EP0857867A1 - Verfahren und Vorrichtung zur Erkennung einer Leckage - Google Patents

Verfahren und Vorrichtung zur Erkennung einer Leckage Download PDF

Info

Publication number
EP0857867A1
EP0857867A1 EP97116131A EP97116131A EP0857867A1 EP 0857867 A1 EP0857867 A1 EP 0857867A1 EP 97116131 A EP97116131 A EP 97116131A EP 97116131 A EP97116131 A EP 97116131A EP 0857867 A1 EP0857867 A1 EP 0857867A1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
mass
high pressure
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97116131A
Other languages
German (de)
English (en)
French (fr)
Inventor
Rainer Buck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0857867A1 publication Critical patent/EP0857867A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection

Definitions

  • the invention is based on a method and a device to detect a leak in a fuel supply system in an internal combustion engine of the type of the main claims.
  • the inventive device with the features of Main claims has the advantage over the known that the entire high pressure fuel supply system for leaks can be monitored and not only recognized whether an injector is constantly open, but that one too Leakage is visible to the outside. It is particularly advantageous the simplicity of the procedure according to the invention, since the procedure according to the invention has no further sensors needed.
  • FIG. 1 shows a block diagram of the fuel metering system
  • Figure 2 plotted the pressure over time t
  • FIGS. 3, 4 and 5 each show a flow chart to illustrate the procedure according to the invention.
  • Figure 1 are those for understanding the invention required components of a fuel supply system an internal combustion engine with high pressure injection shown.
  • the system shown is usually called a common rail system designated.
  • a fuel tank designated. This is via a fuel supply line with a filter 15, a pre-feed pump 20, a shut-off valve 25, a high-pressure feed pump 30 with a rail 35 in connection.
  • a pressure control valve 40 or a pressure relief valve arranged in the fuel supply line.
  • this valve is a high pressure area with a low pressure area, especially the supply line with a Return line 45 connectable. Via the return line 45 the fuel gets back into the tank 10.
  • the lines between the high pressure pump 30 and the rail 35 or the pressure control valve, the rail and the lines between Rail 35 and the injectors is used as a high pressure area designated.
  • the area in front of the high pressure pump 30 to Tank 10 is referred to as the low pressure area.
  • the shut-off valve 25 can be actuated by means of a coil 26. Accordingly, the valve 40 can be actuated by means of a coil 41.
  • a sensor 50 is arranged on the rail 35. With this Sensor 50 is preferably a pressure sensor, which provides a signal that corresponds to the fuel pressure in the rail corresponds.
  • the rail 35 is connected via a line the individual injectors 61 to 66 in connection.
  • the injectors comprise solenoid valves 71 to 76 by means of which the Fuel flow is controllable through the injectors. Furthermore the injectors each have a connection the return line 45 in connection.
  • the output signal of the pressure sensor 50 and the output signals further sensors 80 reach a control unit 100 which in turn the solenoid valves 71 to 76, the coil 26 of the pre-feed pump, the coil 41 of the pressure control valve 40 and controls the high pressure feed pump.
  • Detect the sensors 80 for example the speed N of the internal combustion engine, the driver request FP, which is preferably by means of an accelerator pedal position transmitter is determined, as well as various temperature values, such as the temperature T of the fuel.
  • the pre-feed pump 20 designed as an electric fuel pump or mechanical pump can be, promotes the fuel that is in the fuel tank 10 is via a filter 15 for High pressure feed pump 30.
  • the high pressure feed pump 30 delivers the fuel into the rail 35 and builds up pressure there.
  • Pressure values from about 30 to 100 bar and at self-igniting internal combustion engines pressure values of about 400 achieved up to 2000 bar.
  • shut-off valve 25 that is arranged by the control unit 100 is controllable to interrupt the fuel flow.
  • the control unit 100 control signals for application of the solenoid valves 71 to 76 of the injectors 61 to 66.
  • the solenoid valves 71 to 76 By opening and closing the solenoid valves 71 to 76 the beginning and end of fuel injection into the Internal combustion engine controlled.
  • the pressure of the fuel is measured by means of the pressure sensor 50 detected in the rail 35 and thus in the high pressure area.
  • the control unit 100 calculates a signal from this value to act on the pressure control valve 40.
  • the pressure is increased by actuating the pressure control valve 40 a predeterminable value regulated, which among other things by operating conditions the internal combustion engine depends, which means of the sensors 80 are detected.
  • the fuel supply can be switched off with the Shutoff valve 25 are prevented. Furthermore, if something is recognized Error, the valve 40 controlled so that the pressure in the Rail 35 drops. Furthermore, the valves 71 to 76 are activated in such a way that that they remain closed and therefore no injection he follows.
  • Fuel from the high pressure range on the one hand Injectors in the internal combustion engine and / or over a leak in the engine compartment of the vehicle. Such leaks in the engine compartment or an injector that is not working correctly be recognized safely.
  • the fuel masses are considered in the exemplary embodiment. However, the corresponding fuel volumes can also be used consider.
  • MF is the delivery mass, which from the high pressure pump 30 in the high pressure area is promoted. This mass is present in control unit 100. It essentially depends on the speed N of the internal combustion engine, the pressure P in the rail from.
  • ME is the injection mass that comes from the rail injected into the internal combustion engine via the injectors becomes. This amount is in the control unit. It essentially depends on the control of the injectors.
  • MR is the return mass that is given by the injectors gets back into the tank via line 45.
  • This Return mass is composed of the control mass MS, which is required to control the injectors and the Leakage mass MLD, which is a loss in the range of Injectors.
  • the return mass comes through the line 45 also back into the tank.
  • This mass is in the Control unit usually does not exist before and must therefore be learned will. Alternatively, it can also be provided that operating states be selected in which this mass is known.
  • the size MD is the pressure control compound from the pressure control valve 40 from the high pressure area in the Tank is returned to the pressure P in the high pressure range to keep at its predetermined value.
  • the size ML is the leakage mass. This is the size you are looking for. The procedure does not differentiate between an internal leak in which fuel is over defective injector gets into the combustion chamber, and one external leakage, with fuel in particular in the engine compartment of the motor vehicle arrives.
  • the sizes V and E are constants of the fuel and the Metering system.
  • the size V is essentially determined by the volume of the high pressure area, which results from the Rail, line and injector volume.
  • the Size E go among other things the fuel density and that Compressibility module of the fuel.
  • the values P2 and P1 are two pressure values the fuel pressure in the rail at two different times, the change in size is based on the Relate the difference between these two times.
  • the pressure P in the rail is plotted over time t in FIG. Arrows mark the start of each injection designated.
  • the pressure P in the rail decreases with each injection and then increases to its original value. in the steady state pressure reaches between two injections always the same for the same position of the crankshaft Value.
  • the two times t1 and t2 a fixed angular distance between two injections that includes a full injection. This corresponds to a 4-cylinder engine 180 ° crankshaft. If you look at a complete metering, the sizes MF and ME can be stored in maps.
  • the return mass MR is preferably learned in a state in which there is no fault, and depending on operating parameters, like the speed N and the pressure P in the rail stored in a map.
  • the mass MD drained from the pressure control valve into the tank is, usually not known, will be during defined the pressure control valve after checking for leakage controlled. This means on the one hand it can be completely closed or be completely open. It must be in the open State the mass MDM, which results in the open state, be known.
  • Equation 2 then applies to the leakage mass ML.
  • ML MF - ME - MR - MD - V E * (P2 - P1)
  • FIG a flow chart The procedure according to the invention is shown in FIG a flow chart.
  • a first step 310 the test process is initialized. To do this a specific control signal is applied to the pressure control valve.
  • the initialization of the test program can, for example as part of the inspection of the system in the workshop. Furthermore, it can be provided that the reviews in fixed time intervals and / or after the expiry of a predetermined number of engine revolutions is carried out.
  • a second step 320 the pressure sensor detects one first pressure value.
  • a third Step 330 read the conveying mass MF from a map.
  • the delivery mass is preferably dependent on the speed N of the internal combustion engine, the pressure P in the rail, the Fuel temperature in the system and other sizes in one or more maps or will start from the corresponding sizes calculated.
  • the injection mass ME also dependent on the speed N, the driver's request FP as well as any other sizes, preferably from a map read out. It is particularly advantageous if as a ground signal ME, the signal in the control with which the control signals for the injectors are also calculated, is used. In addition to the sizes mentioned can also other variables characterizing the injection process are used will. These are, for example, those for pre-injection and / or the fuel masses allocated to the post-injection.
  • the return mass MR is made out read out a memory.
  • step 350 at the time t2 detects the second pressure value P2.
  • step 355 the leak mass is determined using equation 2.
  • the subsequent one Query 360 checks whether the leakage mass ML larger than a threshold SW. If this is the case, then recognize the device detects leakage in step 370 and directs it accordingly Measures. Otherwise, the facility recognizes in step 380 the tightness of the system.
  • a first step 400 the mass MD is specifically set to zero in order to learn the return mass MR. This is achieved in that the pressure control valve 40 is controlled such that it remains closed and the return mass MD thus becomes zero.
  • a second step 410 a first pressure value P1 is recorded.
  • the mass ME and MF is then determined in step 420, as described in FIG. 3.
  • the second pressure value P2 is then measured in step 430.
  • the query 450 which checks whether a Operating state in which there is no injection, that is, the set ME is zero.
  • a Operating state in which there is no injection that is, the set ME is zero.
  • Such an operating condition exists, for example, in the so-called thrust condition. in the No overrun, so there is no fuel injection no fuel needed to control the injector. This means that the control mass MS is zero in the overrun.
  • the mass MLD corresponds to the mass MR. Therefore at The presence of this state in step 460 is the mass MLD set equal to the mass MR. Is the appropriate state not before or after step 460, will step 470 the value for MR is preferably dependent on different ones Operating parameters stored in a map.
  • This procedure is particularly advantageous in that even small leaks with a small leakage mass, for sure be recognized.
  • leakage detection can not between a pressure drop due to a large injection quantity and a pressure drop due to a small one Leakage can be distinguished because the pressure drop at a large injection quantity can be larger than a small one Leakage.
  • the procedure according to the invention detect even small amounts of leakage.
  • FIG. 5 shows an exemplary embodiment for determining the Mass MDM shown. This mass MDM that when fully open Pressure control valve is also derived preferably learn in overrun mode and in a map save.
  • the mass MD is specifically set to its maximum possible value in a first step 500. This is achieved in that the pressure control valve 40 is actuated in such a way that it is open and the MD thus reaches its maximum value MDM.
  • a first pressure value P1 is recorded.
  • the mass ME and MF are then determined in step 520, as described in FIG. 3.
  • the second pressure value P2 is then measured in step 530.
  • This value depends on various operating parameters such as the speed N, the injection quantity ME and other sizes stored in a map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Examining Or Testing Airtightness (AREA)
EP97116131A 1997-02-03 1997-09-17 Verfahren und Vorrichtung zur Erkennung einer Leckage Ceased EP0857867A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19703891 1997-02-03
DE19703891A DE19703891B4 (de) 1997-02-03 1997-02-03 Verfahren und Vorrichtung zur Erkennung einer Leckage

Publications (1)

Publication Number Publication Date
EP0857867A1 true EP0857867A1 (de) 1998-08-12

Family

ID=7819096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97116131A Ceased EP0857867A1 (de) 1997-02-03 1997-09-17 Verfahren und Vorrichtung zur Erkennung einer Leckage

Country Status (3)

Country Link
EP (1) EP0857867A1 (ja)
JP (1) JPH10221198A (ja)
DE (1) DE19703891B4 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19928548A1 (de) * 1999-06-22 2001-01-04 Hydraulik Ring Gmbh Verfahren zur Erfassung einer Leckage
EP1088982A3 (de) * 1999-09-30 2002-11-13 Robert Bosch Gmbh Verfahren und Einrichtung zur Ermittlung der Kraftstofftemperatur in einem Common-Rail-System
EP1327762A2 (de) * 2002-01-11 2003-07-16 Robert Bosch Gmbh Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
EP1526269A2 (de) * 2003-10-20 2005-04-27 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Überwachen eines Kraftstoffdrucksensors
WO2006053852A1 (de) * 2004-11-18 2006-05-26 Robert Bosch Gmbh Verfahren und vorrichtung zur leckageprüfung eines kraftstoffeinspritzventils einer brennkraftmaschine
FR2982643A1 (fr) * 2011-11-14 2013-05-17 Peugeot Citroen Automobiles Sa Detecteur de fuite et de bulle d'air dans un conduit d'alimentation en carburant d'un moteur a combustion interne a injection a haute pression
DE102015207961A1 (de) * 2015-04-29 2016-11-03 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen einer Dauereinspritzung im Betrieb einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine und Brennkraftmaschine
DE102016205481A1 (de) 2016-04-04 2017-10-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Dichtheitsprüfung einer Kraftstoff-Hochdruck-Einspritzvorrichtung

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927901B4 (de) * 1999-06-18 2005-10-20 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung einer Brennkraftmaschine
DE10136706B4 (de) 2000-07-28 2019-06-13 Denso Corporation Diagnosevorrichtung zur Ermittlung eines unnormalen Zustands für ein Hochdruck-Kraftstoffzufuhrsystem einer Brennkraftmaschine
DE10155249C1 (de) * 2001-11-09 2003-04-24 Siemens Ag Einspritzanlage sowie Verfahren zur Regelung einer Kraftstoffpunpe
DE102004040706B4 (de) * 2004-08-19 2010-05-06 Audi Ag Verfahren zur Diagnose des Kraftstoffversorgungssystems einer Brennkraftmaschine
DE102007052096B4 (de) * 2007-10-31 2009-07-09 Continental Automotive Gmbh Verfahren zur Erkennung einer Kraftstoffsorte
DE102007052451B4 (de) * 2007-11-02 2009-09-24 Continental Automotive Gmbh Verfahren zum Bestimmen der aktuellen Dauerleckagemenge einer Common-Rail-Einspritzanlage und Einspritzanlage für eine Brennkraftmaschine
DE102008048193B4 (de) * 2008-09-20 2023-05-04 Volkswagen Ag Verfahren zum Bestimmen eines Vorsteuerwertes für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102009044076A1 (de) 2009-09-22 2011-03-24 Technische Universität Darmstadt Verfahren zur Erkennung von Fehlern bei der Kraftstoffeinspritzung einer Brennkraftmaschine sowie Brennkraftmaschine
DE102016209390A1 (de) 2016-05-31 2017-11-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Leckageprüfung eines Kraftstoffeinspritzventils einer Brennkraftmaschine
CN106092464B (zh) * 2016-06-02 2019-02-26 中山市易恩自动化科技有限公司 测漏仪的测量方法
WO2019132867A1 (en) 2017-12-27 2019-07-04 Cummins Inc. System and method for identifying a source of high pressure leakage
DE102020007053A1 (de) 2020-11-19 2022-05-19 Hydac Fluidtechnik Gmbh Prüfvorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126393A1 (de) 1980-07-03 1982-04-22 Lucas Industries Ltd., Birmingham, West Midlands Kraftstoffeinspritzanlage fuer einen dieselmotor
US4940037A (en) * 1987-07-06 1990-07-10 Robert Bosch Gmbh Fuel injection system for internal combustion engines
JPH06213051A (ja) * 1993-01-19 1994-08-02 Nippondenso Co Ltd 蓄圧式燃料噴射装置
WO1995006814A1 (en) * 1993-09-03 1995-03-09 Robert Bosch Gmbh Method of diagnosing malfunctioning of the high-pressure circuit of internal combustion engine high-pressure injection systems
EP0748930A2 (de) * 1995-06-15 1996-12-18 Mercedes-Benz Ag Verfahren zum Erkennen von Betriebsstörungen in einer Kraftstoffeinspritzanlage einer Brennkraftmaschine
DE19534051A1 (de) * 1995-09-14 1997-03-20 Bosch Gmbh Robert Verfahren zum Betrieb einer Kraftstoffeinspritzeinrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126393A1 (de) 1980-07-03 1982-04-22 Lucas Industries Ltd., Birmingham, West Midlands Kraftstoffeinspritzanlage fuer einen dieselmotor
US4940037A (en) * 1987-07-06 1990-07-10 Robert Bosch Gmbh Fuel injection system for internal combustion engines
JPH06213051A (ja) * 1993-01-19 1994-08-02 Nippondenso Co Ltd 蓄圧式燃料噴射装置
WO1995006814A1 (en) * 1993-09-03 1995-03-09 Robert Bosch Gmbh Method of diagnosing malfunctioning of the high-pressure circuit of internal combustion engine high-pressure injection systems
EP0748930A2 (de) * 1995-06-15 1996-12-18 Mercedes-Benz Ag Verfahren zum Erkennen von Betriebsstörungen in einer Kraftstoffeinspritzanlage einer Brennkraftmaschine
DE19534051A1 (de) * 1995-09-14 1997-03-20 Bosch Gmbh Robert Verfahren zum Betrieb einer Kraftstoffeinspritzeinrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 579 (M - 1698) 7 November 1994 (1994-11-07) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19928548A1 (de) * 1999-06-22 2001-01-04 Hydraulik Ring Gmbh Verfahren zur Erfassung einer Leckage
EP1088982A3 (de) * 1999-09-30 2002-11-13 Robert Bosch Gmbh Verfahren und Einrichtung zur Ermittlung der Kraftstofftemperatur in einem Common-Rail-System
EP1327762A3 (de) * 2002-01-11 2005-09-07 Robert Bosch Gmbh Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
EP1327762A2 (de) * 2002-01-11 2003-07-16 Robert Bosch Gmbh Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
EP1526269A3 (de) * 2003-10-20 2006-09-06 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Überwachen eines Kraftstoffdrucksensors
EP1526269A2 (de) * 2003-10-20 2005-04-27 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Überwachen eines Kraftstoffdrucksensors
WO2006053852A1 (de) * 2004-11-18 2006-05-26 Robert Bosch Gmbh Verfahren und vorrichtung zur leckageprüfung eines kraftstoffeinspritzventils einer brennkraftmaschine
US7937988B2 (en) 2004-11-18 2011-05-10 Robert Bosch Gmbh Method and device for checking for leakage in a fuel injection valve of an internal combustion engine
FR2982643A1 (fr) * 2011-11-14 2013-05-17 Peugeot Citroen Automobiles Sa Detecteur de fuite et de bulle d'air dans un conduit d'alimentation en carburant d'un moteur a combustion interne a injection a haute pression
DE102015207961A1 (de) * 2015-04-29 2016-11-03 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen einer Dauereinspritzung im Betrieb einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine und Brennkraftmaschine
DE102015207961B4 (de) * 2015-04-29 2017-05-11 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen einer Dauereinspritzung im Betrieb einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine und Brennkraftmaschine
US10801434B2 (en) 2015-04-29 2020-10-13 Mtu Friedrichshafen Gmbh Method for detecting continuous injection during the operation of an internal combustion engine, injection system for an internal combustion engine and internal combustion engine
DE102016205481A1 (de) 2016-04-04 2017-10-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Dichtheitsprüfung einer Kraftstoff-Hochdruck-Einspritzvorrichtung

Also Published As

Publication number Publication date
JPH10221198A (ja) 1998-08-21
DE19703891B4 (de) 2008-07-31
DE19703891A1 (de) 1998-08-06

Similar Documents

Publication Publication Date Title
DE19703891B4 (de) Verfahren und Vorrichtung zur Erkennung einer Leckage
EP0819213B1 (de) Einrichtung zur erkennung eines lecks in einem kraftstoffversorgungssystem
EP0975942B1 (de) Verfahren und vorrichtung zur funktionsüberwachung eines drucksensors
EP0778922B1 (de) Einrichtung zur erkennung eines lecks in einem kraftstoffversorgungssystem
DE19837199B4 (de) System zum Erfassen eines Fehlers eines Kraftstoffdrucksensors in einer Brennkraftmaschine
EP0795077B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems
EP0811116B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffzumesssystems einer brennkraftmaschine
DE10003906A1 (de) Verfahren und Vorrichtung zum Kalibrieren eines Drucksensors
DE19622757A1 (de) Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine mit Hochdruckeinspritzung
DE19718171C2 (de) Verfahren zum Bestimmen der Einspritzzeit für eine direkteinspritzende Brennkraftmaschine
DE102010013602A1 (de) Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE19626690A1 (de) Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
EP1639250A1 (de) Verfahren zur diagnose eines volumenstromregelventils bei einer brennkraftmaschine mit hochdruck-speichereinspritzsystem
DE19620038B4 (de) Verfahren und Vorrichtung zur Überwachung eines Kraftstoffzumeßsystems
EP0764777B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2076667B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffeinspritzsystems
DE10123035A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10318433B4 (de) Kraftstoffeinspritzsystem mit Druckerhöhungsfunktion
DE102010003199A1 (de) Verfahren und Vorrichtung zum Überprüfen der Funktion eines Motorsystems
DE19641942B4 (de) Verfahren und Vorrichtung zur Fehlererkennung bei einer Brennkraftmaschine
EP0553472B1 (de) Verfahren und Vorrichtung zum Prüfen einer Einrichtung, die wenigstens einen Mikrorechner enthält
DE10309720A1 (de) Verfahren und Vorrichtung zur mengendriftkompensierenden Steuerung von Injektoren eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE102004007048A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102019218905A1 (de) Verfahren und vorrichtung zum lernen der öffnungszeit des injektors für fahrzeugmotor
DE19632339A1 (de) Verfahren und Vorrichtung zur Überwachung eines Durchflußbegrenzers eines Kraftstoffzumeßsystems einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19990212

AKX Designation fees paid

Free format text: DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20010223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020125