EP0851095B1 - Innengekühlte Turbomaschinenschaufel - Google Patents

Innengekühlte Turbomaschinenschaufel Download PDF

Info

Publication number
EP0851095B1
EP0851095B1 EP97810917A EP97810917A EP0851095B1 EP 0851095 B1 EP0851095 B1 EP 0851095B1 EP 97810917 A EP97810917 A EP 97810917A EP 97810917 A EP97810917 A EP 97810917A EP 0851095 B1 EP0851095 B1 EP 0851095B1
Authority
EP
European Patent Office
Prior art keywords
pins
wall
coolant
turbomachine blade
narrow gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810917A
Other languages
English (en)
French (fr)
Other versions
EP0851095A1 (de
Inventor
Kenneth Hall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP0851095A1 publication Critical patent/EP0851095A1/de
Application granted granted Critical
Publication of EP0851095B1 publication Critical patent/EP0851095B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer

Definitions

  • the invention relates to an internally cooled turbomachine blade, with a Wall (W), which on the outside of a hot medium and on your A coolant flows around the inner wall, as well as with, in the inner wall introduced thermal bridges in the form of high-melting pins (S) with high thermal conductivity in the space exposed to the coolant (E) protrude.
  • W Wall
  • S high-melting pins
  • Such internally cooled turbomachine blades are for example those of gas turbines with axial flow.
  • Hollow, internally cooled turbine blades with liquid, steam or air as Coolants are well known.
  • a particular problem is the cooling of the The trailing edge of such blades represents that in a closed circle of the coolant are flowed through.
  • the walls forming the rear edge include one Narrow gap from which the heat is to be removed.
  • the narrow gap in its Width should not be less than a minimum value.
  • the wall thickness may be a certain one for reasons of strength Do not fall short.
  • the invention has for its object an internally cooled Turbomachine blade to develop such that the known Overheating problems on the rear edge of the turbine blade reduced or completely should be avoided without losing the fluid mechanical properties to influence the rear edge sustainably.
  • the narrow gap that the trailing edge encloses can be improved.
  • an internally cooled turbomachine blade with a wall which is surrounded by a hot medium on its outside and a coolant on its inside wall, and with thermal bridges introduced in the inside wall in the form of high-melting pins with high thermal conductivity, which in the from Project coolant-loaded space, developed such that the coolant-charged space is a closed narrow gap, which is formed by the rear edge of the turbomachine blade from which the pins protrude into the narrow gap, and that the wall at the rear edge encloses the melting pins with a constant wall thickness.
  • the advantages of the invention include the simplicity of the measure see. If the wall to be cooled is a cast one Turbine blade, so the pins can be shed together with the blade become. The measure also allows the efficiency of the training Blade trailing edge.
  • the cast blade shown in FIG. 1 has three inner chambers a, b, and c, through which a coolant, for example steam, flows, perpendicular to the plane of the drawing.
  • a coolant for example steam
  • the inside of the wall W forming the blade contour - which is surrounded by hot gases on the outside on both sides - is surrounded by the coolant and gives off its heat to the coolant.
  • the coolant circulates in a closed circuit, which means that coolant is not blown out into the flow channel either on the front edge, the suction side, the pressure side or in the region of the rear edge. This results in the problem with the trailing edge geometry, which is explained with reference to FIG. 2.
  • the narrow gap E formed by the walls must have a minimum size in order to be able to absorb enough coolant to dissipate the heat generated.
  • the inner edge rounding must therefore be designed with the diameter d.
  • a minimum wall thickness T cannot be undershot.
  • the dimension L a therefore generally corresponds to the wall thickness T. All this means that the outer edge rounding must be carried out with a relatively large diameter D a . So far, cooled trailing edges are known.
  • the invention seeks to remedy this. 3 are for better Heat dissipation in the wall around which the coolant flows Form of pins S arranged. These pins are attached so that they are in the from Coolant-loaded space, i.e. protrude into the narrow gap E.
  • the thermal bridges are high-melting material. Because such internally cooled blades usually are cast, it is advisable to arrange the pins in the casting cores beforehand and integrally potting them with the shovel. This has the advantage that in this Area on the usual spacers in the form of quartz or aluminide struts can be dispensed with.
  • pins are high Thermal conductivity to choose.
  • This is a suitable material synthetic diamond.
  • a synthetic diamond made of C-14 isotopes has shown thermal conductivity.
  • the pins S are cylindrical. It goes without saying that too other geometries with larger exchange areas are possible, for example, pins that have a polygonal shape in cross section or are serrated are.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine innengekühlte Turbomaschinenschaufel, mit einer Wandung (W), welche an ihrer Aussenseite von einem heissen Medium und an ihrer Innenwand von einem Kühlmittel umströmt ist, sowie mit, in der Innenwandung eingebrachten thermischen Brücken in Form von hochschmelzenden Stiften (S) mit hoher Wärmeleitfähigkeit, welche in den vom Kühlmittel beaufschlagten Raum (E) hineinragen.
Derartige innengekühlte Turbomaschinenschaufel sind beispielsweise jene von axialdurchströmten Gasturbinen.
Stand der Technik
Hohle, innengekühlte Turbinenschaufeln mit Flüssigkeit, Dampf oder Luft als Kühlmittel sind hinlänglich bekannt. Ein Problem stellt insbesondere die Kühlung der Hinterkante von solchen Schaufeln dar, die im gechlossenen Kreis vom Kühlmittel durchströmt sind. Die die Hinterkante bildenden Wandungen umfassen einen Engspalt, aus dem die Wärme abzuführen ist. Hierzu darf der Engspalt in seiner Breite einen minimalen Wert nicht unterschreiten. Um eine Überhitzung der Hinterkante zu vermeiden, darf auch keine grossen Materialansamlungen vorhanden sein. Darüber hinaus darf die Wandstärke aus Festigkeitsgründen ein bestimmtes Mass nicht unterschreiten. Diese Vorgaben führen dazu, dass innengekühlte Schaufeln mit grossen Rundungsradien an der Hinterkante versehen sind, was sich ungünstig auf den Schaufelwirkungsgrad auswirkt.
In der DE 32 11 139 C1 ist eine Axialturbinenschaufel, insbesondere eine Axialturbinenlaufschaufel für Gasturbinentriebwerke beschrieben, bei der zu Zwecken einer verbesserten Kühlung der Nasenkante der Turbinenschaufel Stifte oder Drähte aus hoch-wärmeleitfähigen Material in die Nasenkantenzone integriert sind und dabei teilweise von der Kühlluft umspült werden. Sie dienen einem verbesserten Wärmeabfluß aus dem Material aus dem Axialturbinenschaufeln gefertigt sind. Zwar helfen diese Maßnahmen grundsätzlich einer verbesserten Kühlung, doch vermag die in der vorbeschriebenen Druckschrift beschriebene Lehre nicht das Problem an der Hinterkante zu lösen. Auch sind der Druckschrift keine Hinweise zu entnehmen derartige Stifte im Bereich der Hinterkante einer Turbinenschaufel einzusetzen.
Aus der US 5,348,446 geht eine Turbinenschaufel aus einem mehrschicht-Metallverbund hervor, um den Wärmeübergang durch die Turbinenschaufelwand zu verbessern. Die mit der Turbinenhinterkante verbundenen Probleme werden in dieser Druckschrift nicht genannt.
Aus der US 5,566,752 geht ein wärmeübertragendes Element hervor, das im Wesentlichen aus einem Hitze gut leitendem Material, wie bspw. Diamant-Material besteht.
Darstellung der Erfindung
Die Erfindung liegt die Aufgabe zugrunde, eine innengekühlte Turbomaschinenschaufel derart weiterzubilden, dass die bekannten Überhitzungsprobleme an der Hinterkante der Turbinenschaufel reduziert oder ganz vermieden werden sollen, ohne dabei die strömungsmechanischen Eigenschaften der Hinterkante nachhaltig zu beeinflussen. Insbesondere soll die Wärmeableitung aus dem Engspalt, den die Hinterkante einschließt verbessert werden.
Erfindungsgemäss wird eine innengekühlte Turbomaschinenschaufel, mit einer Wandung, welche an ihrer Aussenseite von einem heissen Medium und an ihrer Innenwand von einem Kühlmittel umströmt ist, sowie mit, in der Innenwandung eingebrachten thermischen Brücken in Form von hochschmelzenden Stiften mit hoher Wärmeleitfähigkeit, welche in den vom Kühlmittel beaufschlagten Raum hineinragen, derart weitergebildet, dass der vom Kühlmittel beaufschlagte Raum ein geschlossener Engspalt ist, der von der Hinterkante der Turbomaschinenschaufel gebildet ist, von der aus die Stifte in den Engspalt hineinragen, und
dass die Wandung an der Hinterkante mit gleichbleibender Wandstärke die hochschmelzenden Stifte umschließt.
Die Vorteile der Erfindung sind unter anderem in der Einfachheit der Massnahme zu sehen. Handelt es sich bei der zu kühlenden Wand um eine gegossene Turbinenschaufel, so können die Stifte zusammen mit der Schaufel vergossen werden. Die Massnahme erlaubt zudem eine wirkungsgradgünstige Ausbildung der Schaufelhinterkante.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer innengekühlten Gasturbinenschaufel dargestellt. Es zeigen:
Fig. 1
eine Schaufel im Querschnitt;
Fig. 2
das Detail z aus Fig. 1 mit einer zum Stand der Technik zählenden Hinterkante,
Fig. 3
das Detail z aus Fig. 1 mit einer erfindungsgemässen Hinterkante,
Fig. 4
einen Längsschnitt durch den Hinterkantenbereich einer Schaufel.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der beteiligten Medien ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Die in Fig. 1 dargestellte, gegossene Schaufel weist drei Innenkammern a, b, und c auf, die von einem Kühlmittel, beispielsweise Dampf, senkrecht zur Zeichnungsebene durchströmt sind. Dabei werden die Innenseiten der die Schaufelkontur bildenden Wand W - die aussen beidseitig von heissen Gasen umströmt ist - vom Kühlmittel umströmt und geben ihre Wärme an das Kühlmittel ab. Es versteht sich, dass zumindest in den zwei vorderen Kammern a, b zahlreiche nicht gezeigte Hilfsmittel wie Leitrippen, Strömungskanäle, Einsätze für Prallkühlung und dergleichen zur Verbesserung der Wandkühlung vorgesehen sein können. Im Beispielsfall zirkuliert das Kühlmittel im geschlossenen Kreis, worunter verstanden wird, dass weder an der Vorderkante, der Saugseite, der Druckseite noch im Bereich der Hinterkante ein Ausblasen von Kühlmittel in den Strömungskanal erfolgt.
Hieraus ergibt sich die Problematik mit der Hinterkantengeometrie, welche anhand der Fig. 2 erläutert ist.
Der von den Wänden gebildete Engspalt E muss eine minimale Grösse haben, um genügend Kühlmittel zur Abfuhr der anfallenden Wärme aufnehmen zu können. Die innere Kantenabrundung ist deshalb mit dem Durchmesser d auszubilden. Aus Festigkeitsgründen kann eine minimale Wandstärke T nicht unterschritten werden. Um eine Überhitzung der Hinterkante zu vermeiden, darf es dort zu keiner grossen Materialansammlung kommen. Das Mass La entspricht demnach in der Regel der Wandstärke T. All dies führt dazu, dass die äussere Kantenabrundung mit einem relativ grossen Durchmesser Da auszuführen ist. Soweit sind gekühlte Hinterkanten bekannt.
Hier will die Erfindung Abhilfe schaffen. Gemäss Fig. 3 werden zur besseren Wärmeabfuhr in der vom Kühlmittel umströmten Wandung thermische Brücken in Form von Stiften S angeordnet. Diese Stifte sind so angebracht, dass sie in den vom Kühlmittel beaufschlagten Raum, d.h. in den Engspalt E hineinragen.
Aus Herstellungsgründen handelt es sich bei den thermischen Brücken um hochschmelzendes Material. Da solche innengekühlten Schaufeln in der Regel gegossen sind, bietet es sich an, die Stifte vorab in den Giesskernen anzuordnen und sie mit der Schaufel integral zu vergiessen. Dies hat den Vorteil, dass in diesem Bereich auf die üblichen Distanzstücke in Form von Quarz oder Aluminidstreben verzichtet werden kann.
Aus der Fig. 3 ist ersichtlich, dass - bei gleichbleibender Wandstärke T und gleichbleibender innerer Kantenabrundung d - auf diese Weise eine grössere Materialansammlung mit dem Mass Ln, an der Hinterkante ermöglicht wird. Dies erlaubt wiederum die Ausbildung einer wesentlich schärferen Hinterkante, was sich durch den kleineren Durchmesser D, der Kantenabrundung auszeichnet.
Um die gewünschte Wärmeabfuhr zu gewährleisten, sind Stifte mit hoher Wärmeleitfähigkeit zu wählen. Hierzu bietet sich als geeignetes Material synthetischer Diamant an. Als ganz besonders vorteilhaft hinsichtlich Wärmeleitfähigkeit hat sich ein synthetischer Diamant aus C-14 Isotopen gezeigt.
Im Beispielsfall sind die Stifte S zylindrisch ausgeführt. Es versteht sich, dass auch andere Geometrien, die grössere Austauschflächen aufweisen, möglich sind, beispielsweise Stifte, die im Querschnitt eine Vieleckform aufweisen oder gezahnt sind.
Bei gegebenen Bedingungen, d.h. Geometrie und Wandstärke der Hinterkante; Geometrie des vom Kühlmittel zu durchströmenden Engspaltes E; Wärmebelastung der Schaufelhinterkante; Art, Temperatur und Strömungsgeschwindigkeit des Kühlmittels, sind die Wärmeleitfähigkeit des gewählten Stiftmaterials sowie die in den durchströmten Engspalt hineinragenden Austauschflächen massgebend für die Anzahl der zu verwendenden Stifte über der Schaufelhöhe.
Gemäss Fig. 4 ist in einem Längsschnitt durch die hintere Kammer c eine solche gestaffelte regelmässige Anordnung von Stiften in der Radialen über der Schaufelhöhe, d.h. die Länge der Hinterkante der Turbinenschaufel, gezeigt. Je nach Wärmebelastung über der Schaufelhöhe kann selbstverständlich auch eine ungleiche Teilung zur Anwendung gelangen oder bei gleicher Teilung können Stifte mit unterschiedlichen Wärmetauschflächen vorgesehen werden.
Bezugszeichenliste
a,b,c
Innenkammern der Schaufel
W
zu kühlende Wand
E
Engspalt
L
Länge der Materialansammlung
T
Wandstärke
d
innere Kantenabrundung
D
äussere Kantenabrundung
S
Kühlstift

Claims (4)

  1. Innengekühlte Turbomaschinenschaufel, mit einer Wandung (W), welche an ihrer Aussenseite von einem heissen Medium und an ihrer Innenwand von einem Kühlmittel umströmt ist, sowie mit, in der Innenwandung eingebrachten thermischen Brücken in Form von hochschmelzenden Stiften (S) mit hoher Wärmeleitfähigkeit, welche in den vom Kühlmittel beaufschlagten Raum (E) hineinragen,
    dadurch gekennzeichnet, dass der vom Kühlmittel beaufschlagte Raum (E) ein geschlossener Engspalt (E) ist, der von der Hinterkante der Turbomaschinenschaufel gebildet ist, von der aus die Stifte (S) in den Engspalt hineinragen, und
    dass die Wandung (W) an der Hinterkante mit gleichbleibender Wandstärke (T) die hochschmelzenden Stifte (S) umschließt.
  2. Innengekühlte Turbomaschinenschaufel nach Anspruch 1,
    dadurch gekennzeichnet, dass die Stifte (S) aus synthetischem Diamant aus C-14 Isotopen bestehen.
  3. Innengekühlte Turbomaschinenschaufel nach Anspruch 1,
    dadurch gekennzeichnet, dass die Stifte (S) mit der Wandung (W) zusammen vergossen sind.
  4. Innengekühlte Turbomaschinenschaufel nach Anspruch 1,
    dadurch gekennzeichnet, dass der Engspalt (E) sich zumindest annähernd über die ganze Höhe der Turbomaschinenschaufel erstreckt und dass eine Mehrzahl von Stiften über der Höhe verteilt angeordnet ist.
EP97810917A 1996-12-23 1997-11-27 Innengekühlte Turbomaschinenschaufel Expired - Lifetime EP0851095B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19654115A DE19654115A1 (de) 1996-12-23 1996-12-23 Vorrichtung zum Kühlen einer beidseitig umströmten Wand
DE19654115 1996-12-23

Publications (2)

Publication Number Publication Date
EP0851095A1 EP0851095A1 (de) 1998-07-01
EP0851095B1 true EP0851095B1 (de) 2002-09-25

Family

ID=7816083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810917A Expired - Lifetime EP0851095B1 (de) 1996-12-23 1997-11-27 Innengekühlte Turbomaschinenschaufel

Country Status (4)

Country Link
EP (1) EP0851095B1 (de)
JP (1) JPH10196304A (de)
CN (1) CN1186151A (de)
DE (2) DE19654115A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445423B1 (de) * 1999-04-21 2006-08-02 Alstom Technology Ltd Kühlbare Turbomaschinenschaufel
DE19926817A1 (de) * 1999-06-12 2000-12-14 Abb Research Ltd Turbinenbauteil
GB0008897D0 (en) * 2000-04-12 2000-05-31 Cheiros Technology Ltd Improvements relating to heat transfer
US11333022B2 (en) * 2019-08-06 2022-05-17 General Electric Company Airfoil with thermally conductive pins

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE559676C (de) * 1931-08-20 1932-09-22 E H Hans Holzwarth Dr Ing Verfahren zur Kuehlung von Schaufeln, insbesondere fuer Brennkraftturbinen
GB2087065B (en) * 1980-11-08 1984-11-07 Rolls Royce Wall structure for a combustion chamber
DE3211139C1 (de) * 1982-03-26 1983-08-11 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Axialturbinenschaufel,insbesondere Axialturbinenlaufschaufel fuer Gasturbinentriebwerke
GB8607526D0 (en) * 1986-03-26 1986-04-30 Artus R G C Cooled component assembly
US5810552A (en) * 1992-02-18 1998-09-22 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures having a high thermal conductivity member connecting the walls and methods of making the same
US5348446A (en) * 1993-04-28 1994-09-20 General Electric Company Bimetallic turbine airfoil
FR2714254B1 (fr) * 1993-12-20 1996-03-08 Aerospatiale Elément de transfert thermique, utilisable notamment en électronique comme support de circuit imprimé ou de composant et son procédé de fabrication.
US5566752A (en) * 1994-10-20 1996-10-22 Lockheed Fort Worth Company High heat density transfer device
US5536143A (en) * 1995-03-31 1996-07-16 General Electric Co. Closed circuit steam cooled bucket

Also Published As

Publication number Publication date
DE59708321D1 (de) 2002-10-31
JPH10196304A (ja) 1998-07-28
DE19654115A1 (de) 1998-06-25
CN1186151A (zh) 1998-07-01
EP0851095A1 (de) 1998-07-01

Similar Documents

Publication Publication Date Title
DE602005000449T2 (de) Kühlung mit Mikrokanälen für eine Turbinenschaufel
DE60031185T2 (de) Methode zur Kühlung einer Wand einer Strömungsmaschinenschaufel
DE69723663T2 (de) Wirbelelementkonstruktion für kühlkanäle einer Gasturbinenschaufel
DE60224339T2 (de) Kühleinsatz mit tangentialer Ausströmung
DE2718661C2 (de) Leitschaufelgitter für eine axial durchströmte Gasturbine
DE60213328T2 (de) Gekühlte hohle Schaufelspitzenabdeckung einer Turbinenschaufel
DE60128319T2 (de) Mantelringsegment für eine Turbine
DE69714960T3 (de) Wirbelelementkonstruktion für Kühlkanäle eines Gasturbinenrotorschaufelblattes
EP0889201B1 (de) Prallanordnung für ein konvektives Kühl-oder Heizverfahren
EP1267040A2 (de) Gasturbinenschaufelblatt
CH642428A5 (de) Abdeckanordnung in einer turbine.
DE102007017973A1 (de) Dampfgekühlte Turbinenummantelung mit geschlossenem Kreislauf
DE60220556T2 (de) Kühlung der Übergangsradien einer Statorschaufel
EP1668236B1 (de) Brennkammer mit kühleinrichtung und verfahren zur herstellung der brennkammer
EP2126286A1 (de) Turbinenschaufel
WO2003044329A1 (de) Gasturbogruppe
DE102017215940A1 (de) Schaufel einer Strömungsmaschine mit Kühlkanal und darin angeordnetem Verdrängungskörper sowie Verfahren zur Herstellung
EP0892150B1 (de) Kühlsystem für den Hinterkantenbereich einer hohlen Gasturbinenschaufel
EP1456505A1 (de) Thermisch belastetes bauteil
EP0851095B1 (de) Innengekühlte Turbomaschinenschaufel
DE69925447T2 (de) Kühlbare Schaufelblätter
EP1431662A1 (de) Geschlossen gekühlte Brennkammer für eine Turbine
DE69418034T2 (de) Schaufelspitzendichtungsring für eine Gasturbine
DE69816947T2 (de) Gasturbinenschaufel
EP2421666A1 (de) Giessvorrichtung zum herstellen einer turbinenlaufschaufel einer gasturbine und turbinenlaufschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19981223

AKX Designation fees paid

Free format text: DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19991215

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

RTI1 Title (correction)

Free format text: INTERNAL COOLING BLADE OF A TURBO-MACHINE

RTI1 Title (correction)

Free format text: INTERNAL COOLING BLADE OF A TURBO-MACHINE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020925

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021030

Year of fee payment: 6

REF Corresponds to:

Ref document number: 59708321

Country of ref document: DE

Date of ref document: 20021031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021104

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021111

Year of fee payment: 6

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020925

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602