewhat upstream of the liquid supply nozzles into the inlet of the Mixing tube.
  • the term inlet is a self axially extending area at the inlet end of the mixing tube.
  • the aforementioned measures result in an even better more even mixing of the injected liquids. If there are several gas supply nozzles, it has a favorable effect if these are each different in the circumferential direction Make the inlet cross-section open. In each Case, however, the gas supply nozzles are radially outside of the Liquid supply nozzles positioned and arranged so that the gas flow they blow in tangential to the central longitudinal axis of the mixing tube exits so that the mixing tube is flowed through spirally or helically.
  • the liquid supply nozzles the number of which depends on the number of Mixing liquids depends on how they are arranged be that their longitudinal axes parallel to the central longitudinal axis of the Mixing tube or slightly inclined so that they cut the central longitudinal axis in the mixing tube.
  • the inclination of the liquid supply nozzles with respect to the central longitudinal axis of the mixing tube less than the corresponding one Inclination of each gas supply nozzle.
  • the inlet area of the mixing tube is preferably conical expanded.
  • this measure creates enough Space for the feeding of the various components, them also creates due to the narrowing of the flow cross-section a desired suction in the direction of flow.
  • Mixing device passes through the mixing tube preferably circular disk-shaped holding plate in which the Mixing tube is held positively. If the inlet area of the mixing tube expanded conically as described above the mixing tube only needs to be in an appropriate way designed recess of the holding plate to be used, in which it then centers itself. The inlet end of the Mixing tube closes flush with the associated surface the holding plate.
  • the liquid supply nozzles and each gas supply nozzle is formed in a cylindrical nozzle block or at least added to the one described above Holding plate placed and braced with the latter is.
  • the gas supply nozzles and the liquid supply nozzles can for example in the material of the nozzle block an electrical discharge machining process can be formed, alternatively can also use prefabricated nozzles in appropriate holes of the nozzle block are used. If necessary, is a seal is arranged between the holding plate and the nozzle block.
  • Such a mixing device is very stable, yet compact and easy to disassemble and to clean.
  • Bracing the holding plate with the cylindrical nozzle block can, for example, with an annular bracket take place, the holding plate and the nozzle block in the circumferential direction surrounds.
  • the peripheral surfaces of holding plate and nozzle block and the inner peripheral surface the bracket should be designed so that by accordingly inclined surfaces when screwing the clamp together force acting axially on the holding plate and the nozzle block occurs, the latter two parts are becoming firmer presses against each other.
  • the mixing device is by reference on mixing a highly concentrated, phosphoric acid Liquid with an alkaline, aluminum-containing Solution has been described. However, it is not on this Limited use, but is suitable for mixing many Liquids, especially for mixing such liquids, when mixed, a violent and strongly exothermic Reaction takes place and in addition, as a result the mixing takes place almost instantaneously Solid forms.
  • Conventional static and dynamic mixers fail here because the rapid solidification of the mixture the mixer blocked and therefore no homogeneous mixing the reaction partner can take place. It is also a controlled one Dissipation of heat from the rapidly solidifying mixture no longer possible, causing local overheating and can result in dangerous explosions.
  • the one shown in FIG. 1 and generally designated 10 Mixing device has a substantially cylindrical mixing tube 12, which extends along its central longitudinal axis M.
  • the mixing tube 12 has an inlet 14 and an opposite one Outlet 16 on.
  • the inlet area of the mixing tube 12 is expanded conically, while the outlet area tapers conically.
  • the two liquid supply nozzles 18 and 20 through which the two liquids to be mixed Mixing tube 12 can be supplied.
  • the two liquid supply nozzles 18 and 20 based on the inlet cross section in the central area of the mixing tube 12 and are slightly inclined with respect to its central longitudinal axis M, so that their longitudinal axes F downstream the central longitudinal axis M. to cut.
  • the mixing device 10 In operation of the mixing device 10 is through the gas supply nozzles 22 and 24 pressurized gas, for example Compressed air, in the mixing tube 12 tangential to its central longitudinal axis M initiated. It then forms in the mixing tube 12 a spiral flow from the injected liquids distributed in fine drops, homogeneously mixed and in Directed to the mixing tube outlet 16 transported. Occurs at the Mix the two injected liquids one strongly exothermic reaction leading to a solid , the heat of reaction generated is removed in a controlled manner and granules form from the mixing tube 12 is blown out without clogging it.
  • pressurized gas for example Compressed air
  • the mixing tube 12 is in one here circular disc-shaped holding plate 26 and due to its conically expanded inlet area in one correspondingly shaped recess of the holding plate form-fitting held.
  • the right end of the mixing tube 12 in FIG. 1 closes flush with the adjacent end face 28 of the holding plate 26 from.
  • On the end face 28 is a circular cylindrical Nozzle block 30 set of the same diameter as has the holding plate 26 and in which the liquid supply nozzles 18 and 20 and the gas supply nozzles 22 and 24 added or are trained.
  • Both the holding plate 26 and the nozzle block 30 are off made of a stable, pressure-resistant material, for example made of stainless steel.
  • a circumferential seal 32 is arranged between the holding plate 26 and the nozzle block 30 near the Mixing tube inlet 14 .
  • the two gas supply nozzles are 22 and 24 are formed directly in the material of the nozzle block 30, for example by drilling or by electrical discharge machining.
  • the two liquid supply nozzles 18 and 20, however, are designed in the form of separate inserts 34 which are tight in the nozzle block 30 are inserted. Is it the supplied liquids around particularly aggressive media, only need the inserts 34 from a special in this way high-quality material resistant to these media become, while the nozzle block 30 from a cheaper Material can exist.
  • the holding plate 26 and the nozzle block 30 are by means of a here two-part, circular bracket 36 against each other tense.
  • the two half-shell-like parts 38 see FIG 2) the bracket 36 are screwed together 40 connected.
  • the inside of the two bracket parts 38 and the Circumferential surfaces of the holding plate 26 and the nozzle block 30 are like shown with corresponding, bevelled surfaces 42 and 44 executed so that good centering and flawless Sealing of the holding plate 26 and the nozzle block 30 in is guaranteed with respect to each other when the bracket 36 is tightened.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Aufbereitung von Phosphorsäure, insbesondere von Gemischen von Phosphorsäure. Phosphorsäure und Gemische von Phosphorsäure mit anderen Säuren wie beispielsweise Schwefelsäure fallen in großen Mengen bei der Bearbeitung von metallischen Oberflächen an.
Zum Reinigen, Beizen, Elektropolieren und Dekontaminieren von Metalloberflächen wird vielfach Phosphorsäure in reiner Form oder als Gemisch mit anderen Mineralsäuren wie z.B. Schwefelsäure verwendet. Sie wird dabei sowohl konzentriert, als auch in allen Graden der Verdünnung, sowohl chemisch (stromlos), als auch elektrochemisch unter der Verwendung von Strom eingesetzt. Ziel der Bearbeitung ist die Reinigung der Metalloberflächen durch Beseitigung der Verunreinigungen oder Abtragen der verunreinigten Werkstoffschichten. Das abgetragene Metall und die darin enthaltenen Verunreinigungen gehen dabei weitgehend in der Säure in Lösung und reichern sich in ihr an. Die Metalloberflächen werden nach der Behandlung durch Spülen mit Wasser von den anhaftenden Säureresten gereinigt und getrocknet. Das dabei anfallende Spülwasser enthält Reste der Säuren und die darin gelösten Metallionen und Verunreinigungen.
Die Säuren und Säuregemische verlieren mit zunehmendem Metallgehalt an Wirksamkeit und müssen deshalb ganz oder teilweise durch frische Säure ersetzt werden. Die somit anfallende Abfallsäure und das Spülwasser müssen so aufbereitet werden, daß sie schadlos für die Umwelt entsorgt werden können. Insbesondere müssen die gelösten Schwermetalle in deponiefähige Feststoffe übergeführt werden. Solche Feststoffe sollten neutral bis schwach alkalisch sein und dürfen nicht oder nur gering in Wasser löslich sein.
Nach dem Stand der Technik erfolgt die Aufbereitung derartig verunreinigter Phosphorsäure und Phosphorsäuregemische durch Verdünnen mit Wasser, gefolgt durch Neutralisieren mit Laugen, insbesondere Calciumhydroxid, und Ausfällen der dabei gebildeten Salze und Metallhydroxide. Anschließend werden die Feststoffe vom Wasser durch Sedimentation und Filtration abgetrennt, eingedickt und auf Sondermülldeponien gelagert. Das restliche Wasser enthält die in der Säure und den Spülwässern ursprünglich enthaltenen Schadstoffe in verringerter Konzentration und wird, sofern die Schadstoffkonzentration die jeweils gültigen Grenzwerte nicht überschreitet, an die Umwelt abgegeben, oder einer teilweisen Wiederverwertung zugeführt. Insgesamt stellen jedoch die zu deponierenden festen Abfälle in ihrer Menge meist ein Vielfaches der aufzubereitenden Säure dar.
Eine weitere Möglichkeit zur Regeneration phosphorsäurehaltiger Gemische besteht in der Rückgewinnung der Phosphorsäure durch Flüssig-Flüssig-Extraktion und ihrer anschließenden Wiederverwendung. Ungelöst bleibt dabei das Problem der umweltverträglichen Aufbereitung der verbleibenden übrigen Rest- und Abfallstoffe. Überdies erfordert dieses Verfahren aufwendige und teure Einrichtungen.
Bei der Behandlung radioaktiv verunreinigter Metalloberflächen unter Verwendung von Phosphorsäure und Phosphorsäuregemischen haben die oben genannten Verfahren gravierende Nachteile, da die zur Aufbereitung verwendeten Säuren und Spülwässer anschließend selbst radioaktiv verunreinigt sind.
Die in den Säuren und Spülwässern enthaltenen radioaktiven Verunreinigungen dürfen selbstverständlich nicht frei in die Umwelt gelangen, sondern müssen vollständig und immobilisiert in fester Form einem Endlager für radioaktiven Abfall zugeführt werden. In der Praxis bedeutet dies, daß die Abfälle vor der Lagerung in einem gesonderten Verfahren durch Einbetonieren, Einbitumieren, Fixieren in Ionentauschern oder Verglasen aufwendig konditioniert werden müssen, woraus nochmals eine erhebliche Volumenvermehrung resultiert. Der verfügbare Platz für die Deponie radioaktiver Abfälle ist jedoch begrenzt und die damit verbundenen Kosten sind extrem hoch.
Die Probleme einer den Anforderungen entsprechenden Aufbereitung der bei der elektrochemischen oder chemischen Dekontamination von Metalloberflächen unter Verwendung von Phosphorsäure oder deren Gemischen anfallenden flüssigen Abfälle sind bisher nicht befriedigend gelöst. Daher werden chemische und elektrochemische Dekontaminationsverfahren unter Verwendung von Phosphorsäure und deren Gemischen trotz ihrer hohen Wirksamkeit und einfachen Handhabung kaum eingesetzt.
Aus der DE 39 08 125 A1 ist ein Verfahren bekannt, bei dem Rückstände aus industriellen Fertigungen und insbesondere Rückstände aus Verbrennungsanlagen verfestigt werden. Die verfestigten Produkte können auf Deponien gelagert oder als Baustoffe eingesetzt werden. Dieses Dokument gibt an, daß als Bindemittel zum Zwecke der Verfestigung der Rückstände ein Gemisch aus Alkalisilikat und Alkalialuminat verwendet werden kann, das in fester Form oder ggf. gelöst in Wasser zugesetzt wird. Bei den Rückständen handelt es sich ausweislich sämtlicher Beispiele im wesentlichen um Stäube (d. h. Flugstaub) aus Verbrennungsanlagen.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur direkten und vollständigen Überführung der Abfallsäuren und Spülwässer einschließlich aller darin enthaltenden Verunreinigungen bereitzustellen, bei dem ein deponiefähiger Feststoff anfällt, so daß daß im Vergleich zum Stand der Technik eine wesentliche Vermehrung des Volumens der Abfallsäure etc. vermieden wird und ohne daß besondere aufwendige Einrichtungen und Anlagen erforderlich werden, die ihrerseits kontaminiert werden können.
Diese Aufgabe ist erfindungsgemäß durch ein Verfahren gelöst, bei dem den phosphorsäurehaltigen Gemischen, wie sie aus der Bearbeitung von Metalloberflächen gewonnen werden, aluminiumhaltige alkalische Lösungen in einer solchen Menge zugegeben werden, daß es zu einer Ausbildung eines Feststoffes kommt. Es wurde überraschenderweise festgestellt, daß die erhaltenen Feststoffe überwiegend wasserunlöslich sind und sich folglich problemlos in Deponien verbringen lassen.
Gegenstand der Erfindung ist somit ein Verfahren zur Aufbereitung und Verfestigung von phosphorsäurehaltigen Lösungen, insbesondere aus der Bearbeitung von Metalloberflächen, wobei die Lösungen, die einen Phosphorsäuregehalt von 10 bis 100 Gew.-% aufweisen, mit alkalischen aluminiumhaltigen Lösungen, die einen Aluminiumgehalt von 1,5 bis 20 Gew.-%, vorzugsweise 4 bis 10 Gew.-%, aufweisen, in einem solchen Verhältnis miteinander vermischt werden, daß sich ein pH-Wert von 5 bis 9 ergibt.
Bei der praktischen Umsetzung der vorliegenden Erfindung hat es sich als günstig erwiesen, ganz bestimmte Grenzkonzentrationen zu beachten. Zugleich ist der pH-Wert so einzustellen, daß er in der sich allmählich verfestigenden Mischung zwischen pH 9 und pH 5, vorzugsweise pH 8 bis pH 6, noch bevorzugter pH 7 bis pH 8, beträgt. Es hat sich als günstig erwiesen, aluminiumhaltige Lösungen einzusetzen, die einen Aluminiumgehalt von 4 bis 10 Gew.-% aufweisen. Das bedeutet, daß in der schließlich erhaltenen Mischung aus Phosphorsäure oder Phosphorsäuregemischen und aluminiumhaltigen Lösungen die Aluminiumkonzentration mindestens etwa 1,5 Gew.-% beträgt. Bevorzugte Aluminiumkonzentrationen sind 4 bis 8 Gew.-%. Für den Phosphorsäuregehalt hat sich eine Konzentration von 40 bis 70 Gew.-% Phosporsäure bewährt. Auch können in der Phosphorsäurelösung bereits Aluminiumgehalte in einer Größenordnung von 0 bis 4 Gew.-% vorliegen.
Als für das erfindungsgemäße Verfahren besonders geeignete phosphorsäurehaltige Säuregemische haben sich solche Gemische erwiesen, die beim chemischen oder elektrochemischen Beizen, Reinigen oder Polieren anfallen, insbesondere aber auch solche Säuregemische, die zum Dekontaminieren von Metalloberflächen eingesetzt wurden. Bei solchen Gemischen ist neben der Phosphorsäure in einer Konzentration von 0 bis 70 Gew.-% auch Schwefelsäure vorhanden. Vorzugsweise liegt die Konzentration der Schwefelsäure in einem Bereich von 15 bis 50 Gew.-%. Eine aluminiumhaltige Lösung, die sich zur Durchführung des Verfahrens ganz besonders eignet, ist eine wäßrige Lösung von Alkalihydroxiden mit einer Konzentration von 1 bis 60 Gew.-%, vorzugsweise 10 bis 40 Gew.-%, Alkalihydroxidgehalt.
Ein ganz besonderer Vorteil der vorliegenden Erfindung liegt darin, daß Abfallösungen aus verschiedenen Metallbearbeitungen, bei denen zum einen saure phosphorsäurehaltige Gemische und zum anderen aluminiumhaltige Lösungen anfallen, problemlos einer Entsorgung zugeführt werden können. Bei einer Vermischung dieser Abfallösungen entsteht, soweit die oben angegebenen Grenzwerte vernünftig eingehalten werden, zunächst eine zähfließende Masse, die allmählich zu einem Feststoff aushärtet. Diese zähfließende Masse läßt sich noch gut in Fässer abfüllen und dann ohne weitere Behandlung in Deponien verbringen. Bei dieser Verfahrensweise bilden sich weder Aerosole noch Stäube, was insbesondere bei radioaktiv verseuchten Abfallösungen von Bedeutung ist.
Die richtigen Volumenproportionen und Konzentrationsanteile von Phosphaten und Aluminiumionen müssen gegebenenfalls mittels einfacher Versuche festgelegt werden. Gegebenenfalls können Erdalkalimetallionen wie Ca++ zugesetzt werden, beispielsweise in Form von Calciumaluminat. Die Erdalkalimetallkonzentration liegt dann vorzugsweise im gleichen Bereich wie die Aluminiumkonzentration. Vorzugsweise wird Calciumaluminat eingesetzt.
Nach dem erfindungsgemäßen Verfahren werden die aufzubereitenden Säuren oder Säuregemische durch Zugabe einer alkalischen aluminiumhaltigen Lösung in einen wasserunlöslichen Feststoff überführt, der die Eigenschaft hat, beträchtliche Mengen von Fremdstoffen und Wasser binden zu können. Das Wasser wird als Kristallwasser gebunden. Die Fähigkeit, Wasser zu binden, steigt, wenn vor der Aufbereitung zusätzlich Aluminiumionen in die Phosphorsäure oder das Phosphorsäuregemisch eingebracht werden. Dies kann durch chemische oder anodische Auflösung erfolgen.
Geeignet als Zusätze zur Verfestigung sind Calciumaluminat, Natriumaluminat und Kaliumaluminat oder deren Gemische.
Für die Aufbereitung geht man wie folgt vor:
  • 1. Bei sehr hohem Wassergehalt in der aufzubereitenden Phosphorsäure oder dem phosphorsäurehaltigen Säuregemisch wird dieses zuerst durch Verdampfen von Wasser bis zu einer für die erfindungsgemäße Behandlung geeigneten Konzentration aufkonzentriert und anschließend mit Aluminiumionen angereichert. Dies kann beispielsweise durch anodische Auflösung von Aluminium geschehen. Es hat sich als günstig erwiesen, wenn die Aluminiumkonzentration über 1,5 Gew.-% liegt.
  • 2. Anreichern von Natron- oder Kalilauge mit Aluminium bis zur Sättigung.
  • 3. Zumischen der aluminiumhaltigen Lauge bis pH 8.
  • Je nach Aluminiumkonzentration, Phosphatgehalt und Wassergehalt im Gemisch verfestigt sich dieses in einem Zeitraum von wenigen Sekunden bis zu einer halben Stunde zu einer mineralischen Substanz. Durch Kontrolle des Wassergehalts der Mischung kann die Zeit bis zum Erstarren so gewählt werden, daß sie in Behälter wie z.B. Fässer abgefüllt werden kann. Der pH-Wert ist vorteilhaft im Bereich von pH 7 bis pH 8 einzustellen. Bei geringem Wassergehalt oder hohem Aluminiumgehalt in Verbindung mit hohem Phosphatgehalt kann die Verfestigung bereits bei niedrigeren pH-Werten eintreten.
    Die Reaktion kann stark exotherm sein. Die Temperatur ist vorteilhaft durch die Geschwindigkeit der Zugabe der Komponenten zu steuern. Überschüssiges Wasser kann bis zu einem gewissen Grad durch die Erwärmung bei der Reaktion ausgedampft werden. Des weiteren kann der Wassergehalt und damit das Gewicht der erstarrten Mischung durch Erwärmen nachträglich verringert werden.
    Außer auf reine Phosphorsäure wurde das Verfahren auf Gemische von Phosphorsäure und Schwefelsäure angewandt. Dabei hat sich gezeigt, daß es bis zu einem Mischungsverhältnis von Phosphorsäure zu Schwefelsäure von 1 : 3 anwendbar ist.
    Die Menge an Wasser, die als Kristallwasser gebunden werden kann, hängt von der im Gemisch vorliegenden Menge an Phosphorsäure ab. Bei zu hohem Wassergehalt sind die Säuregemische vor der Konditionierung durch Eindampfen aufzukonzentrieren. Dabei ist nicht nur der Anteil an freiem Wasser zu berücksichtigen, sondern auch die Wassermenge in der Lauge und diejenige, die bei der Neutralisation der Säure frei wird.
    Es zeigte sich, daß die Auslaugbeständigkeit (gemäß DIN 38414) der nach dem vorliegenden Verfahren gewonnenen Feststoffe durchweg hoch ist.
    Zur Bearbeitung von Aluminium bietet es sich an, in einem ersten Verfahrensschritt den Metallabtrag durch Beizen in einer Natron- oder Kalilauge durchzuführen und dabei eventuell vorhandene Oxidschichten zu entfernen. Im zweiten Schritt erfolgt eine Elektropolitur in einem Phosphorsäure- oder Phosphorsäure-Schwefelsäure-Elektrolyten. Beide Behandlungslösungen können nach Erreichen einer erhöhten Aluminiumkonzentration mittels des erfindungsgemäßen Verfahrens direkt ohne weitere Zusätze durch Vermischen aufbereitet werden, wobei auch die im Prozeß anfallenden Spülwässer nach Aufkonzentration durch Eindampfen in die Aufbereitung einzubeziehen sind.
    Bei der Bearbeitung anderer Metalle wie z.B. Stahl, Edelstahl, Nickel, Kupfer und Beryllium ist die zur Aufbereitung erforderliche Menge Aluminium in das Säuregemisch nachträglich einzubringen. Die Schwermetalle im Gemisch stören die Aufbereitung nicht.
    Beispiele für die Aufbereitung
    Verwendet wurden folgende Gemische:
    Gemisch A:
    50 Gew.-% Phosphorsäure (85 %-ig) und 46 Gew.-% Schwefelsäure (96 %-ig) mit ca. 4,3 Gew.-% Eisen, 1,1 Gew.-% Chrom, 0,5 Gew.-% Nickel sowie Spuren von Molybdän, Kupfer, Blei, Titan u.a.; Dichte bei 20°C: 1,801 g/cm3.
    Gemisch B:
    50 Gew.-% Phosphorsäure (85 %-ig) und 46 Gew.-% Schwefelsäure (96 %-ig) mit ca. 3,5 Gew.-% Eisen, 0,9 Gew.-% Chrom, 0,4 Gew.-% Nickel und 2,4 Gew.-% Aluminium; Dichte bei 20°C: 1,821 g/cm3.
    Gemisch C:
    Natronlauge 25 Gew.-% angereichert mit 7,2 Gew.-% Aluminium; Dichte bei 20°C: 1,406 g/cm3.
    Gemisch D:
    Kalilauge 30 Gew.-% angereichert mit 5,4 Gew.-% Aluminium; Dichte bei 20°C: 1,491 g/cm3.
    Beispiel 1:
  • a) Vorlage von 20 g Gemisch A
  • b) Zugabe von 25,7 g Gemisch D, bis pH 7 erreicht ist. Die Mischung wird fest. Ihr Wassergehalt beträgt 40,8 %.
  • Auslaugversuch nach DIN 38414 (1 g in 1 l vollentsalztem Wasser):
    pH-Wert 6,55
    Leitwert 643 mS/cm
    Fe 0,20 mg/l
    Cr 0,04 mg/l
    Ni 0,34 mg/l
    Beispiel 2:
  • a) Vorlage von 20 g Gemisch A
  • b) Zugabe von 22,9 g Gemisch C, bis pH 7 erreicht ist. Die Mischung wird fest. Ihr Wassergehalt beträgt 45,3 %.
  • Auslaugversuch nach DIN 38414:
    pH-Wert 6,84
    Leitwert 678 mS/cm
    Fe 0,13 mg/l
    Cr 0,02 mg/l
    Ni 0,22 mg/l
    Beispiel 3:
  • a) Vorlage von 20 g bestehend aus 75 Gew.-% Gemisch A und 25 Gew.-% Wasser
  • b) Zugabe von 3 g Calciumaluminat
  • c) Zugabe von 16,6 g Gemisch D, bis pH 7 erreicht ist. Die Mischung wird fest. Ihr Wassergehalt beträgt 43,4 %.
  • Auslaugversuch nach DIN 38414:
    pH-Wert 6,85
    Leitwert 604 mS/cm
    Fe 0,04 mg/l
    Cr 0,01 mg/l
    Ni 0,46 mg/l
    Sulfat 201,4 mg/l
    Phosphat 25,0 mg/l
    Beispiel 4:
  • a) Vorlage von 20 g Gemisch B
  • b) Zugabe von 23,9 g Gemisch D bis pH 7. Die Mischung wird fest. Ihr Wassergehalt beträgt 40,3 %.
  • Auslaugversuch nach DIN 38414:
    pH-Wert 6,23
    Leitwert 582 mS/cm
    Fe n.n.
    Cr 0,02 mg/l
    Ni 0,40 mg/l
    Sulfat 207,9 mg/l
    Phosphat 13,98 mg/l
    Beispiel 5:
  • a) Vorlage von 20 g Gemisch B
  • b) Zugabe von 24,4 g Gemisch C bis pH 7. Die Mischung wird fest. Ihr Wassergehalt beträgt 45,2 %.
  • Auslaugversuch nach DIN 38414:
    pH-Wert 6,48
    Leitwert 655 mS/cm
    Fe 0,08 mg/l
    Cr 0,02 mg/l
    Ni 0,41 mg/l
    Sulfat 286,4 mg/l
    Phosphat 7,52 mg/l
    Beispiel 6
  • a) Vorlage 20 g bestehend aus 50 % Mischung B und 50 % Wasser
  • b) Zugabe von 3 g Calciumaluminat
  • c) Zugabe von 8,1 g Gemisch D bis pH 7. Die Mischung wird fest. Ihr Wassergehalt beträgt 50,64 %.
  • Auslaugversuch nach DIN 38414:
    pH-Wert 5,56
    Leitwert 569 mS/cm
    Fe 0,10 mg/l
    Cr 0,02 mg/l
    Ni 0,52 mg/l
    Sulfat 255,2 mg/l
    Phosphat 7,67 mg/l
    Es zeigt sich, daß die Verfestigung der Säuregemische nach dem erfindungsgemäßen Verfahren schon ohne die noch mögliche, nachträgliche Reduzierung des Wassergehalts zu einer Gewichtszunahme bis maximal zum 1,5-fachen des Gewichts der Säuremischung führt. Die klassische Methode, die Säuregemische aufzubereiten, indem man sie ohne Zusatz von Aluminiumionen zuerst neutralisiert und anschließend durch Zementieren verfestigt, führt demgegenüber abhängig vom eingesetzten Neutraliationsmittel zu einer Gewichtszunahme um den Faktor 12 bis 20.
    Im folgenden wird eine Vorrichtung angegeben, die zur Durchführung des oben beschriebenen, erfindungsgemäßen Verfahrens besonders gut geeignet ist. Diese Vorrichtung umfaßt ein Mischrohr, das sich entlang einer Mittellängsachse erstreckt und einen Einlaß sowie einen Auslaß aufweist, wobei der Auslaß vorzugsweise dem Einlaß gegenüberliegt. In den Mischrohreinlaß münden wenigstens zwei Flüssigkeitszufuhrdüsen und mindestens eine Gaszufuhrdüse. Die Flüssigkeitszufuhrdüsen münden bezogen auf den Einlaßquerschnitt in einen zentralen Bereich des Einlasses, während die mindestens eine Gaszufuhrdüse radial außerhalb der wenigstens zwei Flüssigkeitszufuhrdüsen nahe der Mischrohrinnenwand in den Einlaß mündet. Die Längsachse der Gaszufuhrdüse ist so geneigt, daß der Winkel zwischen der Längsachse der Gaszufuhrdüse und der Mittellängsachse des Mischrohres wenigstens etwa 5° beträgt, wobei die Längsachse der Gaszufuhrdüse die Mittellängsachse des Mischrohres nicht schneidet. Die Gaszufuhrdüse bläst also tangential zur Mischrohrinnenwandung in das Mischrohr ein.
    Bei einer solchen Vorrichtung wird durch die eine Flüssigkeitszufuhrdüse die phophorsäurehaltige Lösung und durch die andere Flüssigkeitszufuhrdüse die alkalische, aluminiumhaltige Lösung dem Mischrohr zugeführt. Die mindestens eine Gaszufuhrdüse dient zum Einblasen eines Gases, beispielsweise Druckluft, in den Bereich der Mischrohrinnenwand und tangential zur Mittellängsachse des Mischrohres, so daß das Gas das Mischrohr schraubenlinienförmig durchströmt. Der so erzeugte Drall der Gasströmung in dem Mischrohr sorgt dafür, daß die in den Kernbereich des Mischrohres dosiert eingespritzten Flüssigkeiten in Tropfen zerteilt, homogen vermischt und in Richtung auf den Auslaß des Mischrohres transportiert werden. Die bei der Reaktion der beiden eingespritzten Flüssigkeiten auftretende Wärme und der entstehende Wasserdampf werden von dem Gasstrom aufgenommen und kontrolliert abgeführt. Aufgrund der im Mischrohr vorhandenen Verwirbelung bildet sich der bei der Reaktion entstehende Feststoff in Form eines Granulates, das von dem Gasstrom aus dem Mischrohr ausgeblasen wird, ohne die Mischrohrinnenwand in nennenswertem Maß zu berühren. Eine Verstopfung des Mischrohres ist so vermieden und der entstehende Feststoff kann einfach konfektioniert werden.
    Die erfindungsgemäße Mischvorrichtung gewährleistet einen kontrollierten, kontinuierlichen und stabilen Mischvorgang, der zu einer konstanten Produktqualität und einem gleichmäßigen Produktaustrag führt. Sie ist bei hoher Leistung klein, handlich und sehr betriebssicher. Darüber hinaus ist sie preiswert in der Herstellung, wartungsarm und im Betrieb kostengünstig, da nur relativ geringe Mengen von unter Druck gesetztem Gas und etwas Strom zum Antrieb der Flüssigkeitsdosierpumpen benötigt werden. Die Flüssigkeitsdosierpumpen brauchen keine teueren Hochdruckpumpen zu sein, es genügen Dosierpumpen, die in einem relativ niedrigen Druckbereich arbeiten.
    Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Mischvorrichtung münden zwei Gaszufuhrdüsen in den Mischrohreinlaß, wobei der Winkel zwischen der Längsachse jeder Gaszufuhrdüse und der Mittellängsachse des Mischrohres in einem Bereich von zwischen 5° und 60° liegt. Sind mehrere Gaszufuhrdüsen vorhanden, so münden diese bezogen auf den Einlaßquerschnitt des Mischrohres, der vorzugsweise kreisförmig ist, in unterschiedliche Quadranten. Sind zwei Gaszufuhrdüsen vorhanden, so münden sie bevorzugt in diametral gegenüberliegende Quadranten des Einlaßquerschnittes.
    Vorteilhaft mündet darüber hinaus jede Gaszufuhrdüse etwas stromaufwärts der Flüssigkeitszufuhrdüsen in den Einlaß des Mischrohres. Mit dem Begriff Einlaß ist vorliegend ein sich axial erstreckender Bereich am Einlaßende des Mischrohres gemeint.
    Die zuvor genannten Maßnahmen ergeben eine noch bessere, gleichmäßigere Vermischung der eingespritzten Flüssigkeiten. Beim Vorhandensein mehrerer Gaszufuhrdüsen wirkt es sich günstig aus, wenn diese jeweils an in Umfangsrichtung unterschiedlichen Stellen des Einlaßquerschnittes münden. In jedem Fall sind die Gaszufuhrdüsen jedoch radial außerhalb der Flüssigkeitszufuhrdüsen positioniert und so angeordnet, daß der durch sie eingeblasene Gasstrom tangential zur Mittellängsachse des Mischrohres austritt, so daß das Mischrohr spiralig bzw. schraubenlinienförmig durchströmt wird.
    Die Flüssigkeitszufuhrdüsen, deren Anzahl von der Zahl der zu vermischenden Flüssigkeiten abhängt, können so angeordnet sein, daß ihre Längsachsen parallel zur Mittellängsachse des Mischrohres oder leicht dazu geneigt verlaufen, so daß sie die Mittellängsachse im Mischrohr schneiden. Vorzugsweise ist die Neigung der Flüssigkeitszufuhrdüsen bezüglich der Mittellängsachse des Mischrohres geringer als die entsprechende Neigung jeder Gaszufuhrdüse.
    Bei allen Ausführungsformen der erfindungsgemäßen Mischvorrichtung ist der Einlaßbereich des Mischrohres bevorzugt kegelförmig erweitert. Diese Maßnahme schafft zum einen genügend Platz für die Zufuhr der verschiedenen Komponenten, sie erzeugt darüber hinaus aber aufgrund der Verengung des Strömungsquerschnitts einen erwünschten Sog in Strömungsrichtung.
    In einer vorteilhaften konstruktiven Ausgestaltung der erfindungsgemäßen Mischvorrichtung durchsetzt das Mischrohr eine vorzugsweise kreisscheibenförmige Halteplatte, in der das Mischrohr formschlüssig gehalten ist. Sofern der Einlaßbereich des Mischrohres wie zuvor beschrieben kegelförmig erweitert ist, braucht das Mischrohr nur in eine entsprechend gestaltete Ausnehmung der Halteplatte eingesetzt zu werden, in der es sich dann selbst zentriert. Das Einlaßende des Mischrohres schließt bündig mit der zugehörigen Oberfläche der Halteplatte ab.
    Gemäß einer Weiterbildung sind die Flüssigkeitszufuhrdüsen und jede Gaszufuhrdüse in einem zylindrischen Düsenblock ausgebildet oder wenigstens aufgenommen, der auf die zuvor beschriebene Halteplatte aufgesetzt und mit letzterer verspannt ist. Die Gaszufuhrdüsen und die Flüssigkeitszufuhrdüsen können beispielsweise im Material des Düsenblocks direkt durch ein Elektroerodierverfahren ausgebildet werden, alternativ können auch vorgefertigte Düsen in entsprechende Bohrungen des Düsenblocks eingesetzt werden. Falls erforderlich, ist zwischen der Halteplatte und dem Düsenblock eine Dichtung angeordnet. Eine solchermaßen ausgeführte Mischvorrichtung ist sehr stabil und dennoch kompakt sowie leicht zu zerlegen und zu reinigen.
    Das Verspannen der Halteplatte mit dem zylindrischen Düsenblock kann beispielsweise mit einer kreisringförmigen Klammer erfolgen, die die Halteplatte und den Düsenblock in Umfangsrichtung umgibt. In bekannter Weise können dabei die Umfangsflächen von Halteplatte und Düsenblock und die Innenumfangsfläche der Klammer so gestaltet sein, daß durch entsprechend geneigte Flächen beim Zusammenschrauben der Klammer eine axial auf die Halteplatte und den Düsenblock wirkende Kraft auftritt, die die beiden zuletzt genannten Teile immer fester gegeneinander drückt.
    Die erfindungsgemäße Mischvorrichtung ist unter Bezugnahme auf das Vermischen einer hochkonzentrierten, phosphorsäurehaltigen Flüssigkeit mit einer alkalischen, aluminiumhaltigen Lösung beschrieben worden. Sie ist jedoch nicht auf diesen Einsatz beschränkt, sondern eignet sich zum Vermischen vieler Flüssigkeiten, insbesondere zum Vermischen solcher Flüssigkeiten, bei deren Vermischung eine heftige und stark exotherme Reaktion stattfindet und bei denen darüber hinaus als Ergebnis der Vermischung sich nahezu augenblicklich ein Feststoff bildet. Herkömmliche statische und dynamische Mischer versagen hier, da die rasche Verfestigung des Gemisches die Mischer blockiert und somit keine homogene Vermischung der Reaktionspartner erfolgen kann. Zudem ist eine kontrollierte Wärmeabfuhr aus dem sich schnell verfestigenden Gemisch nicht mehr möglich, so daß es zu lokaler Überhitzung und in Folge zu gefährlichen Explosionen kommen kann.
    Ein bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Mischvorrichtung wird im folgenden anhand der beigefügten, schematischen Zeichnungen näher erläutert. Es zeigt:
    Fig. 1
    eine Längsschnitt durch eine erfindungsgemäße Mischvorrichtung entlang der Linie I-I in Figur 2, und
    Fig. 2
    die Draufsicht II-II aus Figur 1.
    Die in Figur 1 dargestellte und allgemein mit 10 bezeichnete Mischvorrichtung hat ein im wesentlichen zylindrisches Mischrohr 12, das sich längs seiner Mittellängsachse M erstreckt. Das Mischrohr 12 weist einen Einlaß 14 und einen gegenüberliegenden Auslaß 16 auf. Im dargestellten Ausführungsbeispiel ist der Einlaßbereich des Mischrohres 12 kegelförmig erweitert, während sich der Auslaßbereich kegelförmig verjüngt.
    In den Einlaß 14 münden zwei Flüssigkeitszufuhrdüsen 18 und 20, durch die die beiden zu vermischenden Flüssigkeiten dem Mischrohr 12 zugeführt werden können. Wie gezeigt, münden die beiden Flüssigkeitszufuhrdüsen 18 und 20 bezogen auf den Einlaßquerschnitt in den zentralen Bereich des Mischrohres 12 und sind gegenüber dessen Mittellängsachse M etwas geneigt, so daß ihre Längsachsen F die Mittellängsachse M stromabwärts schneiden.
    Radial außerhalb (siehe auch Figur 2) der beiden Flüssigkeitszufuhrdüsen 18 und 20 münden zwei Gaszufuhrdüsen 22 und 24 in den Mischrohreinlaß 14. Dies Längsachsen G der Gaszufuhrdüsen 22 und 24 sind gegenüber der Mittellängsachse M des Mischrohres 12 in gleicher Weise wie die Längsachsen F geneigt, wobei der zwischen jeder Längsachse G und der Mittellängsachse M eingeschlossene Winkel in einem Bereich von 5° bis 60° liegen kann und bevorzugt einen Wert zwischen 5° und 30° hat. In Figur 1 sind die beiden Gaszufuhrdüsen 22, 24 aus Gründen der zeichnerischen Darstellung in die Schnittebene gelegt worden. Wie aus Figur 2 ersichtlich, sind die Mündungen der beiden Gaszufuhrdüsen 22 und 24 bezogen auf den Mischrohreinlaß 14 in Umfangsrichtung gleichmäßig voneinander beabstandet, so daß sie sich diametral gegenüberliegen.
    Im Betrieb der Mischvorrichtung 10 wird durch die Gaszufuhrdüsen 22 und 24 unter Druck gesetztes Gas, beispielsweise Druckluft, in das Mischrohr 12 tangential zu dessen Mittellängsachse M eingeleitet. Es bildet sich daraufhin im Mischrohr 12 eine Spiralströmung aus, die die eingespritzten Flüssigkeiten in feine Tropfen verteilt, homogen vermischt und in Richtung zum Mischrohrauslaß 16 transportiert. Tritt bei der Vermischung der beiden eingespritzten Flüssigkeiten eine stark exotherme und zu einem Festkörper führende Reaktion auf, wird die entstehende Reaktionswärme kontrolliert abgeführt und es bildet sich ein Granulat, das aus dem Mischrohr 12 ausgeblasen wird, ohne es zu verstopfen.
    Wie aus Figur 1 ersichtlich, ist das Mischrohr 12 in einer hier kreisscheibenförmigen Halteplatte 26 aufgenommen und durch seinen kegelförmig erweiterten Einlaßbereich in einer entsprechend geformten Ausnehmung der Halteplatte formschlüssig gehalten. Das in Figur 1 rechte Ende des Mischrohres 12 schließt bündig mit der angrenzenden Stirnfläche 28 der Halteplatte 26 ab. Auf die Stirnfläche 28 ist ein kreiszylindrischer Düsenblock 30 gesetzt, der denselben Durchmesser wie die Halteplatte 26 hat und in dem die Flüssigkeitszufuhrdüsen 18 und 20 sowie die Gaszufuhrdüsen 22 und 24 aufgenommen bzw. ausgebildet sind.
    Sowohl die Halteplatte 26 als auch der Düsenblock 30 sind aus einem stabilen, druckfesten Material hergestellt, beispielsweise aus rostfreiem Stahl. Zur besseren Abdichtung ist zwischen der Halteplatte 26 und dem Düsenblock 30 nahe dem Mischrohreinlaß 14 eine umlaufende Dichtung 32 angeordnet.
    Im gezeigten Ausführungsbeispiel sind die beiden Gaszufuhrdüsen 22 und 24 direkt in dem Material des Düsenblocks 30 ausgebildet, beispielsweise durch Bohren oder durch Elektroerosion. Die beiden Flüssigkeitszufuhrdüsen 18 und 20 hingegen sind in Form separater Einsätze 34 gestaltet, die dicht in den Düsenblock 30 eingefügt werden. Handelt es sich bei den zugeführten Flüssigkeiten um besonders aggressive Medien, müssen auf diese Weise nur die Einsätze 34 aus einem besonders hochwertigen, diesen Medien widerstehenden Material gefertigt werden, während der Düsenblock 30 aus einem preiswerteren Material bestehen kann.
    Die Halteplatte 26 und der Düsenblock 30 sind mittels einer hier zweiteiligen, kreisringförmigen Klammer 36 gegeneinander verspannt. Die beiden halbschalenartigen Teile 38 (siehe Figur 2) der Klammer 36 werden durch Schrauben 40 miteinander verbunden. Die Innenseite der beiden Klammerteile 38 und die Umfangsflächen von Halteplatte 26 und Düsenblock 30 sind wie dargestellt mit korrespondierenden, abgeschrägten Flächen 42 und 44 ausgeführt, so daß eine gute Zentrierung und einwandfreie Abdichtung der Halteplatte 26 und des Düsenblocks 30 in bezug aufeinander gewährleistet ist, wenn die Klammer 36 festgezogen wird.
    Zum Anschluß der hier nicht dargestellten Gas- und Flüssigkeitszufuhrleitungen ragen aus dem Düsenblock 30 Anschlußstutzen 46 und 48, 48', an denen die entsprechenden Leitungen befestigt werden können.

    Claims (14)

    1. Verfahren zur Aufbereitung und Verfestigung von phosphorsäurehaltigen Lösungen, insbesondere aus der Bearbeitung von Metalloberflächen, wobei die Lösungen, die einen Phosphorsäuregehalt von 10 bis 100 Gew.-% aufweisen, mit alkalischen aluminiumhaltigen Lösungen, die einen Aluminiumgehalt von 1,5 bis 20 Gew.-% aufweisen, in einem solchen Verhältnis miteinander vermischt werden, daß sich ein pH-Wert von 5 bis 9 ergibt.
    2. Verfahren nach Anspruch 1, wobei die phosporsäurehaltige Lösung einen Phosphorsäuregehalt von 40 bis 70 Gew.-% aufweist.
    3. Verfahren nach Anspruch 1 oder 2, wobei die phosphorsäurehaltige Lösung zusätzlich bis zu 50 Gew.-% Schwefelsäure enthält.
    4. Verfahren nach einem der vorstehenden Ansprüche, wobei die alkalische, aluminiumhaltige Lösung 10 bis 40 Gew.-% Alkalihydroxide enthält.
    5. Vorrichtung zur Durchführung des Verfahrens gemäß einem der vorhergehenden Ansprüche, mit
      einem Mischrohr (12), das eine Mittellängsachse (M) sowie einen Einlaß (14) und einen insbesondere gegenüberliegenden Auslaß (16) hat,
      wenigstens zwei Flüssigkeitszufuhrdüsen (18 und 20), die in den Mischrohreinlaß (14) und bezogen auf den Einlaßquerschnitt in einen zentralen Bereich desselben münden, und
      mindestens einer Gaszufuhrdüse (22), die ebenfalls in den Einlaß (14) des Mischrohres (12) mündet und die radial außerhalb der wenigstens zwei Flüssigkeitszufuhrdüsen (18, 22) so angeordnet ist, daß ihre Längsachse (G) die Mittellängsachse (M) des Mischrohres (12) nicht schneidet, wobei der Winkel zwischen der Längsachse (G) und der Mittellängsachse (M) wenigstens 5° beträgt.
    6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß zwei Gaszufuhrdüsen (22, 24) in den Mischrohreinlaß (14) münden, wobei der Winkel zwischen der Längsachse (G) jeder Gaszufuhrdüse (22 oder 24) und der Mittellängsachse (M) des Mischrohres (12) in einem Bereich von zwischen 5° und 60°, insbesondere 5° bis 30°, liegt und die beiden Gaszufuhrdüsen (22, 24) bezogen auf den insbesondere kreisförmigen Einlaßquerschnitt des Mischrohres (12) in unterschiedliche Quadranten münden.
    7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die beiden Gaszufuhrdüsen (22, 24) in diametral gegenüberliegende Quadranten des Einlaßquerschnittes münden.
    8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß jede Gaszufuhrdüse (22, 24) etwas stromaufwärts der Flüssigkeitszufuhrdüsen (18, 20) in den Einlaß (14) des Mischrohres (12) mündet.
    9. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß die Längsachsen (F) der Flüssigkeitszufuhrdüsen (18, 20) parallel zur Mittellängsachse (M) oder leicht zur Mittellängsachse (M) geneigt verlaufen, derart, daß sie die Mittellängsachse (M) des Mischrohres (12) innerhalb desselben schneiden.
    10. Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß der Einlaßbereich des Mischrohres (12) kegelförmig erweitert ist.
    11. Vorrichtung nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß der Auslaßbereich des Mischrohres (12) sich kegelförmig verjüngt.
    12. Vorrichtung nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, daß das Mischrohr (12) eine vorzugsweise kreisscheibenförmige Halteplatte (26) durchsetzt, in der es formschlüssig gehalten ist, wobei der Beginn des Mischrohres (12) bündig mit der zugehörigen Oberfläche (28) der Halteplatte (26) abschließt.
    13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß jede Gaszufuhrdüse (22, 24) und die Flüssigkeitszufuhrdüsen (18, 20) in einem zylindrischen Düsenblock (30) ausgebildet oder aufgenommen sind, der auf die Halteplatte (26) aufgesetzt und mit letzterer verspannt ist.
    14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß eine kreisringförmige Klammer (36) die Halteplatte (26) und den Düsenblock (30) in Umfangsrichtung umgibt und die genannten Teile miteinander verspannt.
    EP96938152A 1995-11-07 1996-11-07 Verfahren und vorrichtung zur aufbereitung von phosphorsäure Expired - Lifetime EP0861211B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19541479 1995-11-07
    DE19541479A DE19541479C1 (de) 1995-11-07 1995-11-07 Verfahren zur Aufbereitung von Phosphorsäure
    PCT/EP1996/004891 WO1997017299A1 (de) 1995-11-07 1996-11-07 Verfahren und vorrichtung zur aufbereitung von phosphorsäure

    Publications (2)

    Publication Number Publication Date
    EP0861211A1 EP0861211A1 (de) 1998-09-02
    EP0861211B1 true EP0861211B1 (de) 1999-08-25

    Family

    ID=7776837

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96938152A Expired - Lifetime EP0861211B1 (de) 1995-11-07 1996-11-07 Verfahren und vorrichtung zur aufbereitung von phosphorsäure

    Country Status (11)

    Country Link
    US (2) US6264177B1 (de)
    EP (1) EP0861211B1 (de)
    JP (1) JPH11514576A (de)
    AT (1) ATE183729T1 (de)
    AU (1) AU7568296A (de)
    CA (1) CA2236292A1 (de)
    DE (3) DE19541479C1 (de)
    ES (1) ES2135935T3 (de)
    MX (1) MX9803602A (de)
    TW (1) TW401378B (de)
    WO (1) WO1997017299A1 (de)

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP3993786B2 (ja) * 2001-06-29 2007-10-17 富士通株式会社 磁気記録媒体
    NL1023715C2 (nl) * 2003-06-20 2004-12-21 Sif Ventures B V Inrichting voor het reinigen van de vlampijpen in een ketel.
    WO2010026916A1 (ja) * 2008-09-05 2010-03-11 日本化学工業株式会社 クロム(iii)含有水溶液およびその製造方法
    KR101309929B1 (ko) 2010-12-28 2013-09-17 주식회사 포스코 에어로졸 공급장치
    CN110885122A (zh) * 2019-11-30 2020-03-17 怀化恒一颜料化学有限公司 喹吖啶酮生产废水处理方法

    Family Cites Families (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1451063A (en) * 1923-04-10 Burner
    US1213887A (en) * 1916-11-29 1917-01-30 Georg A Krause Method of vaporizing or concentrating liquids, solutions, emulsions, suspensions, and like substances.
    US2886297A (en) * 1956-12-26 1959-05-12 Phillips Petroleum Co Brine creaming of latices
    US3324632A (en) * 1965-12-07 1967-06-13 Combustion Eng Apparatus for concentrating residual pulp liquor by direct contact with flue gases
    US3761065A (en) * 1971-05-21 1973-09-25 Rp Ind Inc High efficiency direct gas-liquid contact apparatus and methods
    DE2130309A1 (de) * 1971-06-18 1972-12-21 Iu Technology Corp Masse,bestehend aus dem Reaktionsprodukt einer waesrigen Aufschlaemmung chemischer Abfaelle und bestimmten Zusaetzen,sowie Verfahren zu ihrer Herstellung
    US3963637A (en) * 1971-08-06 1976-06-15 Chemlan Company, Inc. Compositions for treating domestic and industrial liquid wastes
    BE795321A (fr) * 1972-09-20 1973-08-13 Gardinier Ets Reacteur adapte aux reactions entre deux fluides
    US4014961A (en) * 1973-04-24 1977-03-29 Vitaly Fedorovich Popov Ejector mixer for gases and/or liquids
    GB1485625A (en) * 1973-06-01 1977-09-14 Chappell C Conversion of liquid hazardous wastes to solid form
    DE2452061C3 (de) * 1974-11-02 1978-12-14 Heinz 4330 Muelheim Jarsch Verwendung von zerkleinerter Schlacke als Absorptionsmittel für Mineralölprodukte und für technische Säuren
    JPS5188856A (ja) * 1975-01-31 1976-08-03 Rinsanmataharinsanenoganjusuru haisuinoshorihoho
    US3980558A (en) * 1975-07-07 1976-09-14 Browning-Ferris Industries, Inc. Method of disposing sludges containing soluble toxic materials
    US4049462A (en) * 1976-02-12 1977-09-20 Wehran Engineering Corporation Chemical fixation of desulfurization residues
    NL7905111A (nl) * 1979-06-30 1981-01-05 Stamicarbon Werkwijze voor het chemisch verwijderen van fosfor- verbindingen uit afvalwater en werkwijze voor het zuiveren van afvalwater.
    JPS57100971A (en) * 1980-12-15 1982-06-23 Tatsurou Okamura Construction material
    JPS57197500A (en) * 1981-05-29 1982-12-03 Hitachi Ltd Method of solidifying radioactive waste pellet
    US4549985A (en) * 1982-06-07 1985-10-29 General Electric Company Waste disposal process
    FR2545387B1 (fr) * 1983-05-03 1987-01-09 Philippe Pichat Procede de solidification de dechets liquides de forte acidite ou alcalinite
    IL82350A0 (en) * 1986-05-02 1987-10-30 Wormald Us Inc Novel compositions and method for neutralization and solidification of hazardous acid spills
    JPS63151398A (ja) * 1986-12-15 1988-06-23 Ebara Infilco Co Ltd リン酸含有廃水の処理方法
    DE3908125A1 (de) * 1989-03-13 1990-09-20 Huels Chemische Werke Ag Verfestigendes gemisch aus rueckstaenden
    US5422015A (en) * 1992-07-30 1995-06-06 Hondo Chemical, Inc. Pathogenic waste treatment
    JP3150445B2 (ja) * 1992-09-18 2001-03-26 株式会社日立製作所 放射性廃棄物の処理方法,放射性廃棄物の固化体及び固化材
    US5525242A (en) * 1994-10-19 1996-06-11 Kerecz; Robert C. J. Apparatus and process for the aeration of water
    US5732363A (en) * 1994-10-27 1998-03-24 Jgc Corporation Solidifying material for radioactive wastes, process for solidifying radioactive wastes and solidified product
    FR2727441B1 (fr) * 1994-11-28 1997-01-31 Lamort E & M Perfectionnements aux dispositifs d'injection d'air dans un flux de pate a papier pour en operer le desencrage
    US5705132A (en) * 1994-12-30 1998-01-06 Battelle Memorial Institute Combustion synthesis continuous flow reactor

    Also Published As

    Publication number Publication date
    US6264177B1 (en) 2001-07-24
    DE19680945D2 (de) 1999-12-02
    US20010034926A1 (en) 2001-11-01
    CA2236292A1 (en) 1997-05-15
    JPH11514576A (ja) 1999-12-14
    DE59602903D1 (de) 1999-09-30
    EP0861211A1 (de) 1998-09-02
    AU7568296A (en) 1997-05-29
    ATE183729T1 (de) 1999-09-15
    ES2135935T3 (es) 1999-11-01
    US6565756B2 (en) 2003-05-20
    MX9803602A (es) 1998-09-30
    WO1997017299A1 (de) 1997-05-15
    DE19541479C1 (de) 1997-03-13
    TW401378B (en) 2000-08-11

    Similar Documents

    Publication Publication Date Title
    EP0389661B1 (de) Verfahren zur Abtrennung von Arsen aus Abwässern
    DE3729695C2 (de) Verfahren und Einrichtung zum Entfernen von Oxiden aus dem Abgasstrom eines Zementofens und zur gleichzeitigen Herstellung nützlicher Produkte hieraus
    DE2545101A1 (de) Verfahren zum desinfizieren von abfallfluessigkeiten und vorrichtung zur durchfuehrung des verfahrens
    EP0371187B1 (de) Verfahren zum Entfernen von Pflanzenbehandlungsmitteln aus Rohwasser
    DE3208704A1 (de) Verfahren zur chemischen entfernung der asche aus kohle sowie vorrichtungen zur durchfuehrung dieses verfahrens
    EP0861211B1 (de) Verfahren und vorrichtung zur aufbereitung von phosphorsäure
    DE2929100A1 (de) Verfahren zur behandlung radioaktiver abfaelle
    DE4200802A1 (de) Vorrichtung zur reinigung von abwasser
    DE4140623C2 (de)
    DE4137445C2 (de)
    DE3048543A1 (de) "verfahren zur endlagerreifen einbettung radioaktiver abfallkonzentrate in formfestes bitumen"
    DE2341415A1 (de) Verfahren zur chemischen abwasseraufbereitung
    EP0195214B1 (de) Verfahren zur mehrstufigen Aufbereitung radioaktiver Abwässer
    EP3244418B1 (de) Chemische dekontamination von radioaktiven metalloberflächen
    DE69917808T2 (de) Wiederverwertung von feinen calcium fluorid pulvern
    DE2714858C3 (de) Verfahren und Vorrichtungen zur Hydratation von Branntkalk
    DE2808012A1 (de) Verfahren zur neutralisation von saeurehaltigen fluessigkeiten
    DD297919A5 (de) Abgas-entschwefelungsverfahren
    DE1589839B1 (de) Verfahren zum Behandeln radioaktiver oder giftiger Rueckstaende
    EP2248134B1 (de) Verfahren zur konditionierung radioaktiver ionenaustauscherharze
    DE3030964A1 (de) Verfahren zur gemeinsamen aufarbeitung von eisensulfat-heptahydrat und calciumchlorid
    DE3047480A1 (de) Absorptionsmittel fuer chlorwasserstoff
    DE2754794A1 (de) Verfahren zur eliminierung von geloesten, emulgierten und suspendierten stoffen oder einem beliebigen gemisch aus solchen stoffen aus waessrigen phasen
    DE2608399A1 (de) Verfahren zur reinigung von kondenswasser
    DE3812501A1 (de) Verfahren und vorrichtung zum abscheiden und rueckgewinnen von silber und quecksilber aus austitrierten stark schwefelsauren loesungen fuer die chemische sauerstoff-bedarfsbestimmung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980427

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU MC NL PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19981014

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: POLIGRAT HOLDING GMBH

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    ITF It: translation for a ep patent filed

    Owner name: BARZANO' E ZANARDO MILANO S.P.A.

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 19990825

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990825

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990825

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990825

    REF Corresponds to:

    Ref document number: 183729

    Country of ref document: AT

    Date of ref document: 19990915

    Kind code of ref document: T

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990828

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59602903

    Country of ref document: DE

    Date of ref document: 19990930

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2135935

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991107

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991125

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19991125

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991130

    ET Fr: translation filed
    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 19990825

    BERE Be: lapsed

    Owner name: POLIGRAT HOLDING G.M.B.H.

    Effective date: 19991130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000531

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001130

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20151124

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20151126

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20151126

    Year of fee payment: 20

    Ref country code: ES

    Payment date: 20151124

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59602903

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20170224

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20161108