EP0860717B1 - Dispositif optique cholésterique à large bande, polariseur, filtre, dispositif à cristaux liquides et séparateur de faisceaux polarisant - Google Patents
Dispositif optique cholésterique à large bande, polariseur, filtre, dispositif à cristaux liquides et séparateur de faisceaux polarisant Download PDFInfo
- Publication number
- EP0860717B1 EP0860717B1 EP98300477A EP98300477A EP0860717B1 EP 0860717 B1 EP0860717 B1 EP 0860717B1 EP 98300477 A EP98300477 A EP 98300477A EP 98300477 A EP98300477 A EP 98300477A EP 0860717 B1 EP0860717 B1 EP 0860717B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- cholesteric
- compensator
- films
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/13362—Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133536—Reflective polarizers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133543—Cholesteric polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
- G02F1/133634—Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
Definitions
- the present invention relates to a broadband cholesteric optical device, for instance for use in polarisers, filters, liquid crystal devices and polarising beam-splitters.
- a broadband cholesteric optical device for instance for use in polarisers, filters, liquid crystal devices and polarising beam-splitters.
- Such devices may be used in displays such as liquid crystal displays and as colour or notch filters.
- Such devices may also be used in head mounted displays, optical and electronic measuring and sensing systems, compensators and for high flux applications.
- a cholesteric liquid crystal is one in which the director rotates through the material, forming a helical structure.
- cholesteric is synonymous with “chiral nematic”.
- EP 0 720 041 discloses patterned cholesteric colour filters and polarisers which comprise several layers which are active in different defined spectral bands.
- EP 0 634 674 discloses a wide spectral and angular bandwidth rear polariser for direct view displays.
- the broadband polariser is made using high birefringence cholesteric materials or by using stacks of lower birefringence cholesteric films.
- EP 0 606 940 discloses a broadband cholesteric polariser which is made using a combination of ultraviolet (UV) intensity profile and diffusion to expand the polariser bandwidth.
- the intensity profile results from using a polymerising wavelength in a range where the maximum of the sum of the absorptions of the cholesteric material and the photoinitiator exists.
- an appropriate UV absorbing dye is added to the cholesteric mixture.
- the polariser comprises a graded pitch structure which varies monotonically from one surface of the polariser to the other.
- WO96/02016 discloses a backlight illumination system for a liquid crystal device (LCD) comprising a broadband cholesteric polariser.
- LCD liquid crystal device
- This patent discloses that improved off-axis performance may be achieved by orienting the cholesteric liquid crystal polymer (CLCP) polariser such that the largest pitch is closest to the illumination source.
- CLCP cholesteric liquid crystal polymer
- a negative birefringence quarter wavefilm may be used to provide a further improvement to the off-axis performance as well as to convert light to a linearly polarised state.
- the compensation film essentially has a negative uniaxial structure whose optic axis is normal to the plane of the film.
- Multilayer films and holographically formed grating structures have also been used as negative birefringence compensators for normally white mode twisted nematic LCDs.
- SID '95, P47, 555-558, S.T. Wu discloses the use of biaxial compensators to improve the contrast ratio both on-axis and off-axis.
- SID '95, P50 Nishimura “Colour compensation” discloses the use of a liquid crystal polymer film with a super twisted nematic structure and controllable retardation, twist angle and dispersion for improving the contrast ratio of super twisted nematic LCDs over the visible spectrum at normal incidence.
- a broadband cholesteric optical device comprising a broadband cholesteric layer, and a first compensator for providing a desired off-axis device performance, characterised in that the first compensator comprises a first layer having positive birefringence and an optic axis substantially perpendicular to the first layer, and a second layer having negative birefringence and an optic axis substantially perpendicular to the second layer.
- the desired off-axis device performance may be reduced angular dependence.
- the cholesteric layer may have a graded pitch which increases monotonically from a first surface to a second surface thereof.
- the cholesteric layer may have a graded refractive index which increases monotonically from a first surface to a second surface thereof.
- the sum of the off-axis birefringence of the first and second layers may be substantially equal to zero for a wavelength corresponding to the shortest pitch of the cholesteric layer and substantially equal to but opposite that of the cholesteric layer for a wavelength corresponding to the longest pitch of the cholesteric layer, and the first compensator may be disposed adjacent the first surface of the cholesteric layer.
- the refractive index dispersions of the first and second layers may be such th at:
- ⁇ n 1 (400) and ⁇ n 1 (700) are the birefringences of the first layer at wavelengths of 400 and 700 nanometres respectively
- ⁇ n 2 (400) and ⁇ n 2 (700) are the birefringences of the second layer at wavelengths of 400 and 700 nanometres, respectively; i.e. ⁇ n is the magnitude of the difference between the refractive indices in the plane and perpendicular to the plane.
- the sum of the off-axis birefringence of the first and second layers may be substantially equal to zero for a wavelength corresponding to the longest pitch of the cholesteric layer and substantially equal to but opposite that of the cholesteric layer for a wavelength corresponding to the shortest pitch of the cholesteric layer, and the first compensator may be disposed adjacent the second surface of the cholesteric layer.
- the refractive index dispersions of the first and second layers may be such that:
- ⁇ n 1 (400) and ⁇ n 1 (700) are the birefringences of the first layer at wavelengths of 400 and 700 nanometres, respectively
- ⁇ n 2 (400) and ⁇ n 2 (700) are the birefringences of the second layer at wavelengths of 400 and 700 nanometres, respectively.
- the first layer may comprise a reactive mesogenic material.
- the first layer may comprise a homeotropically aligned reactive mesogenic material.
- the first layer may comprise part of the cholesteric layer having a predetermined alignment.
- the first layer may comprise at least one stretched polymer film.
- the first layer may comprise a plurality of uniaxial films, each of which has negative birefringence and an optic axis substantially in the plane thereof, the optic axes of the or each adjacent pair of the uniaxial films being angularly spaced by a non-zero angle.
- the first layer may comprise two uniaxial films whose optic axes are substantially perpendicular to each other.
- the first layer may comprise a plurality of biaxial films, each of which has a refractive index in a direction perpendicular to the film which is greater than the average of the refractive indices in the plane of the film, the optic axes corresponding to the smaller of the in-plane refractive indices of the or each adjacent pair of films being angularly spaced by a non-zero angle.
- the first layer may comprise two biaxial films whose optic axes corresponding to the smaller of the in-plane refractive indices are substantially perpendicular to each other.
- the second layer may comprise a cholesteric layer having a pitch corresponding to a wavelength of less than substantially 440 nanometres.
- the second layer may comprise part of the cholesteric layer.
- the second layer may comprise a cast polymer film.
- the polymer may be a polyimide.
- the second layer may comprise a discotic liquid crystal material.
- the second layer may comprise at least one stretched polymer film.
- the second layer may comprise a plurality of films, each of which comprises a uniaxial material having an optic axis in the plane thereof, the optic axes of the or each adjacent pair of films being angularly spaced by a non-zero angle.
- the second layer may comprise two films and the optic axes may be substantially perpendicular to each other.
- the second layer may comprise a plurality of biaxial films, each of which has a refractive index in a direction perpendicular to the film which is less than the average of the refractive indices in the plane of the film, the optic axes corresponding to the greater of the in-plane refractive indices of the or each adjacent pair of films being angularly spaced by a non-zero angle
- the second layer may comprise two biaxial films whose optic axes corresponding to the greater of the in-plane refractive indices are substantially perpendicular to each other.
- the first compensator may include an on-axis retarder.
- the retarder may be a quarter waveplate.
- the cholesteric layer may be disposed between the first compensator and a second compensator, which comprises a plurality of layers, a first of which has positive birefringence and an optic axis substantially perpendicular to the first layer and a second of which has negative birefringence and an optic axis substantially perpendicular to the second layer.
- the second layer may include an on-axis retarder.
- the retarder may be a quarter waveplate.
- a polariser characterised by comprising a device according to the first aspect of the invention.
- a filter characterised by comprising a device according to the first aspect of the invention.
- a liquid crystal device characterised by including a device according to the first aspect of the invention.
- a polarising beam-splitter characterised by comprising a device according to the first aspect of the invention.
- the intensity and polarisation of transmitted and reflected light from a cholesteric layer may be controlled as a function of wavelength, polarisation and angle of incidence of illuminating light.
- Further on-axis retarding layers may be included to convert input or output polarisation states to a polarisation state required for a particular application.
- the dependence on the angle of incidence and/or the angle of emergence of the optical performance of the device may be substantially reduced. It is therefore possible to provide devices such as polarisers and spectral filters of improved performance over a relatively large range of angles of incidence and/or emergence.
- Figure 1a of the accompanying drawings is a graph of transmittance in percent against wavelength in nanometres illustrating the performance of a known polariser.
- the polariser comprises a broadband left-handed monotonically graded pitch cholesteric film illuminated on its shorter pitch surface by white light with an angle of incidence of zero degrees.
- the unbroken line illustrates the transmittance of right handed circularly polarised light whereas the broken line illustrates the transmittance of left-handed circularly polarised light.
- the ideal performance would be for the left handed circularly polarised light to be transmitted with a uniform transmittance across the whole of the visible spectrum with minimal insertion loss whereas the right handed circularly polarised light would be uniformly attenuated across the visible spectrum with maximal attenuation.
- the on-axis performance of the known type of polariser approaches the ideal performance and is adequate for many practical applications.
- Figure 1b is a graph similar to that of Figure 1a but illustrates the performance for light which is incident on the short pitch surface at 20 degrees.
- the attenuation performance for right handed circularly polarised light is slightly degraded and the curve for left handed circularly polarised light is showing signs of some degradation of achromatic performance.
- Figure 1c illustrates operation for light incident at 40 degrees.
- the transmittance curves for left handed and right handed circularly polarised light are similar so that the extinction ratio (ratio of transmittance of the desired polarisation to the transmittance of the undesired polarisation) is very poor and, throughout part of the visible spectrum, is negative.
- the performance of the broadband polariser deteriorates until, at angles of incidence of the order of 40 degrees, the polariser ceases to act as a polariser at all.
- Figures 2a to 2c of the accompanying drawings correspond to Figures 1a to 1c, respectively, but illustrate the performance for light incident at angles of 0, 20 and 40 degrees on the long pitch surface of the broadband polariser. Again, the performance deteriorates with increasing angle of incidence such that the achromaticity of the polariser reduces and the extinction ratio reduces until, for high angles of incidence, the polariser ceases to be effective at all for at least part of the visible spectrum.
- Figures 3a to 3c and 4a to 4c correspond to Figures 1a to 1c and 2a to 2c, respectively, but illustrate the results of a simulation using a 4 x 4 transfer matrix optics modelling program.
- the simulated performance represents a reasonably close approximation to the performance actually obtained and assists in understanding the mechanisms involved in degrading the optical performance of the broadband polariser.
- the response may be understood in terms of the off-axis birefringence of the thick cholesteric layer which is optically in front of the layers of cholesteric material at some distance from the illuminated surface of the polariser.
- the region of the broadband polariser which reflects circularly polarised light at a wavelength of 550 nanometres is separated from the light source by a thick layer of cholesteric liquid crystal polymer (CLCP) which alters the polarisation state of the off-axis incident polarised light.
- CLCP cholesteric liquid crystal polymer
- this thick intermediate layer 5 which has a smaller pitch than that of the layer 4 for reflecting light at 550 nanometres at normal incidence, may be considered by approximating the layer 5 of varying pitch by means of a layer of constant pitch which is much smaller than the pitch of the layer 4.
- the chiral nature of the thick layer 5 is not "visible" to incident light of 550 nanometre wavelength. To a first approximation, such light sees the "averaged structure" illustrated in Figure 5b.
- the layer 5 is thus simulated as a layer whose pitch corresponds to UV wavelengths.
- Figures 6a to 6d are graphs of transmission against wavelength for light incident on the simulated structure comprising the UV layer and the layer 4 at angles of incidence of zero, 15.3, 31.3 and 49.5 degrees, respectively.
- Figures 7a to 7d correspond to Figures 6a to 6d, respectively, but for a simulation in which the UV layer is omitted.
- Figures 8a to 8d correspond to Figures 7a to 7d, respectively, but illustrate the simulated result where the thin CLCP layer 4 reflecting at 550 nanometres wavelength is covered by a thick CLCP of the same pitch and thus reflecting at the same wavelength as the layer 4. Averaging of the chiral structure does not take place and, for the parameters and angles illustrated, there is negligible difference between the off-axis behaviour of the thin and thick "green" layers as may be seen by comparing Figures 7a to 7d with Figures 8a to 8d, respectively.
- Figures 9a to 9d correspond to Figures 7a to 7d but illustrate the effect of covering the thin layer 4 with a thick layer which has a larger pitch such that it is reflective to infrared radiation on-axis.
- the presence of this layer affects performance as illustrated in Figures 9a to 9d.
- the effect of the thick layer depends on whether its pitch is greater or less than that of the layer 4 having a pitch capable of reflecting the incident light.
- the device shown in Figure 10 constitutes an embodiment of the invention and is a broadband polariser for reflecting circularly polarised light of a first handedness and for transmitting circularly polarised light of a second handedness throughout the visible spectrum.
- the device comprises a broadband cholesteric film 1 having a graded pitch which varies monotonically from a short pitch surface 2 of the film 1 to a long pitch surface 3.
- the film 1 is, for instance, of the same type as that shown in Figure 5a.
- a positive birefringence layer 8 is disposed adjacent or in contact with the short pitch surface 2 of the film 1.
- the layer 8 is 14.3 micrometres thick and has ordinary and extraordinary refractive indices n4 and n3 such that n4 is less than n3 and the optic axis is substantially perpendicular to the layer 8 and parallel to the axis of the device.
- the extraordinary refractive index n3 may have a value of 1.7 at a wavelength of 400 nanometres and 1.55 at a wavelength of 700 nanometres.
- the ordinary refractive index n4 may have a value of 1.5 at a wavelength of 400 nanometres and 1.36 at a wavelength of 700 nanometres.
- the positive birefringence layer 8 is disposed between the broadband cholesteric film 1 and a negative birefringence layer 9 which is 11 micrometres thick.
- the optic axis of the layer 9 is substantially perpendicular to the layer and parallel to the optical axis of the device.
- the layer 9 has an ordinary refractive index n2 of 1.70 at a wavelength of 400 nanometres and 1.55 at a wavelength of 700 nanometres.
- the layer 9 has an extraordinary refractive index n1 of 1.5 at 400 nanometres and 1.41 at 700 nanometres.
- the layers 8 and 9 are uniaxial.
- This phase retardation depends on wavelength both due to the explicit ⁇ term in equation (4) as well as the dispersion of the refractive indices n 1 , n 2 , n 3 , and n 4 .
- the dispersions and thicknesses of the layers 8, 9 are arranged such that the amount of off-axis phase retardation, or off-axis birefringence, varies with wavelength so as to counteract the depth-dependence of the off-axis birefringence of the graded-pitch cholesteric film 1.
- the pitch of the cholesteric film varies monotonically from one face to the other, improved angular response can be achieved with a simple double-layer compensator of the form shown in Figure 10. Compensation can be achieved also by placing the negative birefringence layer 9 closer to the cholesteric layer 1 than the positive birefringence layer 8.
- the dispersion of the materials of the layers 8 and 9 should be such that: ( ⁇ n 9 ( 400 ) / ⁇ n 9 ( 700 ) ) ⁇ ( ⁇ n 8 ( 400 ) / ⁇ n 8 ( 700 ) ) > 0
- ⁇ n is the magnitude of the difference between the refractive indices in the plane and perpendicular to the plane
- ⁇ n 9 (400) and ⁇ n 9 (700) are the differences for the layer 9 at wavelengths of 400 and 700 nanometres, respectively
- ⁇ n 8 (400) and ⁇ n 8 (700) are the differences for the layer 8 at wavelengths of 400 and 700 nanometres, respectively.
- Polarised light propagating through a slab of cholesteric material of longer pitch than the wavelength of light experiences significant circular birefringence in addition to linear birefringence. This is not removed by the present arrangement. Consequently, it is preferred to have the compensation next to the short pitch surface 2 of the cholesteric film if compensation at only one side of the device is required.
- the retardations of the layers 8 and 9 are of opposite sign, it is possible to choose the relative thickness of the layers 8 and 9 so that, at a wavelength corresponding to the shortest pitch of the cholesteric film 1, the retardations of the layers 8 and 9 substantially cancel each other over a wide range of angles.
- the combination of the positive and negative birefringence films 8 and 9 can be approximated as a positive birefringence structure and the cholesteric film 1 can be approximated as a negative birefringence structure.
- the overall thickness of the layers 8 and 9 is then chosen so as to roughly cancel the effects of the negative birefringence of the cholesteric film 1.
- a compensator comprising more than two layers may be required. Also, the compensator may be placed before and/or after the cholesteric film 1 to provide greater control of the angular behaviour. The correct location of the or each compensator depends on the application.
- Figures 11a to 11d are graphs illustrating the performance of the device shown in Figure 10 obtained by simulation.
- the unbroken curve illustrates the transmission of right handed circularly polarised light whereas the broken line curve illustrates the transmission of left handed circularly polarised light.
- Figure 11a illustrates the on-axis performance i.e. for light incident at zero degrees
- Figure 11b, 11c and 11d illustrate performance for light incident at 15, 31 and 49 degrees, respectively.
- transmission of left handed circularly polarised light is high and varies little throughout the visible spectrum, even in the case of light incident at 49 degrees as shown in Figure 11d.
- attenuation of right handed circularly polarised light remains high throughout the visible spectrum and with substantially achromatic performance.
- the device therefore operates as a highly achromatic broadband polariser and maintains a good extinction ratio throughout the visible spectrum and for large angles of incidence.
- Figures 12a to 12d correspond to Figures 11a to 11d, respectively, but illustrate operation of the device shown in Figure 10 with the compensator comprising the layers 8 and 9 removed.
- the on-axis performance and performance for light which is incident at 15 degrees on the short pitch surface 2 is similar to the performance with the compensator as illustrated in Figures 11a and 11b.
- the performance deteriorates for larger angles of incidence as shown in Figures 12c and 12d.
- the device still functions as a polariser but the extinction ratio is seriously reduced for longer wavelength light and is no longer approximately achromatic.
- the performance has deteriorated to the point where the device is actually more transmissive to the undesired polarisation state than to the desired polarisation state.
- the presence of the compensator greatly increases the off-axis performance.
- Figure 13a to 13d are graphs similar to Figure 11a to 11d, respectively, but illustrate the performance of an alternative embodiment.
- the cholesteric film 1 is oriented such that light is incident toward the long pitch surface 3.
- the positive birefringence layer 8 and the negative birefringence layer 9 are disposed between the light source and the film 1 but differ from the layers described hereinbefore in that the positive birefringence film 8 has a thickness of 19.8 micrometres, an ordinary refractive index n4 of 1.56 at a wavelength of 400 nanometres, and 1.50 at a wavelength of 700 nanometres and an extraordinary refractive index n3 of 1.80 at 400 nanometres and 1.70 at 700 nanometres whereas the film 9 has a thickness of 15 micrometres, an ordinary refractive index n2 of 1.75 at 400 nanometres and 1.72 at 700 nanometres, and an extraordinary refractive index n1 of 1.56 at 400 nanometres and 1.51 at 700 nanometres.
- the simulated on-axis performance and performance for light incident at 15 degrees is shown in Figures 13a and 13b and illustrates good achromatic performance and extinction ratio throughout the visible spectrum.
- the performance deteriorates for angles of incidence of 31 and 49 degrees as shown in Figures 13c and 13d
- the performance represents a substantial improvement over known devices and, in particular, the film 1 with the compensator comprising the layers 8 and 9 removed, as shown in Figures 14a to 14d.
- the performance on-axis and for a 15 degree angle of incidence is similar to the performance with the compensator but performance for higher angles of incidence deteriorates substantially as shown in Figures 14c and 14d.
- the negative birefringence layer 9 may be fabricated from short pitch cholesteric material. This layer 9 may be incorporated with the broadband cholesteric polarising film 1 or may be separate. Alternatively, a suitably fabricated polyimide film may be used as disclosed in S.T. Wu, P-47, SID '95. The negative birefringence layer 9 may be fabricated from a suitable discotic LC material as disclosed in US 5 518 783. A further alternative may be a biaxially stretched polymer film with little anisotropy in the plane.
- an effective negative birefringence layer may be fabricated from a two (or more) film stack of positive uniaxial or biaxial materials.
- Suitable materials may be nematic LC polymers which have planar alignment or stretched polymer films of materials exhibiting positive birefringence (i.e. an increased refractive index along the direction of stretching). The most suitable materials depend upon whether the compensator is next to the short pitch surface 2 or the long pitch surface 3. If the compensator is next to the short pitch surface 2, a high dispersion material is preferable.
- Suitable high dispersion materials may include biaxially oriented polyethylene naphtalate (Goodfellows, Cambridge, UK) with ⁇ n 400 / ⁇ n 700 ⁇ 1.45 or spin-coatable polyimides eg Ultradel PI-7505, (Amoco Chemical Company, Naperville, USA) ⁇ n 400 / ⁇ n 700 ⁇ 1.3.
- suitable low dispersion materials may include VAC compensation film (Sumitomo Chemical Co., Japan) ⁇ n 400 / ⁇ n 700 ⁇ 1.02 or stacked films of stretched PVA (eg Polatechno, Japan) ⁇ n 400 / ⁇ n 700 ⁇ 1.03.
- the positive birefringence layer 8 may be fabricated conveniently from a cured homeotropically aligned liquid crystal or liquid crystal polymer material, for instance as disclosed in EP 524 028. Also it may be possible to orient appropriately a cholesteric liquid crystal or liquid crystal polymer by use of surface effects or application of an electric or magnetic field to create the positive birefringence layer 8. In such a case, this layer may be essentially part of the cholesteric film 1. Additionally the positive birefringence layer may be fabricated from a biaxially stretched polymer film, stretched so that there is very little anisotropy in the plane. Such a film may be fabricated from a material exhibiting negative birefringence when stretched, i.e.
- Polymer materials exhibiting this property include polystyrene, poly methyl methacrylate (PMMA), ethylene methacrylate, and acrylonitrile polymers and co-polymers including stryrene acrylonitrile (SAN).
- an effective positive birefringence layer may be fabricated from a two (or more) film stack of negative uniaxial or biaxial materials.
- the optic axes are in the film plane but at an angle (90° for two films) to each other.
- the refractive index perpendicular to the plane is larger than the average of the refractive indices in the plane.
- the optic axes corresponding to the smallest in-plane refractive indices are at an angle (90° for two films) to each other.
- the films constituting the positive birefringence layer have similar optical dispersion properties.
- a suitable material may be biaxially oriented polystyrene film eg OPS (Mitsubishi Chemical Co., Tokyo, Japan) 400 / ⁇ n 700 ⁇ 1,15.
- a suitable material may be a different grade of polystyrene eg AKD biaxially oriented polystyrene (AKD America Investment Corporation, Los Angeles, USA) ⁇ n 400 / ⁇ n 700 ⁇ 1.29 or a high birefringence homeotropically aligned liquid crystal polymer, for example as disclosed in EP 524 028.
- high birefringence is associated with a high dispersion factor as previously defined.
- the complete “external" compensator may be fabricated from the cholesteric reflecting film material, this is only convenient or feasible where there is sufficient control of the refractive indices and dispersion.
- the final tuning of the off-axis birefringence of the external compensator may be achieved in situ, for example by use of temperature tuning of one of the refractive indices.
- the optimum response of the cholesteric film/compensator combination may depend on the application.
- the compensator may be used to provide matching of the angular response of the cholesteric film to the specific application, such as use with a particular LCD.
- the luminance enhancement achievable by use of a cholesteric film in a recirculating backlight system may be obtained without degrading other features of the system, such as viewing angle or colour balance.
- Quarter wave films or other appropriate on-axis retarders may be integrally combined with the off-axis birefringence compensator.
- FIG 15 illustrates a device which differs from that shown in Figure 10 in that a further compensator 10 is provided for emergent light leaving the cholesteric film 1.
- the compensator 10 comprises, for instance, a positive birefringence layer 8' and a negative birefringence layer 9' of the same types as the layers 8 and 9 of the first compensator.
- Light which is transmitted beyond the layer within the film 1 which reflects left handed circularly polarised light of that wavelength passes through the remainder of the cholesteric film 1 and suffers from the effects of off-axis birefringence. Consequently, light which emerges from the film 1 is not right handed circularly polarised for all wavelengths and at off-axis angles of emergence.
- the second compensator 10 may be used to counteract these effects so that the light which is transmitted through the whole device is mainly right handed circularly polarised throughout the visible spectrum over a large range of angles of emergence.
- Figure 16 illustrates the use of a device comprising a cholesteric polariser 1 and an output compensator 10 in a backlight for an LCD 12.
- the backlight comprises a light source 14 and reflector 15 which supply light to a light guide 16.
- Light from the guide 16 is diffused by a diffuser 17 and supplied to the cholesteric polariser 1.
- Circularly polarised light of one handedness is reflected by the polariser 1 and may be recycled after reversing of its handedness of polarisation.
- Light of the other handedness of circular polarisation is transmitted by the polariser and the compensator 10 ensures that the output light is substantially of the single handedness of circular polarisation.
- a broadband quarter wave film 18 converts the circularly polarised light to linearly polarised light with a polarisation vector suitable for application to the LCD 12.
- the backlight arrangement shown in Figure 16 thus achieves high efficiency of use of the light supplied by the light source 14.
- the negative birefringence layer 9 is omitted from the device shown in Figure 10 to provide a simpler device whose performance is not as good as that of the device shown in Figure 10 but may be acceptable for some applications.
- the positive birefringence of the layer 8 may be chosen to offset the negative birefringence experienced, for example, by green light with a wavelength range in the centre of the visible spectrum.
- the performance of such a simplified device is illustrated in Figures 18a to 18d.
- the layer 8 has an extraordinary refractive index n3 of 1.7 at 400 nanometres and 1.66 at 700 nanometres.
- the ordinary refractive index n4 of the layer is 1.65 at 400 nanometres and 1.62 at 700 nanometres.
- Figure 19 illustrates the use of a broadband cholesteric polariser of the type shown in Figure 15 as a polarising beam splitter. Unpolarised light is incident on the filter at an angle of approximately 45 degrees to the plane of the film. If the input compensator 8, 9 were omitted, the polariser would not properly discriminate between left and right handed circularly polarised light at this angle. However, with the input compensator 8, 9, the polariser discriminates well between reflecting left handed circularly polarised light and transmitting right handed circularly polarised light. In the absence of the compensator 10, the polarisation state of the transmitted light would be substantially distorted. However, the compensator 10 ensures that the transmitted light is substantially in the desired state of circular polarisation.
- FIG. 20 illustrates use of a device of the type shown in Figure 15 for folding an optical system.
- the input compensator 8, 9 maintains the reflectivity of the polariser across a wide range of wavelengths and angles.
- the compensator 10 is provided if it is necessary to maintain a high degree of circular polarisation of the transmitted light.
- Figure 21 illustrates a device which differs from that shown in Figure 15 in that a quarter waveplate 20 is disposed adjacent the negative birefringence layer 9.
- Figure 22 illustrates a device which differs from that shown in Figure 15 in that a quarter waveplate 20' is disposed adjacent the compensator 10.
- such a quarter waveplate may be used for converting between linearly polarised and circularly polarised light.
- quarter waveplates 20 and 20' are shown adjacent the outer surfaces of the negative birefringence layers 9 and 9' respectively, in practice the quarter waveplate may be disposed at any position within the device, for instance between adjacent ones of any of the layers or films including the film 1, or even internally within a layer or film of the compensator 8, 9 or 10.
- the quarter waveplate may be made integrally with the compensator 8, 9 or with the compensator 10.
- the quarter waveplate and one of the layers 8, 9, 8', 9' may be combined in to a single layer.
- the quarter waveplate 20 or 20' and the compensator 8, 9 or 10 may be embodied as a first layer or film of a biaxial material whose largest refractive index is perpendicular to the plane and a layer or film of negative uniaxial material whose optic axis is perpendicular to the plane.
- the quarter waveplate is discrete from the compensator 8, 9 or 10, it may be made as a separate film from different materials, such as a multilayer structure, for optimised broad bandwidth.
- the device shown in Figure 23 differs from that shown in Figure 10 in that the positive birefringence layer 8 is disposed between and in contact with the long pitch surface 3 of the film 1 and the negative birefringence layer 9.
- the dispersions of the materials of the layers 8 and 9 are as described hereinbefore for the compensator 8, 9 adjacent the long pitch surface 3.
- the device shown in Figure 24 differs from that shown in Figure 10 in that the positive birefringence layer 8 comprises two negative uniaxial films 8a and 8b whose optic axes n ea and n eb are substantially perpendicular to each other.
- the films 8a and 8b have extraordinary refractive indices n ea and n eb in the planes of the films 8a and 8b, respectively, and ordinary refractive indices n oa and n ob , respectively, in the orthogonal directions shown in Figure 24.
- the refractive indices are such that: n e b ⁇ n o b n e a ⁇ n o a
- the device shown in Figure 25 differs from that shown in Figure 24 in that the films 8a and 8b are biaxial and the smaller in-plane refractive indices n 2a and n 1b are substantially perpendicular to each other.
- the films 8a and 8b have refractive indices labelled n 1a , n 2a , n 3a , n 1b , n 2b, and n 3b in orthogonal directions such that: n 1 b ⁇ n 2 b n 1 b ⁇ n 3 b n 2 a ⁇ n 1 a n 2 a ⁇ n 3 a n 3 b > ( n 1 b + n 2 b ) / 2 n 3 a > ( n 1 b + n 2 b ) / 2 n 3 a > ( n 1 b + n 2 b ) / 2
- the device shown in Figure 26 differs from that shown in Figure 10 in that the positive birefringence layer 8 comprises part of the cholesteric layer 1 having a predetermined alignment.
- the device shown in Figure 27 differs from that shown in Figure 10 in that the negative birefringence layer 9 comprises two films 9a and 9b of uniaxial material having optic axes in the planes of the films which are substantially perpendicular to each other.
- the refractive indices n oa , n ea , n ob and n eb in the directions illustrated in Figure 27 are such that: n e a > n o a n e b > n o b
- the device shown in Figure 28 differs from that shown in Figure 27 in that the films 9a and 9b are biaxial films whose optic axes corresponding to the greater of the in-plane refractive indices are substantially perpendicular to each other.
- the films 9a and 9b have refractive indices n 1a , n 2a , n 3a , n 1b , n 2b and n 3b in the directions shown such that: n 3 b ⁇ n 1 b n 3 b ⁇ n 2 b n 3 a ⁇ n 1 a n 3 a ⁇ n 2 a n 3 a ⁇ ( n 1 a + n 2 a ) / 2 n 3 b ⁇ ( n 1 b + n 2 b ) / 2
- Figure 29 illustrates an LCD and backlight arrangement which differs from that shown in Figure 16 in that the unpolarised light source arrangement 14, 15, 16 is replaced by a polarised light source 14 and a collimating optical element 22. Also, the diffuser 17 is omitted, the compensator 10 is disposed between the collimating optical element 22 and the cholesteric polariser 1, and the broadband quarter wave film 18 is disposed between the polariser 1 and the LCD 12.
- the compensator 10, the cholesteric polariser 1 and the broadband quarter wave film 18 effectively comprise part of the liquid crystal device and act as an input polariser for the LCD 12.
- the arrangement shown in Figure 30 differs from that shown in Figure 29 in that the cholesteric polariser 1 is disposed between the collimating optical element 22 and the compensator 10. Thus, whereas the arrangement shown in Figure 29 has pre-compensation for light entering the polariser 1, the arrangement shown in Figure 30 has post-compensation for light leaving the polariser 1.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Claims (35)
- Dispositif optique cholestérique à large bande, comprenant une couche cholestérique à large bande (1), et un premier compensateur (8, 9) pour assurer un fonctionnement désaxé désiré du dispositif, caractérisé en ce que le premier compensateur (8, 9) comprend une première couche (8) ayant une biréfringence positive et un axe optique sensiblement perpendiculaire à la première couche (8), et une seconde couche (9) ayant une biréfringence négative et un axe optique sensiblement perpendiculaire à la seconde couche (9).
- Dispositif selon la revendication 1, caractérisé en ce que le fonctionnement désaxé désiré du dispositif est une dépendance angulaire réduite.
- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche cholestérique (1) a un pas d'hélice progressif, qui augmente de manière monotone à partir d'une première surface (2) vers une seconde surface (3) de celle-ci.
- Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la couche cholestérique (1) a un indice progressif de réfraction, qui augmente de manière monotone à partir d'une première surface (2) vers une seconde surface (3) de celle-ci.
- Dispositif selon la revendication 3, caractérisé en ce que la somme de la biréfringence désaxée des première et seconde couches (8, 9) est sensiblement égale à zéro pour une longueur d'onde correspondant au pas d'hélice le plus court de la couche cholestérique (1), et sensiblement égale mais opposée à celle de la couche cholestérique (1) pour une longueur d'onde correspondant au pas d'hélice le plus long de la couche cholestérique (1), et en ce que le premier compensateur (8, 9) est disposé de manière adjacente à la première surface (2) de la couche cholestérique (1).
- Dispositif selon la revendication 5, caractérisé en ce que les dispersions d'indice de réfraction des première et seconde couches (8, 9) sont telles que :
- Dispositif selon la revendication 3, caractérisé en ce que la somme de la biréfringence désaxée des premier et seconde couches (8, 9) est sensiblement égale à zéro pour une longueur d'onde correspondant au pas d'hélice le plus long de la couche cholestérique (1), et sensiblement égale mais opposée à celle de la couche cholestérique (1) pour une longueur d'onde correspondant au pas d'hélice le plus court de la couche cholestérique (1), et en ce que le premier compensateur (8) est disposé de manière adjacente à la seconde surface (3) de la couche cholestérique.
- Dispositif selon la revendication 7, caractérisé en ce que les dispersions d'indice de réfraction des première et seconde couches (8, 9) sont telles que :
- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la première couche (8) comprend une matière mésogénique réactive.
- Dispositif selon la revendication 9, caractérisé en ce que la première couche (8) comprend une matière mésogénique réactive à alignement homéotrope.
- Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la première couche (8) comprend une partie de la couche cholestérique (1) ayant un alignement prédéterminé.
- Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la première couche (8) comprend au moins une mince couche de polymère étiré.
- Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la première couche (8) comprend une pluralité de minces couches uniaxes, chacune d'elles ayant une biréfringence négative et un axe optique sensiblement dans le plan de celle-ci, les axes optiques de la paire ou de chaque paire adjacente des minces couches uniaxes étant angulairement espacés d'un angle différent de zéro.
- Dispositif selon la revendication 13, caractérisé en ce que la première couche (8) comprend deux minces couches uniaxes, dont les axes optiques sont sensiblement perpendiculaires l'un à l'autre.
- Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la première couche (8) comprend une pluralité de minces couches biaxes, chacune d'elles ayant un indice de réfraction, dans une direction perpendiculaire à la mince couche, qui est plus grand que la moyenne des indices de réfraction dans le plan de la mince couche, les axes optiques correspondant au plus petit des indices de réfraction dans le plan de la paire ou de chaque paire adjacente de minces couches, qui sont angulairement espacés d'un angle différent de zéro.
- Dispositif selon la revendication 15, caractérisé en ce que la première couche (8) comprend deux minces couches biaxes, dont les axes optiques correspondant au plus petit des indices de réfraction dans le plan sont sensiblement perpendiculaires l'un à l'autre.
- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la seconde couche (9) comprend une couche cholestérique ayant un pas d'hélice correspondant à une longueur d'onde inférieure à sensiblement 440 nanomètres.
- Dispositif selon la revendication 17, caractérisé en ce que la seconde couche (9) comprend une partie de la couche cholestérique (1).
- Dispositif selon l'une quelconque des revendications 1 à 16, caractérisé en ce que la seconde couche (9) comprend une mince couche de polymère coulé.
- Dispositif selon la revendication 19, caractérisé en ce que le polymère est un polyimide.
- Dispositif selon l'une quelconque des revendications 1 à 16, caractérisé en ce que la seconde couche (9) comprend une matière de cristaux liquides discotiques.
- Dispositif selon l'une quelconque des revendications 1 à 16, caractérisé en ce que la seconde couche (9) comprend au moins une mince couche de polymère étiré.
- Dispositif selon l'une quelconque des revendications 1 à 16, caractérisé en ce que la seconde couche (9) comprend une pluralité de minces couches, chacun d'elles comprenant une matière uniaxe, ayant un axe optique dans le plan de celle-ci, les axes optiques de la paire ou de chaque paire adjacente des minces couches étant angulairement espacés d'un angle différent de zéro.
- Dispositif selon la revendication 23, caractérisé en ce que la seconde couche (9) comprend deux minces couches, et les axes optiques sont sensiblement perpendiculaires l'un à l'autre.
- Dispositif selon l'une quelconque des revendications 1 à 16, caractérisé en ce que la seconde couche (9) comprend une pluralité de minces couches biaxes, chacune d'elles ayant un indice de réfraction, dans une direction perpendiculaire à la mince couche, qui est plus petit que la moyenne des indices de réfraction dans le plan de la mince couche, les axes optiques correspondant au plus grand des indices de réfraction dans le plan de la paire ou de chaque paire adjacente de minces couches, qui sont angulairement espacés d'un angle différent de zéro.
- Dispositif selon la revendication 25, caractérisé en ce que la seconde couche (9) comprend deux minces couches biaxes, dont les axes optiques correspondant au plus grand des indices de réfraction dans le plan sont sensiblement perpendiculaires l'un à l'autre.
- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier compensateur (8, 9) comprend un retardateur axial (20).
- Dispositif selon la revendication 27, caractérisé en ce que le retardateur est une plaque quart d'onde (20).
- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche cholestérique (1) est disposée entre le premier compensateur (8, 9) et un second compensateur (10), qui comprend une pluralité de couches, dont une première (8') a une biréfringence positive et un axe optique sensiblement perpendiculaire à la première couche (8'), tandis qu'une seconde (9') de ces couches a une biréfringence négative et un axe optique sensiblement perpendiculaire à la seconde couche (9').
- Dispositif selon la revendication 29, caractérisé en ce que le second compensateur (10) comprend un retardateur axial (20').
- Dispositif selon la revendication 30, caractérisé en ce que le retardateur est une plaque quart d'onde (20').
- Polariseur, caractérisé en ce qu'il comprend un dispositif selon l'une quelconque des revendications précédentes.
- Filtre, caractérisé en ce qu'il comprend un dispositif selon l'une quelconque des revendications 1 à 31.
- Dispositif à cristaux liquides, caractérisé en ce qu'il comprend un dispositif selon l'une quelconque des revendications 1 à 31.
- Diviseur de faisceau à polarisation, caractérisé en ce qu'il comprend un dispositif selon l'une quelconque des revendications 1 à 31.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9701472A GB2321529A (en) | 1997-01-24 | 1997-01-24 | Broadband cholesteric optical device |
GB9701472 | 1997-01-24 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0860717A2 EP0860717A2 (fr) | 1998-08-26 |
EP0860717A3 EP0860717A3 (fr) | 1998-10-07 |
EP0860717B1 true EP0860717B1 (fr) | 2006-08-09 |
Family
ID=10806532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98300477A Expired - Lifetime EP0860717B1 (fr) | 1997-01-24 | 1998-01-23 | Dispositif optique cholésterique à large bande, polariseur, filtre, dispositif à cristaux liquides et séparateur de faisceaux polarisant |
Country Status (5)
Country | Link |
---|---|
US (1) | US6175400B1 (fr) |
EP (1) | EP0860717B1 (fr) |
JP (1) | JP3523042B2 (fr) |
DE (2) | DE69841065D1 (fr) |
GB (2) | GB2321529A (fr) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6630974B2 (en) * | 1991-11-27 | 2003-10-07 | Reveo, Inc. | Super-wide-angle cholesteric liquid crystal based reflective broadband polarizing films |
DE19745647A1 (de) * | 1997-10-15 | 1999-04-22 | Basf Ag | Wärmeisolationsbeschichtung |
JP3580124B2 (ja) * | 1998-03-05 | 2004-10-20 | 日東電工株式会社 | 光学素子、照明装置及び液晶表示装置 |
FR2781892B1 (fr) * | 1998-07-28 | 2002-08-30 | Sextant Avionique | Amelioration de l'angle de vue d'un ecran lcd par nouvel empilement de films birefringents |
US6773766B2 (en) | 1998-12-22 | 2004-08-10 | Basf Aktiengesellschaft | Utilization of polymerizable liquid crystal substances for the production of optical components |
JP2001305520A (ja) | 2000-04-24 | 2001-10-31 | Toshiba Corp | 液晶表示素子およびその製造方法 |
KR100812271B1 (ko) * | 2000-05-17 | 2008-03-13 | 후지필름 가부시키가이샤 | 위상차판, 그 제조방법, 및 그것을 이용한 원편광판, 1/2 파장판 및 반사형 액정표시 장치 |
US6573963B2 (en) * | 2001-02-22 | 2003-06-03 | 3M Innovativeproperties Company | Cholesteric liquid crystal optical bodies and methods of manufacture |
US6982829B1 (en) | 2002-08-23 | 2006-01-03 | Lightmaster Systems, Inc | Prism assembly with cholesteric reflectors |
US7280281B2 (en) * | 2002-03-05 | 2007-10-09 | Berg & Berg Enterprises, Inc. | Method and apparatus for increasing microdisplay black state in light management systems and flexibility to utilize polarized or unpolarized input light |
CN1304891C (zh) * | 2002-02-19 | 2007-03-14 | 日东电工株式会社 | 层压延迟片、使用该层压延迟片的层压偏振片及图像显示器 |
AU2003269372A1 (en) * | 2002-11-13 | 2004-06-03 | Koninklijke Philips Electronics N.V. | Cholesteric color filter and method of manufacturing such |
US7393570B2 (en) * | 2003-01-10 | 2008-07-01 | Nitto Denko Corporation | Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illiminator, and liquid-crystal display |
JP4008358B2 (ja) * | 2003-01-10 | 2007-11-14 | 日東電工株式会社 | 広帯域コレステリック液晶フィルムの製造方法 |
CN101408631B (zh) * | 2003-07-17 | 2012-03-28 | 大日本印刷株式会社 | 相位差层及使用它的液晶显示装置 |
US7123410B2 (en) * | 2003-08-07 | 2006-10-17 | Dai Nippon Printing Co., Ltd. | Projection screen and projection system comprising the same |
JP2005070097A (ja) * | 2003-08-25 | 2005-03-17 | Nitto Denko Corp | 積層光学フィルム、楕円偏光板および画像表示装置 |
EP1542044A1 (fr) * | 2003-12-11 | 2005-06-15 | JDS Uniphase Corporation | Compensateurs de retardation comprenant une biréfringence négative |
TWI249064B (en) * | 2004-10-13 | 2006-02-11 | Optimax Tech Corp | Cholesteric liquid crystal light control film |
JP3926824B2 (ja) * | 2004-11-29 | 2007-06-06 | 日東電工株式会社 | 液晶パネル及び液晶表示装置 |
JP2006189781A (ja) * | 2004-12-08 | 2006-07-20 | Nitto Denko Corp | 液晶パネル及び液晶表示装置 |
US8237876B2 (en) * | 2005-05-25 | 2012-08-07 | Kim Leong Tan | Tilted C-plate retarder compensator and display systems incorporating the same |
US7745763B2 (en) * | 2005-07-11 | 2010-06-29 | Whirlpool Corporation | Method for baking bread using steam |
US7714945B2 (en) * | 2005-09-09 | 2010-05-11 | Jds Uniphase Corporation | Optimally clocked trim retarders |
TW200728830A (en) * | 2005-10-18 | 2007-08-01 | Jds Uniphase Corp | Electronically compensated LCD assembly |
US8304079B2 (en) * | 2007-03-29 | 2012-11-06 | Akron Polymer Systems | Optical compensation films with birefringence enhancing substituents for liquid crystal display |
US8802238B2 (en) * | 2007-03-29 | 2014-08-12 | Akron Polymer Systems, Inc. | Optical compensation films based on fluoropolymers |
US9096719B2 (en) * | 2007-03-29 | 2015-08-04 | Akron Polymer Systems | Optical compensation films with mesogen groups for liquid crystal display |
US7989036B2 (en) | 2007-03-29 | 2011-08-02 | Akron Polymer Systems | Optical compensation films with disk groups for liquid crystal display |
US8435636B2 (en) * | 2007-03-29 | 2013-05-07 | Akron Polymer Systems, Inc. | Optical compensation films of brominated styrenic polymers and related methods |
US8889043B2 (en) | 2007-03-29 | 2014-11-18 | Akron Polymer Systems, Inc. | Optical films cast from styrenic fluoropolymer solutions |
US9011992B2 (en) * | 2007-03-29 | 2015-04-21 | Akron Polymer Systems | Optical compensation films based on stretched polymer films |
US8821994B2 (en) | 2007-03-29 | 2014-09-02 | Akron Polymer Systems | Liquid crystal display having improved wavelength dispersion characteristics |
US8226860B2 (en) * | 2007-03-29 | 2012-07-24 | Akron Polymer Systems | Optical compensation films having positive birefringence for liquid crystal display |
DK1980902T3 (en) * | 2007-04-10 | 2015-07-27 | Jds Uniphase Corp | Twisted nematic XLCD CONTRAST COMPENSATION WITH rocked PLADEFORSINKERE |
US9457496B2 (en) | 2011-03-23 | 2016-10-04 | Akron Polymer Systems, Inc. | Aromatic polyamide films for transparent flexible substrates |
US9856376B2 (en) | 2011-07-05 | 2018-01-02 | Akron Polymer Systems, Inc. | Aromatic polyamide films for solvent resistant flexible substrates |
CN103987763B (zh) | 2011-08-19 | 2017-12-29 | 阿克伦聚合物体系有限公司 | 热稳定的低双折射共聚聚酰亚胺膜 |
TWI490597B (zh) | 2011-12-26 | 2015-07-01 | Ind Tech Res Inst | 增亮光學元件及液晶顯示元件 |
US8871882B2 (en) | 2012-02-14 | 2014-10-28 | Akron Polymer Systems, Inc. | Method for the preparation of styrenic fluoropolymers |
KR101909074B1 (ko) | 2013-08-26 | 2018-10-18 | 후지필름 가부시키가이샤 | 휘도 향상 필름, 광학 시트 부재 및 액정 표시 장치 |
WO2015122479A1 (fr) | 2014-02-14 | 2015-08-20 | 富士フイルム株式会社 | Film d'amélioration de luminosité, élément de feuille optique et dispositif d'affichage à cristaux liquides |
WO2017033468A1 (fr) * | 2015-08-27 | 2017-03-02 | 富士フイルム株式会社 | Élément optique, procédé de fabrication d'un élément optique, et dispositif d'affichage à cristaux liquides |
CN106842670B (zh) * | 2017-04-10 | 2021-03-26 | Tcl华星光电技术有限公司 | 柔性基板 |
EP3770657A4 (fr) | 2018-03-23 | 2021-06-02 | FUJIFILM Corporation | Couche de cristaux liquides cholestériques, corps stratifié, corps optiquement anisotrope, film réfléchissant, procédé de fabrication de couche de cristaux liquides cholestériques ; moyen de prévention de falsification et procédé de détermination |
CN112083579B (zh) * | 2019-06-12 | 2022-08-16 | 上海麦界信息技术有限公司 | 用于显示立体光场的薄膜结构 |
CN112083581B (zh) * | 2019-06-12 | 2022-09-02 | 上海麦界信息技术有限公司 | 显示装置 |
CN112083580B (zh) * | 2019-06-12 | 2022-09-02 | 上海麦界信息技术有限公司 | 显示装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0610924A2 (fr) * | 1993-02-10 | 1994-08-17 | Stanley Electric Co., Ltd. | Dispositif d'affichage à cristal liquide avec structure à multi-domaines |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5061042A (en) * | 1987-02-02 | 1991-10-29 | Sumitomo Chemical Co., Ltd. | Phase retarder and liquid crystal display using the same |
US5189538A (en) * | 1988-11-04 | 1993-02-23 | Fuji Photo Film Co., Ltd. | Liquid crystal display having positive and negative birefringent compensator films |
EP0478779B1 (fr) * | 1989-06-22 | 1994-11-02 | Citizen Watch Co. Ltd. | Dispositif d'affichage a cristaux liquides et plaques de dephasage |
EP0424951B1 (fr) * | 1989-10-27 | 1995-01-25 | Fuji Photo Film Co., Ltd. | Dispositif d'affichage à cristal liquide |
JP2853064B2 (ja) | 1991-07-19 | 1999-02-03 | 日本石油株式会社 | 液晶表示素子用視角補償板 |
JP2853068B2 (ja) | 1991-09-03 | 1999-02-03 | 日本石油株式会社 | 液晶表示素子用視角補償板の製造方法 |
US5196953A (en) * | 1991-11-01 | 1993-03-23 | Rockwell International Corporation | Compensator for liquid crystal display, having two types of layers with different refractive indices alternating |
US5430565A (en) * | 1992-06-02 | 1995-07-04 | Fuji Photo Film Co., Ltd. | Uniaxially stretched negative birefringent film and liquid crystal display having the same |
TW289095B (fr) * | 1993-01-11 | 1996-10-21 | ||
DE69409977T2 (de) | 1993-01-11 | 1998-10-22 | Koninkl Philips Electronics Nv | Beleuchtungssystem und ein solches System umfassendes Anzeigegerät |
US5986733A (en) * | 1993-04-30 | 1999-11-16 | Rockwell International Corporation | Negative optical compensator tilted in respect to liquid crystal cell for liquid crystal display |
US5486935A (en) | 1993-06-29 | 1996-01-23 | Kaiser Aerospace And Electronics Corporation | High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays having a notch polarization bandwidth of 100 nm to 250 nm |
US5657140A (en) * | 1993-12-15 | 1997-08-12 | Ois Optical Imaging Systems, Inc. | Normally white twisted nematic LCD with positive and negative retarders |
US5594568A (en) * | 1993-12-15 | 1997-01-14 | Ois Optical Imaging Systems, Inc. | LCD with a pair of retardation films on one side of normally white liquid crystal layer |
US5986734A (en) * | 1994-04-04 | 1999-11-16 | Rockwell International Corporation | Organic polymer O-plate compensator for improved gray scale performance in twisted nematic liquid crystal displays |
US5619352A (en) * | 1994-04-04 | 1997-04-08 | Rockwell International Corporation | LCD splay/twist compensator having varying tilt and /or azimuthal angles for improved gray scale performance |
US5504603A (en) * | 1994-04-04 | 1996-04-02 | Rockwell International Corporation | Optical compensator for improved gray scale performance in liquid crystal display |
EP0763218A1 (fr) * | 1994-05-31 | 1997-03-19 | Koninklijke Philips Electronics N.V. | Dispositif d'affichage a afficheur a diffusion |
DE69528981T2 (de) * | 1994-07-12 | 2003-08-28 | Koninklijke Philips Electronics N.V., Eindhoven | Beleuchtungssystem, linearer polarisator für ein solches beleuchtungssystem und anzeigegerät mit diesem beleuchtungssystem |
JP3675483B2 (ja) * | 1994-09-30 | 2005-07-27 | ロックウェル・インターナショナル・コーポレイション | 垂直に配向されたコレステリック液晶ディスプレイのための観察角向上 |
US5730903A (en) * | 1994-12-28 | 1998-03-24 | Fuji Photo Film Co., Ltd. | Compound and thin film composed of the discotic compound |
GB2296807A (en) | 1994-12-29 | 1996-07-10 | Sharp Kk | Illumination system |
DE69634620T2 (de) * | 1995-02-08 | 2006-03-02 | Fuji Photo Film Co., Ltd., Minami-Ashigara | Optische Kompensationsfolie |
JPH0990333A (ja) * | 1995-09-26 | 1997-04-04 | Fuji Photo Film Co Ltd | 液晶表示装置 |
US5731886A (en) * | 1995-09-28 | 1998-03-24 | Rockwell International Corporation | Birefringent compensator for reflective polarizers |
ATE267411T1 (de) * | 1995-11-22 | 2004-06-15 | Koninkl Philips Electronics Nv | Beleuchtungssystem, linearer polarisator für ein solches beleuchtungssystem und anzeigevorrichtung mit einem solchen beleuchtungssystem |
JPH11501360A (ja) * | 1995-12-21 | 1999-02-02 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | 切り換え可能なコレステリックフィルターの製造方法及び該フィルターを有する投光照明設備具 |
US6061108A (en) * | 1997-01-24 | 2000-05-09 | Sharp Kabushiki Kaisha | Broadband cholesteric polarizer and an optical device employing the same |
-
1997
- 1997-01-24 GB GB9701472A patent/GB2321529A/en not_active Withdrawn
- 1997-01-31 GB GB9702078A patent/GB2321530A/en not_active Withdrawn
-
1998
- 1998-01-20 JP JP00875198A patent/JP3523042B2/ja not_active Expired - Fee Related
- 1998-01-22 US US09/012,469 patent/US6175400B1/en not_active Expired - Lifetime
- 1998-01-23 DE DE69841065T patent/DE69841065D1/de not_active Expired - Lifetime
- 1998-01-23 DE DE69835470T patent/DE69835470T2/de not_active Expired - Lifetime
- 1998-01-23 EP EP98300477A patent/EP0860717B1/fr not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0610924A2 (fr) * | 1993-02-10 | 1994-08-17 | Stanley Electric Co., Ltd. | Dispositif d'affichage à cristal liquide avec structure à multi-domaines |
Also Published As
Publication number | Publication date |
---|---|
JP3523042B2 (ja) | 2004-04-26 |
US6175400B1 (en) | 2001-01-16 |
EP0860717A3 (fr) | 1998-10-07 |
EP0860717A2 (fr) | 1998-08-26 |
DE69835470T2 (de) | 2007-02-22 |
GB9702078D0 (en) | 1997-03-19 |
JPH10213709A (ja) | 1998-08-11 |
GB2321530A (en) | 1998-07-29 |
DE69841065D1 (de) | 2009-10-01 |
GB2321529A (en) | 1998-07-29 |
DE69835470D1 (de) | 2006-09-21 |
GB9701472D0 (en) | 1997-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0860717B1 (fr) | Dispositif optique cholésterique à large bande, polariseur, filtre, dispositif à cristaux liquides et séparateur de faisceaux polarisant | |
US6061108A (en) | Broadband cholesteric polarizer and an optical device employing the same | |
KR100762399B1 (ko) | 광각 조명을 갖춘 편광 디스플레이 | |
US5731886A (en) | Birefringent compensator for reflective polarizers | |
US20010003473A1 (en) | Super-wide-angle cholesteric liquid crystal based reflective broadband polarizing films | |
US20030089956A1 (en) | Polarization rotators, articles containing the polarization rotators, and methods of making and using the same | |
EP2053431A2 (fr) | Système de contrôle de polarisation et dispositif d'affichage | |
JP3291432B2 (ja) | 液晶表示装置およびこれを用いた端末装置 | |
AU2001251596A1 (en) | Polarized display with wide-angle illumination | |
US20060164571A1 (en) | Polarizing arrangement | |
EP0699938A2 (fr) | Dispositif d'affichage à cristal liquide | |
US7405787B2 (en) | Liquid crystal display with offset viewing cone | |
US6384974B1 (en) | Polarization beam splitter | |
US20210278582A1 (en) | Achromatic optical device based on birefringent materials having positive and negative birefringence dispersions | |
JP2798073B2 (ja) | 反射型液晶表示装置 | |
US20230288706A1 (en) | Optical elements for reducing visual artifacts in diffractive waveguide displays and systems incorporating the same | |
KR20030020358A (ko) | 파장-무관 고 콘트라스트 광 신호를 생성하기 위한 무색장치 | |
Ishinabe et al. | LP‐6: Design of a Quarter Wave Plate with Wide Viewing Angle and Wide Wavelength Range for High Quality Reflective LCDs | |
US7009670B1 (en) | Achromatic quarter-wave films | |
Fujimura et al. | Improvement of optical films for high-performance LCDs | |
KR20000046921A (ko) | 콜레스테릭 액정을 이용한 편광필름 및 액정표시장치 | |
CN117480431A (zh) | 用于减少衍射波导显示器中的视觉伪像的光学元件以及包含该光学元件的系统 | |
Galabova et al. | Achromatic wide‐angle CLC‐based broadband polarizer | |
Fujimura et al. | High-performance optical films for LCDs | |
KR20050091980A (ko) | 액정 표시 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19990319 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20030424 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69835470 Country of ref document: DE Date of ref document: 20060921 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070510 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130204 Year of fee payment: 16 Ref country code: DE Payment date: 20130116 Year of fee payment: 16 Ref country code: GB Payment date: 20130123 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69835470 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69835470 Country of ref document: DE Effective date: 20140801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140123 |