EP0856577A1 - Flüssige wässrige Reinigerzusammensetzungen - Google Patents

Flüssige wässrige Reinigerzusammensetzungen Download PDF

Info

Publication number
EP0856577A1
EP0856577A1 EP97870153A EP97870153A EP0856577A1 EP 0856577 A1 EP0856577 A1 EP 0856577A1 EP 97870153 A EP97870153 A EP 97870153A EP 97870153 A EP97870153 A EP 97870153A EP 0856577 A1 EP0856577 A1 EP 0856577A1
Authority
EP
European Patent Office
Prior art keywords
composition
alkyl
fabrics
weight
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97870153A
Other languages
English (en)
French (fr)
Other versions
EP0856577B1 (de
Inventor
Valerio Del Duca (Nmn)
Dennis Gerard O'sullivan
Carlo Ricci (Nmn)
Roberto Scaramella (Nmn)
Sabina Antonioli
Stefano Giunti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP97870153A priority Critical patent/EP0856577B1/de
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US09/355,712 priority patent/US6235699B1/en
Priority to CN98803995A priority patent/CN1252093A/zh
Priority to KR1019997007002A priority patent/KR20000070746A/ko
Priority to AU62519/98A priority patent/AU6251998A/en
Priority to TR1999/02364T priority patent/TR199902364T2/xx
Priority to SK1143-99A priority patent/SK114399A3/sk
Priority to CA002278858A priority patent/CA2278858A1/en
Priority to BR9815444-3A priority patent/BR9815444A/pt
Priority to IDW990804D priority patent/ID23520A/id
Priority to JP53301198A priority patent/JP2001510499A/ja
Priority to HU0001951A priority patent/HUP0001951A2/hu
Priority to PCT/US1998/001560 priority patent/WO1998033879A1/en
Priority to MA24955A priority patent/MA24465A1/fr
Publication of EP0856577A1 publication Critical patent/EP0856577A1/de
Priority to NO993761A priority patent/NO993761L/no
Application granted granted Critical
Publication of EP0856577B1 publication Critical patent/EP0856577B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Definitions

  • the present invention relates to the cleaning of different surfaces such as hard-surfaces, fabrics, clothes and the like.
  • cleaning compositions have been extensively described in the art.
  • cleaning compositions can be divided into hard surface cleaning compositions and laundry cleaning compositions.
  • Cleaning compositions of these two types are traditionally very different in formulation and are sold as different products with different marketing concepts. These differences impose on the consumer to have to purchase and use at least two different products.
  • compositions of the two types above, especially hard surface cleaners can be divided into sub-types. Indeed, many different kinds of hard-surface cleaners are available, for instance bathroom cleaners, kitchen cleaners or floor cleaners.
  • kitchen soils comprise mainly edible oils
  • bathroom soils comprise mainly sebum and soap scum, also limescale
  • floor soils comprise mainly particulate soils and laundry may have many different soils/stains including greasy stains (e.g., olive oil, mayonnaise, vegetal oil make up), particulate stains and/or bleachable stains (e.g., tea, coffee).
  • liquid aqueous cleaning compositions with better performance in several respect, i.e., liquid aqueous multi-purpose cleaners which can be satisfactorily used on various surfaces as well as in laundry applications, to clean various soils and stains.
  • multi-purpose compositions are, for example, disclosed in European patent application, EP-A-598973.
  • this patent application discloses liquid aqueous compositions comprising hydrogen peroxide with a fully nonionic system, i.e., at least one nonionic with an HLB above 15, at least one nonionic with an HLB of from 13 to 15, at least one nonionic with an HLB of from 9 to 13 and at least one nonionic with an HLB below 9.
  • This patent application further discloses the use of 2-alkyl alkanols as suds suppressors in said compositions.
  • liquid aqueous compositions comprising hydrogen peroxide, a 2-alkyl alkanol and as the surfactant system, a specific nonionic system of at least four nonionic surfactants having different HLB (hydrophilic lipophilic balance) as defined hereinbefore, do not satisfactorily meet consumer's needs. Indeed, such compositions based on a fully nonionic surfactant system and comprising a high level of hydrophobic surfactants were found to have poor performance on some kind of stains in laundry application.
  • HLB hydrophilic lipophilic balance
  • hydrophobic nonionic surfactants have good grease cutting properties and are particularly effective on greasy soils having hydrophobic character, such as mineral oil and soap scum when used in hard surface cleaning composition
  • hydrophobic nonionic surfactants when used in laundry applications bleachable stains are not satisfactorily bleached.
  • the wettability of the fabrics stains is seriously affected by the hydrophobicity of the nonionic system of said compositions, i.e., good contact between hydrogen peroxide and the stains on said fabric is prevented resulting thereby in poor performance on bleachable stain.
  • EP-A- 666 308 discloses compositions comprising hydrogen peroxide or a source thereof, a 2-alkyl alkanol, a hydrophobic surfactant having an HLB below 14 and an anionic surfactant.
  • a hydrophobic surfactant having an HLB below 14
  • an anionic surfactant there is still room to further improve such multi-purpose liquid aqueous cleaning compositions in respect of overall cleaning performance on various types of stains including for example bleachable stains and greasy stains.
  • a liquid aqueous cleaning composition having a pH up to 7 and comprising a peroxygen bleach, at least an ethoxylated nonionic surfactant and at least a zwitterionic betaine surfactant at a weight ratio of the ethoxylated nonionic surfactant to the zwitterionic betaine surfactant of from 0.01 to 20.
  • a multi-purpose liquid aqueous cleaning composition is provided which exhibits a great flexibility in the soils it may clean.
  • such a composition when used for example in a laundry application, especially in a pretreatment application, boosts the removal of various types of stains including greasy stains like lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up, and more surprisingly the bleaching performance, as compared to the stain removal and bleaching performance delivered by the same composition comprising only one of these surfactants (i.e., ethoxylated nonionic surfactant or zwitterionic betaine surfactant) at equal total level of surfactants.
  • these surfactants i.e., ethoxylated nonionic surfactant or zwitterionic betaine surfactant
  • compositions of the present invention significantly boost the removal of kitchen dirt when used to clean hard-surfaces, as compared to the same compositions comprising only one of these surfactants (i.e., ethoxylated nonionic surfactant or zwitterionic betaine surfactant) at equal total level of surfactants.
  • these surfactants i.e., ethoxylated nonionic surfactant or zwitterionic betaine surfactant
  • the compositions of the present invention provide excellent stain removal performance on a broad range of stains and soils and excellent bleachable performance when used in any laundry application, e.g., as a laundry detergent or a laundry additive, and especially when used as a laundry pretreater, or even in other household applications like in hard surface cleaning applications.
  • a further advantage is that the aqueous compositions herein are physically and chemically stable upon prolonged periods of storage.
  • compositions according to the present invention are able to perform in a variety of conditions, i.e., in hard and soft water as well as when used neat or diluted.
  • they also provide satisfactory shine performance and surface safety when used as hard surface cleaners and satisfactory fabric and color safety when used as laundry cleaners.
  • the present invention encompasses a liquid aqueous composition having a pH up to 7 and comprising from 0.01% to 20% by weight of the total composition of a peroxygen bleach, from 0.001% to 30% by weight of the total composition of an ethoxylated nonionic surfactant, from 0.001% to 20% by weight of a zwitterionic betaine surfactant at a weight ratio of the ethoxylated nonionic surfactant to the zwitterionic betaine surfactant of from 0.01 to 20, with the proviso that said composition is free of an antimicrobial essential oil or an active thereof or a mixture thereof.
  • the present invention further encompasses processes of cleaning a surface, e.g. a fabric or a hard-surface, starting from a liquid aqueous composition as defined herein.
  • the processes of cleaning fabrics include the steps of contacting said fabrics with the liquid aqueous composition herein neat or diluted, and subsequently rinsing said fabrics.
  • the fabrics are "pretreated"
  • the composition is applied neat on the fabrics, and the fabrics are subsequently washed in a normal wash cycle.
  • compositions according to the present invention are liquid compositions as opposed to a solid or a gas.
  • liquid includes “pasty” compositions.
  • the liquid compositions herein are aqueous compositions.
  • the liquid compositions according to the present invention have a pH up to 7, preferably from 1 to 6, and more preferably from 2 to 5. Formulating the compositions according to the present invention in the acidic pH range contribute to the chemical stability of the compositions and to the stain removal performance of the compositions.
  • the pH of the compositions may be adjusted by any acidifying agents known to those skilled in the art. Examples of acidifying agents are organic acids such as citric acid and inorganic acids such as sulphuric acid.
  • compositions according to the present invention comprise a peroxygen bleach or a mixture thereof. Indeed, the presence of peroxygen bleach contributes to the excellent bleaching benefits of said compositions.
  • Suitable peroxygen beaches to be used herein are hydrogen peroxide, water soluble sources thereof, or mixtures thereof.
  • a hydrogen peroxide source refers to any compound which produces perhydroxyl ions when said compound is in contact with water.
  • Suitable water-soluble sources of hydrogen peroxide for use herein include percarbonates, persilicates, persulphates such as monopersulfate, perborates, peroxyacids such as diperoxydodecandioic acid (DPDA), magnesium perphtalic acid, perlauric acid, perbenzoic and alkylperbenzoic acids, hydroperoxides, aliphatic and aromatic diacyl peroxides, and mixtures thereof.
  • Preferred peroxygen bleaches herein are hydrogen peroxide, hydroperoxide and/or diacyl peroxide. Hydrogen peroxide is the most preferred peroxygen bleach herein.
  • Suitable hydroperoxides for use herein are tert-butyl hydroperoxide, cumyl hydroperoxide, 2,4,4-trimethylpentyl-2-hydroperoxide, di-isopropylbenzene-monohydroperoxide, tert-amyl hydroperoxide and 2,5-dimethyl-hexane-2,5-dihydroperoxide.
  • Such hydroperoxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • Suitable aliphatic diacyl peroxides for use herein are dilauroyl peroxide, didecanoyl peroxide, dimyristoyl peroxide, or mixtures thereof.
  • Suitable aromatic diacyl peroxide for use herein is for example benzoyl peroxide.
  • Such diacyl peroxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • compositions herein comprise from 0.01% to 20% by weight of the total composition of said peroxygen bleach or mixtures thereof, preferably from 1% to 15% and more preferably from 2% to 10%.
  • compositions according to the present invention comprise an ethoxylated nonionic surfactant or a mixture thereof at a level of from 0.001% to 30% by weight of the total composition.
  • the compositions herein comprise from 0.01% to 15% by weight of the total composition of said ethoxylated nonionic surfactant or mixture thereof, more preferably from 0.5% to 10%, even more preferably from 1% to 9% and most preferably from 1% to 6%.
  • Suitable ethoxylated nonionic surfactants herein are ethoxylated nonionic surfactants according to the formula RO-(C 2 H 4 O) n H, wherein R is a C 6 to C 22 alkyl chain or a C 6 to C 28 alkyl benzene chain, and wherein n is from 0 to 20, preferably from 1 to 15 and, more preferably from 2 to 15 and most preferably from 2 to 12.
  • the preferred R chains for use herein are the C 8 to C 22 alkyl chains.
  • Preferred ethoxylated nonionic surfactants are according to the formula above and have an HLB (hydrophilic-lipophilic balance) below 16, preferably below 15, and more preferably below 14. Those ethoxylated nonionic surfactants have been found to provide good grease cutting properties.
  • Dobanol R 91-2.5 or Lutensol R TO3, or Lutensol R AO3, or Tergitol R 25L3, or Dobanol R 23-3, or Dobanol R 23-2, or mixtures thereof.
  • Dobanol R surfactants are commercially available from SHELL.
  • Lutensol R surfactants are commercially available from BASF and these Tergitol R surfactants are commercially available from UNION CARBIDE.
  • Suitable chemical processes for preparing the ethoxylated nonionic surfactants for use herein include condensation of corresponding alcohols with alkylene oxide, in the desired proportions. Such processes are well-known to the man skilled in the art and have been extensively described in the art.
  • compositions herein may desirably comprise one of those ethoxylated nonionic surfactants or a mixture of those ethoxylated nonionic surfactants having different HLBs (hydrophilic-lipophilic balance).
  • the compositions herein comprise an ethoxylated nonionic surfactant according to the above formula and having an HLB up to 10 (i.e., a so called hydrophobic ethoxylated nonionic surfactant), preferably below 10, more preferably below 9, and an ethoxylated nonionic surfactant according to the above formula and having an HLB above 10 to 16 (i.e., a so called hydrophilic ethoxylated nonionic surfactant), preferably from 11 to 14.
  • compositions of the present invention typically comprise from 0.01% to 15% by weight of the total composition of said hydrophobic ethoxylated nonionic surfactant, preferably from 0.5% to 10% and from 0.01% to 15% by weight of said hydrophilic ethoxylated nonionic surfactant, preferably from 0.5% to 10%.
  • Such mixtures of ethoxylated nonionic surfactants with different HLBs may be desired as they allow optimum grease cleaning removal performance on a broader range of greasy soils having different hydrophobic/hydrophilic characters.
  • compositions according to the present invention comprise a zwitterionic betaine surfactant or a mixture thereof at a level of from 0.001% to 20% by weight of the total composition.
  • the compositions herein comprise from 0.01% to 10% by weight of the total composition of said zwitterionic betaine surfactant or mixture thereof, more preferably from 0.5% to 8% and most preferably from 1% to 5%.
  • Suitable zwitterionic betaine surfactants to be used herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's.
  • the typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups like sulfates, phosphonates, and the like can be used.
  • R 1 -N + (R 2 )(R 3 )R 4 X - wherein R 1 is a hydrophobic group; R 2 is hydrogen, C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group; R 3 is C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group which can also be joined to R 2 to form ring structures with the N, or a C 1 -C 6 carboxylic acid group or a C 1 -C 6 sulfonate group; R 4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms; and X is the hydrophilic group which is a carboxylate or sulfonate group.
  • R 1 are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred R 1 is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons.
  • the hydrophobic group R 1 can also be an amido radical of the formula R a -C(O)-NH-(C(R b ) 2 ) m , wherein R a is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, R b is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(R b ) 2 ) moiety.
  • Preferred R 2 is hydrogen, or a C 1 -C 3 alkyl and more preferably methyl.
  • Preferred R 3 is a C 1 -C 4 carboxylic acid group or C1-C4 sulfonate group, or a C 1 -C 3 alkyl and more preferably methyl.
  • Preferred R 4 is (CH2) n wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is from 1 to 3.
  • betaine/sulphobetaine Some common examples of betaine/sulphobetaine are described in U.S. Pat. Nos. 2,082,275, 2,702,279 and 2,255,082, incorporated herein by reference.
  • alkyldimethyl betaines examples include coconut-dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl-N, N-dimethyl-ammonia)acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine.
  • coconut dimethyl betaine is commercially available from Seppic under the trade name of Amonyl 265®.
  • Lauryl betaine is commercially available from Albright & Wilson under the trade name Empigen BB/L®.
  • amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine.
  • C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine is commercially available from Sherex Company under the trade name "Varion CAS® sulfobetaine".
  • betaine is Lauryl-immino-dipropionate commercially available from Rhone-Poulenc under the trade name Mirataine H2C-HA ®.
  • Particularly preferred zwitterionic betaine surfactants for use herein are salt free, i.e. that the zwitterionic betaine surfactant raw material contains less than 5% by weight of salts, preferably less than 2%, more preferably less than 1% and most preferably from 0.01% to 0.5%.
  • salts is in meant herein any material having as base unit, a couple of positive ion (or positive molecular ion) and negative ion (or negative molecular ion) containing one or more halogen atoms.
  • Such salts include sodium chloride, potassium chloride, sodium bromide and the like.
  • Such salts free zwitterionic betaine surfactants are obtainable by conventional manufacturing processes like inverse osmosis or fractionated precipitation.
  • inverse osmosis is based on the principle of contacting the zwitterionic betaine surfactant raw material (commercially available ) with a polar solvent (it is to be understood that such a solvent is free of salts) separated by a semi-permeable membrane for example acetate-cellulose.
  • An adequate pressure is applied on the system to allow the salts to migrate from the surfactant raw material to the polar solvent phase. This way the zwitterionic betaine surfactant raw material is purified, i.e. the salts is subtracted from the raw material.
  • the use of such salt free zwitterionic betaine surfactants delivers improved fabric safety and/or color safety when bleaching fabrics with a peroxygen bleach-containing composition comprising the same, as compared to the use of the same zwitterionic betaine surfactant raw materials with higher amount of salts.
  • the present invention also encompasses the use of a composition comprising a salt free zwitterionic betaine surfactant and a peroxygen bleach for bleaching fabrics whereby color safety is improved (i.e. color damage/decoloration is reduced) and/or fabric safety is improved.
  • the betaine zwitterionic surfactants herein have the ability to further boost the stain removal performance delivered by the ethoxylated nonionic surfactants herein on greasy stains, while providing improved bleaching performance to the liquid peroxygen bleach-containing compositions of the present invention comprising them.
  • Optimum stain removal performance and bleaching performance are obtained when the ethoxylated nonionic surfactant and the zwitterionic betaine surfactant are present in the compositions of the present invention comprising a peroxygen bleach (pH up to 7), at weight ratio of the ethoxylated nonionic surfactant to the zwitterionic betaine surfactant of from 0.01 to 20, preferably from 0.1 to 15, more preferably from 0.5 to 5 and most preferably from 0.8 to 3.
  • a peroxygen bleach pH up to 7
  • compositions herein at low total level of surfactants.
  • the compositions herein comprise from 0.01% to 35% by weight of the total composition of ethoxylated nonionic surfactant and zwitterionic betaine surfactant, preferably from 0.1% to 15%, more preferably from 0.5% to 10%, even more preferably below 10% and most preferably from 1% to 8%.
  • the present invention is based on the finding that the use of zwitterionic betaine surfactant on top of the ethoxylated nonionic surfactant at the appropriate ratios, in a liquid aqueous composition comprising a peroxygen bleach (pH up to 7), boosts the bleaching performance and the removal of various types of stains including greasy stains (e.g., lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up), as compared to the bleaching and stain removal performance delivered by the same composition based only on one of these surfactants (i.e., ethoxylated nonionic surfactant or zwitterionic betaine surfactant) at equal total level of surfactants.
  • a peroxygen bleach pH up to 7
  • the improved stain removal benefit and bleaching benefit are delivered with a liquid aqueous composition which is a water-like, clear and transparent composition.
  • the appearance of a composition can be evaluated via turbidimetric analysis.
  • the transparency of a composition can be evaluated by measuring its absorbency via a spectrophotometer at 800 nm wave length.
  • the stain removal performance may be evaluated by the following test methods on various type of stains.
  • a suitable test method for evaluating the stain removal performance on a soiled fabric for example under pretreatment condition is the following: A composition according to the present invention is applied neat to a fabric preferably to the soiled portion of the fabric, left to act from 1 to 10 minutes, and said pretreated fabric is then washed according to common washing conditions, at a temperature of from 30° to 70°C for from 10 to 100 minutes. The stain removal is then evaluated by comparing side by side the soiled fabric pretreated with the composition of the present invention with those pretreated with the reference, e.g., the same composition but comprising only an alkoxylated nonionic surfactant or only a zwitterionic betaine surfactant as the sole surfactant.
  • a visual grading may be used to assign difference in panel units (psu) in a range from 0 to 4.
  • a suitable test method for evaluating cleaning performance on a hard-surface is the following: synthetic soil representative of typical hard surface household kitchen dirt soil can be used.
  • the test-soil is applied on an enamel-coated metal plate (cleaned with a detergent and then with alcohol) with a paint roller, and the plates are baked at 130° C for 30 minutes. After 24 hours they can be used for the test.
  • This test is evaluated in a Gardner straight-line scrub machine. The results are given in number of strokes a given composition needs to clean a standard soiled plate. The lower the number of strokes needed the more efficient in terms of satin removal is the composition used to clean the dirt from the test plates.
  • the bleaching performance may be evaluated as for the stain removal performance but the stains used are bleachable stains like coffee, tea and the like.
  • liquid aqueous compositions of the present invention are physically and chemically stable upon prolonged periods of storage.
  • Chemical stability of the compositions herein may be evaluated by measuring the concentration of available oxygen (often abbreviated to AvO2) at given storage time after having manufactured the compositions.
  • concentration of available oxygen can be measured by chemical titration methods known in the art, such as the iodometric method, thiosulphatimetric method, the permanganometric method and the cerimetric method. Said methods and the criteria for the choice of the appropriate method are described for example in "Hydrogen Peroxide", W. C. Schumb, C. N. Satterfield and R. L. Wentworth, Reinhold Publishing Corporation, New York, 1955 and "Organic Peroxides", Daniel Swern, Editor Wiley Int. Science, 1970.
  • compositions herein may further comprise a variety of other optional ingredients such as chelating agents, builders, other surfactants, stabilisers, bleach activators, soil suspenders, soil suspending polyamine polymers, polymeric soil release agents, radical scavengers, catalysts, dye transfer agents, solvents, brighteners, perfumes, pigments and dyes.
  • the ionic strength of the compositions is higher than 1.10 -4 M, preferably higher than 5.10 -3 M, and more preferably higher than 1.10 -3 M.
  • formulating the compositions of the present invention with such high ionic strength further contributes to their benefits, i.e., improved stain removal performance and improved bleaching performance.
  • the higher the ionic strength the better the stain removal and bleaching performance.
  • the ionic strength of a composition may be increased by the addition of various ingredients like chelating agents or mixtures thereof.
  • compositions of the present invention may comprise a chelating agent as a preferred optional ingredient.
  • Suitable cheating agents may be any of those known to those skilled in the art such as the ones selected from the group comprising phosphonate cheating agents, amino carboxylate chelating agents, other carboxylate cheating agents, polyfunctionally-substituted aromatic cheating agents, ethylenediamine N,N'- disuccinic acids, or mixtures thereof.
  • a cheating agent may be desired in the compositions of the present invention as it allows to increase the ionic strength of the compositions herein and thus their stain removal and bleaching performance on various surfaces.
  • the presence of chelating agents may also contribute to reduce tensile strength loss of fabrics and/or color damage, especially in a laundry pretreatment application. Indeed, the chelating agents inactivate the metal ions present on the surface of the fabrics and/or in the cleaning compositions (neat or diluted) that otherwise would contribute to the radical decomposition of the peroxygen bleach.
  • Suitable phosphonate chelating agents to be used herein may include alkali metal ethane 1-hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP).
  • the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
  • Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1-hydroxy diphosphonate (HEDP). Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®.
  • Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
  • a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
  • Ethylenediamine N,N'- disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins.
  • Ethylenediamine N,N'- disuccinic acids is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
  • Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA),N- hydroxyethylethylenediamine triacetates, nitrilotri-acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa-acetates, ethanoldiglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
  • R 1 , R 2 , R 3 , and R 4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO 2 , -C(O)R', and -SO 2 R''; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy; R'' is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy; and R 5 , R 6 , R 7 , and R 8 are independently selected from the group consisting of -H and alkyl.
  • Particularly preferred cheating agents to be used herein are amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1-hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid, and mixtures thereof.
  • compositions according to the present invention comprise up to 5% by weight of the total composition of a chelating agent, or mixtures thereof, preferably from 0.01% to 1.5% by weight and more preferably from 0.01% to 0.5%.
  • compositions of the present invention may further comprise other surfactants than the ones mentioned hereinbefore including other nonionic surfactants, anionic surfactants, cationic surfactants and/or amphoteric surfactants.
  • compositions according to the present invention may comprise from 0.01% to 30% by weight of the total composition of another surfactant on top of the zwitterionic betaine surfactant and ethoxylated nonionic surfactant, preferably from 0.1% to 25 % and more preferably from 0.5% to 20%.
  • Suitable nonionic surfactants to be used herein include polyhydroxy fatty acid amide surfactants, or mixtures thereof, according to the formula R 2 - C(O) - N(R 1 ) - Z, wherein R 1 is H, or C 1- C 4 alkyl, C 1- C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R 2 is C 5- C 31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R 1 is C 1- C 4 alkyl, more preferably C 1 or C 2 alkyl and most preferably methyl
  • R 2 is a straight chain C 7- C 19 alkyl or alkenyl, preferably a straight chain C 9- C 18 alkyl or alkenyl, more preferably a straight chain C 11- C 18 alkyl or alkenyl, and most preferably a straight chain C 11- C 14 alkyl or alkenyl, or mixtures thereof.
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilised as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH 2 OH)-(CHOH) n-1 -CH 2 OH, -CH 2 -(CHOH) 2 -(CHOR')(CHOH)-CH 2 OH, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly CH 2 -(CHOH) 4 -CH 2 OH.
  • R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R 2 - C(O) - N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide and the like.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl and the like.
  • Suitable polyhydroxy fatty acid amide surfactants to be used herein may be commercially available under the trade name HOE® from Hoechst.
  • polyhydroxy fatty acid amide surfactants are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • compositions containing polyhydroxy fatty acid amides are disclosed for example in GB patent specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., US patent 2,965,576, issued December 20, 1960 to E.R. Wilson, US patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, US patent 1,985,424, issued December 25, 1934 to Piggott and WO92/06070, each of which is incorporated herein by reference.
  • Suitable anionic surfactants to be used in the compositions herein include water-soluble salts or acids of the formula ROSO 3 M wherein R preferably is a C 10 -C 24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C 10 -C 20 alkyl component, more preferably a C 12 -C 18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • R
  • Suitable anionic surfactants for use herein are water-soluble salts or acids of the formula RO(A) m SO 3 M wherein R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C 20 alkyl or hydroxyalkyl, more preferably C 12 -C 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C
  • Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C 12 -C 18 alkyl polyethoxylate (1.0) sulfate, C 12 -C 18 E(1.0)M), C 12 -C 18 alkyl polyethoxylate (2.25) sulfate, C 12 -C 18 E(2.25)M), C 12 -C 18 alkyl polyethoxylate (3.0) sulfate C 12 -C 18 E(3.0), and C 12 -C 18 alkyl polyethoxylate (4.0) sulfate C 12 -C 18 E(4.0)M), wherein M is conveniently selected from sodium and potassium.
  • anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C 9 -C 20 linear alkylbenzenesulfonates, C 8 -C 22 primary or secondary alkanesulfonates, C 8 -C 24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts
  • C 9 -C 20 linear alkylbenzenesulfonates C 8 -C 22 primary or secondary alkanesulfonates
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulfonates such as C 14-16 methyl ester sulfonates; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolysaccharides such as
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975, to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
  • acyl sarcosinate or mixtures thereof, in its acid and/or salt form preferably long chain acyl sarcosinates having the following formula: wherein M is hydrogen or a cationic moiety and wherein R is an alkyl group of from 11 to 15 carbon atoms, preferably of from 11 to 13 carbon atoms.
  • M are hydrogen and alkali metal salts, especially sodium and potassium.
  • Said acyl sarcosinate surfactants are derived from natural fatty acids and the amino-acid sarcosine (N-methyl glycine). They are suitable to be used as aqueous solution of their salt or in their acidic form as powder. Being derivatives of natural fatty acids, said acyl sarcosinates are rapidly and completely biodegradable and have good skin compatibility.
  • suitable long chain acyl sarcosinates to be used herein include C 12 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 11 carbon atoms) and C 14 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 13 carbon atoms).
  • C 12 acyl sarcosinate is commercially available, for example, as Hamposyl L-30® supplied by Hampshire.
  • C 14 acyl sarcosinate is commercially available, for example, as Hamposyl M-30® supplied by Hampshire.
  • Suitable amphoteric surfactants to be used herein include amine oxides having the following formula R 1 R 2 R 3 NO wherein each of R1, R2 and R3 is independently a saturated substituted or unsubstituted, linear or branched hydrocarbon chains of from 1 to 30 carbon atoms.
  • Preferred amine oxide surfactants to be used according to the present invention are amine oxides having the following formula R 1 R 2 R 3 NO wherein R1 is an hydrocarbon chain comprising from 1 to 30 carbon atoms, preferably from 6 to 20, more preferably from 8 to 16, most preferably from 8 to 12, and wherein R2 and R3 are independently substituted or unsubstituted, linear or branched hydrocarbon chains comprising from 1 to 4 carbon atoms, preferably from 1 to 3 carbon atoms, and more preferably are methyl groups.
  • R1 may be a saturated substituted or unsubstituted linear or branched hydrocarbon chain.
  • Suitable amine oxides for use herein are for instance natural blend C8-C10 amine oxides as well as C12-C16 amine oxides commercially available from Hoechst.
  • compositions of the present invention may comprise a radical scavenger or a mixture thereof.
  • Suitable radical scavengers for use herein include the well-known substituted mono and dihydroxy benzenes and their analogs, alkyl and aryl carboxylates and mixtures thereof.
  • Preferred such radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), hydroquinone, di-tert-butyl hydroquinone, mono-tert-butyl hydroquinone, tert-butyl-hydroxy anysole, benzoic acid, toluic acid, catechol, t-butyl catechol, benzylamine, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-propyl-gallate or mixtures thereof and highly preferred is di-tert-butyl hydroxy toluene.
  • BHT di-tert-butyl hydroxy toluene
  • hydroquinone di-tert-butyl hydroquinone
  • mono-tert-butyl hydroquinone tert-butyl-hydroxy anysole
  • benzoic acid toluic acid
  • catechol t-butyl catechol
  • radical scavengers like N-propyl-gallate may be commercially available from Nipa Laboratories under the trade name Nipanox S1 ®. Radical scavengers when used, are typically present herein in amounts ranging from up to 10% by weight of the total composition and preferably from 0.001% to 0.5% by weight.
  • radical scavengers may contribute to reduce tensile strength loss of fabrics and/or color damage when the compositions of the present invention are used in any laundry application, especially in a laundry pretreatment application.
  • compositions according to the present invention may further comprise an antioxidant or mixtures thereof.
  • the compositions herein comprise up to 10% by weight of the total composition of an antioxidant or mixtures thereof, preferably from 0.002% to 5%, more preferably from 0.005% to 2%, and most preferably from 0.01% to 1%.
  • Suitable antioxidants to be used herein include organic acids like citric acid, ascorbic acid, tartaric acid, adipic acid and sorbic acid, or amines like lecithin, or aminoacids like glutamine, methionine and cysteine, or esters like ascorbil palmitate, ascorbil stearate and triethylcitrate, or mixtures thereof.
  • Preferred antioxidants for use herein are citric acid, ascorbic acid, ascorbil palmitate, lecithin or mixtures thereof.
  • the compositions of the present invention may comprise a bleach activator or mixtures thereof.
  • bleach activator it is meant herein a compound which reacts with hydrogen peroxide to form a peracid.
  • the peracid thus formed constitutes the activated bleach.
  • Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides, or anhydrides. Examples of suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231 and a method for their formation into a prilled form is described in European Published Patent Application EP-A-62 523.
  • Suitable examples of such compounds to be used herein are tetracetyl ethylene diamine (TAED), sodium 3,5,5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and nonylamide of peroxyadipic acid as described for instance in US 4 259 201 and n-nonanoyloxybenzenesulphonate (NOBS).
  • TAED tetracetyl ethylene diamine
  • NOBS n-nonanoyloxybenzenesulphonate
  • N-acyl caprolactams selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanoyl caprolactam, nonanoyl caprolactam, hexanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam or mixtures thereof.
  • a particular family of bleach activators of interest was disclosed in EP 624 154, and particularly preferred in that family is acetyl triethyl citrate (ATC).
  • Acetyl triethyl citrate has the advantage that it is environmental-friendly as it eventually degrades into citric acid and alcohol. Furthermore, acetyl triethyl citrate has a good hydrolytical stability in the product upon storage and it is an efficient bleach activator. Finally, it provides good building capacity to the composition.
  • the compositions according to the present invention may comprise from 0.01% to 20% by weight of the total composition of said bleach activator, or mixtures thereof, preferably from 1% to 10%, and more preferably from 3% to 7%
  • the liquid aqueous cleaning composition of the present invention needs to be contacted with the surface to clean.
  • surfaces it is meant herein any inanimate surface.
  • inanimate surfaces include, but are not limited to, hard-surfaces typically found in houses like kitchens, bathrooms, or in car interiors, e.g., tiles, walls, floors, chrome, glass, smooth vinyl, any plastic, plastified wood, table top, sinks, cooker tops, dishes, sanitary fittings such as sinks, showers, shower curtains, wash basins, WCs and the like, as well as fabrics including clothes, curtains, drapes, bed linens, bath linens, table cloths, sleeping bags, tents, upholstered furniture and the like, and carpets.
  • Inanimate surfaces also include household appliances including, but not limited to, refrigerators, freezers, washing machines, automatic dryers, ovens, microwave ovens, dishwashers and so on.
  • the present invention also encompasses a process of cleaning a fabric, as the inanimate surface.
  • a composition, as defined herein is contacted with the fabrics to be cleaned.
  • This can be done either in a so-called “pretreatment mode", where a composition, as defined herein, is applied neat onto said fabrics before the fabrics are rinsed, or washed then rinsed, or in a "soaking mode” where a composition, as defined herein, is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are rinsed, or in a "through the wash mode", where a composition, as defined herein, is added on top of a wash liquor formed by dissolution or dispersion of a typical laundry detergent. It is also essential in both cases, that the fabrics be rinsed after they have been contacted with said composition, before said composition has completely dried off.
  • the process comprises the steps of applying said liquid composition in its neat form onto said fabrics, or at least soiled portions thereof, and subsequently rinsing, or washing then rinsing said fabrics.
  • the neat compositions can optionally be left to act onto said fabrics for a period of time ranging from 1 min. to 1 hour, before the fabrics are rinsed, or washed then rinsed, provided that the composition is not left to dry onto said fabrics.
  • stains it may be appropriate to further rub or brush said fabrics by means of a sponge or a brush, or by rubbing two pieces of fabrics against each other.
  • the process comprises the steps of diluting said liquid composition in its neat form in an aqueous bath so as to form a diluted composition.
  • the dilution level of the liquid composition in an aqueous bath is typically up to 1:85, preferably up to 1:50 and more preferably about 1:25 (composition:water).
  • the fabrics are then contacted with the aqueous bath comprising the liquid composition, and the fabrics are finally rinsed, or washed then rinsed.
  • the fabrics are immersed in the aqueous bath comprising the liquid composition, and also preferably, the fabrics are left to soak therein for a period of time ranging from 1 minute to 48 hours, preferably from 1 hour to 24 hours.
  • the liquid composition is used as a so-called laundry additive.
  • the aqueous bath is formed by dissolving or dispersing a conventional laundry detergent in water.
  • the liquid composition in its neat form is contacted with the aqueous bath, and the fabrics are then contacted with the aqueous bath containing the liquid composition. Finally, the fabrics are rinsed.
  • the present invention also encompasses a process of cleaning a hard-surface, as the inanimate surface.
  • a composition as defined herein, is contacted with the hard-surfaces to be cleaned.
  • the present invention also encompasses a process of cleaning a hard-surface with a composition, as defined herein, wherein said process comprises the step of applying said composition to said hard-surface, preferably only soiled portions thereof, and optionally rinsing said hard-surface.
  • composition as defined herein, may be applied to the surface to be cleaned in its neat form or in its diluted form typically up to 200 times their weight of water, preferably into 80 to 2 times their weight of water, and more preferably 60 to 2 times.
  • compositions of the present invention are easy to rinse and provide good shine characteristics on the cleaned surfaces.
  • compositions herein can be packaged in a variety of containers including conventional bottles, bottles equipped with roll-on, sponge, brusher or sprayers.
  • compositions were made by mixing the listed ingredients in the listed proportions (weight % unless otherwise specified).
  • Compositions I II III IV V VI VII VIII Dobanol® 91-10 - - - 1.6 0.8 - 1.6 - Dobanol® 45-7 1.6 2.0 1.6 - 0.8 1.6 - 2.0 Dobanol® 23-3 2.0 - 2.0 2.0 2.0 2.0 2.0 - Lauryl Betaine - - 2.4 2.4 2.4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Mirataine H2C-HA® 5.0 2.4 - - - - - - H 2 O 2 7.0 7.0 7.0 7.0 7.0 7.0 7.0 HEDP 0.16 - 0.16 0.16 - 0.16 0.16 0.16 0.16 DTPMP - 0.18 - - 0.18 - - - Propyl gallate 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 Citric acid 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
  • DTPMP is diethylene triamine penta methylene phosphonate.
  • Mirataine H2C-HA® is Lauryl-immino-dipropionate Compositions IX X XI XII XIII XIV XV XVI
  • Salt-free Betaine* is Lauryl di-methyl betaine containing 0.3% by weight of sodium chloride. This betaine is obtained by purification from commercially available Lauryl di-methyl betaine GENAGEN LAB® (Hoechst) (which contains 7.5% by weight of sodium chloride).
  • Compositions I to XVI when used to clean soiled colored fabrics exhibit excellent overall stain removal performance especially on greasy stains like lipstick, make-up, olive oil, mayonnaise, sebum and the like, and improved bleaching performance.
  • any of the compositions I to XVI is applied neat on the stained portion of a fabric and left to act thereon for 5 minutes. Then the fabric is washed with a conventional detergent and rinsed.
  • any of the compositions I to XVI is contacted with an aqueous bath formed by dissolution of a conventional detergent in water. Fabrics are then contacted with the aqueous bath comprising the liquid detergent, and the fabrics are rinsed. They can also be used in a soaking mode, where 100 ml of the liquid compositions are diluted in 10 litres of water. The fabrics are then contacted with this aqueous bath containing the composition, and left to soak therein for a period of time of 24 hours. The fabrics are eventually rinsed.
  • compositions I to XVI when used to clean soiled hard-surfaces exhibit excellent overall stain removal performance especially on kitchen dirt greasy stains.
  • compositions IX to XVI when used to clean soiled colour fabrics in any laundry application and especially in pretreatment conditions are safe to both the fabrics and colours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
EP97870153A 1997-02-03 1997-10-08 Flüssige wässrige Reinigerzusammensetzungen Expired - Lifetime EP0856577B1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
EP97870153A EP0856577B1 (de) 1997-02-03 1997-10-08 Flüssige wässrige Reinigerzusammensetzungen
JP53301198A JP2001510499A (ja) 1997-02-03 1998-01-28 液体水性クリーニング組成物
KR1019997007002A KR20000070746A (ko) 1997-02-03 1998-01-28 액상 수성 세정 조성물
AU62519/98A AU6251998A (en) 1997-02-03 1998-01-28 Liquid aqueous cleaning compositions
TR1999/02364T TR199902364T2 (xx) 1997-02-03 1998-01-28 Sıvı sulu temizleme bileşimleri.
SK1143-99A SK114399A3 (en) 1997-02-03 1998-01-28 Liquid aqueous cleaning compositions
CA002278858A CA2278858A1 (en) 1997-02-03 1998-01-28 Liquid aqueous cleaning compositions
BR9815444-3A BR9815444A (pt) 1997-02-03 1998-01-28 Composições de limpeza aquosas, lìquidas
US09/355,712 US6235699B1 (en) 1997-02-03 1998-01-28 Liquid aqueous cleaning compositions
CN98803995A CN1252093A (zh) 1997-02-03 1998-01-28 液体含水洗涤组合物
HU0001951A HUP0001951A2 (hu) 1997-10-08 1998-01-28 Folyékony, vizes, tisztító készítmények
PCT/US1998/001560 WO1998033879A1 (en) 1997-02-03 1998-01-28 Liquid aqueous cleaning compositions
IDW990804D ID23520A (id) 1997-02-03 1998-01-28 Cairan komposisi pembersih berair
MA24955A MA24465A1 (fr) 1997-02-03 1998-02-03 Compositions nettoyantes aqueuses liquides .
NO993761A NO993761L (no) 1997-02-03 1999-08-03 Flytende, vandige vaskemiddelblandinger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP97870013 1997-02-03
EP97870013 1997-02-03
EP97870153A EP0856577B1 (de) 1997-02-03 1997-10-08 Flüssige wässrige Reinigerzusammensetzungen
PCT/US1998/001560 WO1998033879A1 (en) 1997-02-03 1998-01-28 Liquid aqueous cleaning compositions

Publications (2)

Publication Number Publication Date
EP0856577A1 true EP0856577A1 (de) 1998-08-05
EP0856577B1 EP0856577B1 (de) 2004-05-06

Family

ID=26148293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97870153A Expired - Lifetime EP0856577B1 (de) 1997-02-03 1997-10-08 Flüssige wässrige Reinigerzusammensetzungen

Country Status (3)

Country Link
EP (1) EP0856577B1 (de)
HU (1) HUP0001951A2 (de)
WO (1) WO1998033879A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018183A1 (en) * 1997-10-08 1999-04-15 The Procter & Gamble Company Liquid aqueous bleaching compositions
WO2000043485A1 (en) * 1999-01-26 2000-07-27 The Procter & Gamble Company Bleaching composition comprising substantially linear nonionic surfactants
US6448214B1 (en) 1997-10-08 2002-09-10 The Proctor & Gamble Company Liquid aqueous bleaching compositions
US6620774B1 (en) 1999-01-26 2003-09-16 The Procter & Gamble Company Bleaching composition comprising substantially linear nonionic surfactants
US11932833B2 (en) 2021-02-18 2024-03-19 The Clorox Company Stable activated peroxide sanitizing liquid compositions without added phosphorous compounds or cationic surfactants

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381147B2 (en) * 2014-10-20 2016-07-05 Johnson & Johnson Consumer Inc. Compositions comprising zwitterionic ester ammonioalkanoates
US9943816B2 (en) 2014-10-20 2018-04-17 Eastman Chemical Company Amphoteric ester sulfonates
US9533951B2 (en) 2014-10-20 2017-01-03 Eastman Chemical Company Heterocyclic amphoteric compounds
US9993408B2 (en) 2015-09-17 2018-06-12 Johnson & Johnson Consumer Inc. Compositions comprising zwitterionic alkyl-alkanoylamides and/or alkyl alkanoates
US11414380B2 (en) 2015-09-17 2022-08-16 Eastman Chemical Company Amphoteric compounds
US10035970B2 (en) 2016-05-09 2018-07-31 Basf Se Friction-reducing compound, method of producing same, and lubricant composition
CN109153942A (zh) * 2016-05-16 2019-01-04 荷兰联合利华有限公司 用于织物污渍的预处理组合物
CN109312266B (zh) 2016-06-16 2021-08-31 联合利华知识产权控股有限公司 方法和组合物
EP3472286B1 (de) 2016-06-16 2019-12-18 Unilever PLC Verfahren und zusammensetzungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490536A (en) * 1983-07-11 1984-12-25 Mona Industries, Inc. Salt free phosphobetaines
US4582636A (en) * 1984-12-18 1986-04-15 Colgate-Palmolive Co. Concentrated homogeneous built liquid detergent composition
FR2619823A1 (fr) * 1987-08-31 1989-03-03 Colgate Palmolive Co Compositions detergentes liquides non aqueuses pour le blanchissage a temperatures elevees, et leurs applications
EP0386566A1 (de) * 1989-03-06 1990-09-12 Henkel Kommanditgesellschaft auf Aktien Bleichmittelsuspension
EP0433257A1 (de) * 1989-12-11 1991-06-19 Akzo Nobel Surface Chemistry Aktiebolag Verfahren zum Erhöhen des Bleicheffektes beim Waschen und Verwendung bestimmter amphoterer Verbindungen in einer Waschmittelzusammensetzung zum Erhöhen des Bleicheffektes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4204700A1 (de) * 1992-02-17 1993-08-19 Henkel Kgaa Verfahren zur abtrennung anorganischer salze
JPH09104900A (ja) * 1995-10-09 1997-04-22 Lion Corp 液体漂白剤組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490536A (en) * 1983-07-11 1984-12-25 Mona Industries, Inc. Salt free phosphobetaines
US4582636A (en) * 1984-12-18 1986-04-15 Colgate-Palmolive Co. Concentrated homogeneous built liquid detergent composition
FR2619823A1 (fr) * 1987-08-31 1989-03-03 Colgate Palmolive Co Compositions detergentes liquides non aqueuses pour le blanchissage a temperatures elevees, et leurs applications
EP0386566A1 (de) * 1989-03-06 1990-09-12 Henkel Kommanditgesellschaft auf Aktien Bleichmittelsuspension
EP0433257A1 (de) * 1989-12-11 1991-06-19 Akzo Nobel Surface Chemistry Aktiebolag Verfahren zum Erhöhen des Bleicheffektes beim Waschen und Verwendung bestimmter amphoterer Verbindungen in einer Waschmittelzusammensetzung zum Erhöhen des Bleicheffektes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018183A1 (en) * 1997-10-08 1999-04-15 The Procter & Gamble Company Liquid aqueous bleaching compositions
US6448214B1 (en) 1997-10-08 2002-09-10 The Proctor & Gamble Company Liquid aqueous bleaching compositions
WO2000043485A1 (en) * 1999-01-26 2000-07-27 The Procter & Gamble Company Bleaching composition comprising substantially linear nonionic surfactants
EP1024188A1 (de) * 1999-01-26 2000-08-02 The Procter & Gamble Company Bleichmittelzusammensetzung enthaltend im wesentlichen lineare nichtionische Tenside
US6620774B1 (en) 1999-01-26 2003-09-16 The Procter & Gamble Company Bleaching composition comprising substantially linear nonionic surfactants
US11932833B2 (en) 2021-02-18 2024-03-19 The Clorox Company Stable activated peroxide sanitizing liquid compositions without added phosphorous compounds or cationic surfactants

Also Published As

Publication number Publication date
WO1998033879A1 (en) 1998-08-06
EP0856577B1 (de) 2004-05-06
HUP0001951A2 (hu) 2000-11-28

Similar Documents

Publication Publication Date Title
US6451064B1 (en) Liquid multipurpose-cleaning compositions with effective foam control
US6482786B1 (en) Liquid bleaching compositions comprising hydrogen peroxide, betaine, and ethoxylated nonionic surfactant
EP1021506A1 (de) Persäurestoffbleichmittel enthaltende zusammensetzungen, die ein besonderes chelatierungsmittelsystem enthalten
EP0856577B1 (de) Flüssige wässrige Reinigerzusammensetzungen
US6448214B1 (en) Liquid aqueous bleaching compositions
EP0908512A2 (de) Flüssige, wässrige Bleichmittelzusammensetzungen
US6235699B1 (en) Liquid aqueous cleaning compositions
US6495501B1 (en) Laundry bleaching compositions
US6316400B1 (en) Liquid bleaching composition with improved safety to fabrics and colors
KR20000070746A (ko) 액상 수성 세정 조성물
AU6251998A (en) Liquid aqueous cleaning compositions
EP0916721B1 (de) Bleichmittelzusammensetzungen für Wäsche
EP1001008A1 (de) Flüssige wässerige Bleichmittelzusammensetzungen mit einem sulfonierten anionischen Tensid
CA2305323A1 (en) Liquid bleaching compositions with improved safety to fabrics and colors
MXPA99007179A (en) Liquid aqueous cleaning compositions
ES2217384T3 (es) Composiciones limpiadoras acuosas liquidas.
WO2000043485A1 (en) Bleaching composition comprising substantially linear nonionic surfactants
MXPA00003517A (en) Liquid multipurpose-cleaning compositions with effective foam control
CZ9902947A3 (cs) Kapalný vodný prostředek, jeho použití a způsob čištění látek, předběžného ošetření látek a ošetření tvrdých povrchů
MXPA00011753A (en) Liquid bleaching compositions
MXPA00003307A (en) Peroxygen bleach-containing compositions comprising a particular chelating agent system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19990104

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20020205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69728959

Country of ref document: DE

Date of ref document: 20040609

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040806

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041008

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041008

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2217384

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050208

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090914

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20091021

Year of fee payment: 13

Ref country code: DE

Payment date: 20091030

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091014

Year of fee payment: 13

Ref country code: FR

Payment date: 20091020

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69728959

Country of ref document: DE

Effective date: 20110502

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502