EP0842381A1 - Process and system for starting a flow steam generator - Google Patents

Process and system for starting a flow steam generator

Info

Publication number
EP0842381A1
EP0842381A1 EP96924761A EP96924761A EP0842381A1 EP 0842381 A1 EP0842381 A1 EP 0842381A1 EP 96924761 A EP96924761 A EP 96924761A EP 96924761 A EP96924761 A EP 96924761A EP 0842381 A1 EP0842381 A1 EP 0842381A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
flow
feed water
water
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96924761A
Other languages
German (de)
French (fr)
Other versions
EP0842381B1 (en
Inventor
Rudolf Kral
Joachim Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0842381A1 publication Critical patent/EP0842381A1/en
Application granted granted Critical
Publication of EP0842381B1 publication Critical patent/EP0842381B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/14Control systems for steam boilers for steam boilers of forced-flow type during the starting-up periods, i.e. during the periods between the lighting of the furnaces and the attainment of the normal operating temperature of the steam boilers

Definitions

  • the invention relates to a method for starting up a continuous steam generator with a combustion chamber having a number of burners for a fossil fuel, the gas-tight surrounding wall of which is formed from at least approximately vertically arranged evaporator tubes which flow through from the bottom to the top on the feed water side become. It further relates to a start-up system for performing the method.
  • the heating of vertically arranged tubes of an evaporator forming the gas-tight surrounding wall of a combustion chamber leads to complete evaporation of the flow medium in the evaporator tubes in one pass.
  • a circulating flow is usually superimposed on the continuous flow of the evaporator - and often also a flue gas-heated preheater or economizer arranged in the continuous steam generator.
  • the pipes are to be reliably cooled by correspondingly high speeds.
  • the minimum current, consisting of continuous flow and superimposed circulating current, for vertically arranged pipes in the peripheral walls of the combustion chamber is between 25% and 50% of the full load flow. This means that when starting, the steam generator load must be increased to at least 25% to 50% before the continuous operation with its high steam outlet temperatures, which is favorable in terms of efficiency, is achieved.
  • the amount of the flow medium to be delivered by a feed pump is preferably kept constant. It is the feed flow of the feed pump is equal to the evaporator throughput.
  • the start-up times beginning with the ignition of a first burner of the continuous steam generator and ending with continuous operation with high steam temperatures are very long. This results in comparatively high start-up losses, since their height is significantly influenced by the start-up times.
  • the invention is therefore based on the object of specifying a method for starting a continuous-flow steam generator in which start-up losses, in particular due to the removal of excess water, are largely avoided. This should be achieved with simple means in a start-up system suitable for carrying out the method.
  • this object is achieved according to the invention in that the water level in the evaporator tubes and the ratio of fuel flow to feed water flow are set in such a way that the feed water run through the evaporator completely evaporated, so that there is no more water at the evaporator outlet.
  • the invention is based on the consideration that before starting, i.e. before firing the first burner, the water level in the evaporator is raised to a defined level.
  • the water level in the evaporator tubes should be high enough to ensure adequate cooling of the evaporator tubes.
  • the water level in the evaporator tubes must not be too high in order to avoid the formation of a water plug which occurs during the start-up process downstream of the start of evaporation.
  • the amount of feed water to be supplied per unit of time should then depend on the
  • Burners per amount of fuel supplied per unit of time are set with the aim that even without a separating device, no water gets into the evaporator-connected superheater heating surfaces on the steam side.
  • the level of water i.e. the water level in the evaporator tubes can be derived from the differential pressure which is divided over the evaporator. Therefore, in an expedient development, the pressure difference, preferably between the evaporator outlet and the evaporator inlet, is determined both for determining and for adjusting the water level in the evaporator tubes.
  • the gas-tight peripheral wall of which has at least approximately vertically running evaporator tubes which can be flowed through according to the invention from below to above on the feed water side by means of an adjusting device for adjusting the water level in the evaporator and for adjusting the ratio of fuel flow to feed water flow.
  • the setting or control variable is expediently the evaporator throughput, ie the amount of feed water supplied to the evaporator on the medium side per unit of time.
  • the setting device is therefore expediently connected to an actuator and a flow sensor, which are connected to a feed water line leading into the evaporator.
  • the adjusting device is connected to an actuator and a flow sensor, which are connected in a fuel line leading to the or each burner.
  • the adjusting device is connected to an actuator which is connected to a drain line connected to the evaporator on the inlet side for dewatering.
  • the setting device is connected to means for determining the water level in the evaporator. Both for determining and for setting the water level in the evaporator, at least two pressure sensors arranged along the evaporator are expediently provided.
  • a connecting line between the evaporator outlet and the evaporator inlet is also provided, into which a fitting, e.g. a non-return valve is connected to avoid backflow towards the evaporator outlet.
  • a fitting e.g. a non-return valve
  • Any water that may be present at the evaporator outlet can be fed to the evaporator inlet via the connecting line if the existing pressure ratios permit it. Otherwise, this water can be discharged via an outflow line connected to the connecting line.
  • the advantages achieved by the invention are, in particular, that simply by adjusting the ratio of fuel flow to feed water flow, the steam temperature can be adjusted or regulated to the required value during start-up, since there is no longer a defined evaporation end point.
  • a start-up system with a separator would be fixed due to the When the end of the evaporation is stopped, the fresh steam temperature inevitably adjusts to the ratio of the evaporator to superheater heating surface when starting, so that it is not possible to adjust the fresh steam temperature to the required value during starting.
  • FIG. 1 An embodiment of the invention is explained in more detail with reference to a drawing.
  • FIG. 1 shows schematically a once-through steam generator with a vertical throttle cable and with a one-piece device of a start-up system.
  • the vertical throttle cable of the steam generator 1 according to FIG. 1 with a rectangular cross-section is formed by a surrounding wall 2 which merges into a funnel-shaped bottom 3 at the lower end of the gas cable.
  • Evaporator tubes 4 of the surrounding wall 2 are gas-tightly connected to one another on their long sides, e.g. welded.
  • the bottom 3 comprises a discharge opening 3a for ashes, not shown.
  • the lower region of the peripheral wall 2 forms the combustion chamber 6 of the once-through steam generator 1 provided with a number of burners 5.
  • the entry collector 8 and the exit collector 10 are located outside the passageway and are e.g. each formed by an annular tube.
  • the inlet collector 8 is connected via a line 12 and a collector 14 to the outlet of a high-pressure preheater or economizer 15.
  • the heating surface of the economizer 15 is in a space above the combustion chamber 6
  • Umfa ⁇ ung ⁇ wand 2 arranged.
  • the economizer 15 is on the input side via a collector 16 and a feed water line 18 connected with a medium steam D heated heat exchanger 20 which is connected to the pressure side of a feed water pump 22.
  • the suction side of the feed water pump 22 is connected in a manner not shown in more detail via a condenser to a steam turbine and thus switched into its water / steam cycle.
  • the outlet header 10 is connected via a connecting line 24 and a branch line 26 to an inlet header 27 of a high-pressure superheater 28, which is arranged between the economizer 15 and the combustion chamber 6 within the peripheral wall 2.
  • the high-pressure superheater 28 is connected to a high-pressure part of the steam turbine on the output side via a collector 30 during operation.
  • an intermediate superheater 32 is provided within the surrounding wall 2, which is connected via collectors 34, 36 between the high-pressure part and a medium-pressure part of the steam turbine.
  • the economizer 15, the high-pressure superheater 28 and the reheater 32 lie as convection or bulkhead heating surfaces in the so-called convection train of the continuous steam generator 1.
  • the connecting line 24 which leads from the outlet header 10 of the surrounding wall 2 of the convection duct of the steam generator 1 to the lower-level inlet header 27 of the high-pressure superheater 28, is vertical up to the level of the inlet header 8, i.e. de ⁇ evaporator entry, continued.
  • a check valve 40 is connected in the connecting line 24.
  • drainage lines 42, 44 are connected to the connecting line 24 and are connected to the drainage valves 46 and 48, respectively.
  • a first valve 50 and a first flow sensor 52 are connected into the feed water line 18 in the flow direction of the feed water S behind the heat exchanger 20.
  • the flow sensor 52 is used to determine the quantity of feed water S conducted via the feed water line 18 and thus to determine the feed water flow.
  • the amount of feed water S fed per unit of time via feed water line 18 corresponds to the feed water quantity supplied to the evaporator consisting of evaporator tubes 4 and thus to the evaporator throughput.
  • a second flow sensor 54 is connected to a fuel line 56 which opens into the burners 5 via sub-lines 58.
  • a second valve 60 is connected in the fuel line 56 to adjust the quantity of fuel B supplied to the or each burner 5 per unit of time and thus to set the fuel flow. Oil, gas or coal can be used as fuel B.
  • the flow sensors 52 and 54 are connected via signal lines 62 and 64 to a controller module 66 as an adjusting device.
  • Another signal line 68 connected to the controller module 66 is connected via measuring lines 70 and 72 to pressure sensors 74 and 76, respectively, which are provided for measuring the pressure p at the evaporator inlet or the pressure ⁇ and at the evaporator outlet.
  • the regulator module 66 is also connected to the valves 50, 60 and 48 via control lines 78, 80 and 82.
  • Feed water S and valves 50 and 60 serving to adjust the amount of fuel B are components of a start-up system 84 for starting the continuous steam generator 1. Further components of the start-up system 84 are the pressure sensors 74 connected to the controller module 66 via the signal line 68, 76 and valve 48 connected to control module 66 via control line 82 for dewatering from the lower evaporator part 1.
  • the start-up system 84 is used to set the ratio of fuel flow to feed water flow with the aim that the feed water ⁇ during the passage through the evaporator Ferrohre 4 completely evaporated, so that at the evaporator outlet, ie at the outlet collector 10, there is no longer any water.
  • the Was ⁇ er ⁇ tand H is moved into the evaporator tubes in the evaporator 4 before starting to a defined height H m i n that lies just above the burner. 5 This takes place, for example, by replenishing feed water S by means of feed water pump 22 or by dewatering from the lower evaporator part via the dewatering line 44.
  • the differential pressure is sent to the controller module 66 via the signal line 68 supplied as a measured value, which results from the difference between the mean pressure p ⁇ and p ⁇ measured at the pressure sensors 74 and 76 at the evaporator outlet or at the evaporator inlet.
  • the water level H in the evaporator tubes 4 is thereby zwi ⁇ rule the two limit values H max and maintained H m i n, where
  • Hgg the height (upper edge) of the highest burner, which with the
  • F is an adaptation factor that has been empirically determined to be approximately 0.5 to 2; H KHF the height at which the convection or bulkhead heating surfaces begin with a narrow pitch ( ⁇ 400 mm); ⁇ min the time (3 to 10 minutes) to fill the storage tank, ie the evaporator tubes to the water level H, at the speed v W / s; v ⁇ s the water speed in the evaporator tubes at the start of the feed water flow at the time of the ignition of the first burner.
  • the controller module 66 is sent via signal line 62 the current value, measured by means of the flow sensor 52, of the amount of the feed water S supplied to the evaporator, ie the evaporator tubes 4, per unit time.
  • This value supplied to the controller module 66 by the flow sensor 52 corresponds to the current feed water flow and thus the evaporator throughput.
  • the value of the amount of fuel B supplied to the burners 5 is transmitted to the controller module 66 via the signal line 64 by means of the flow sensor 54 at the current time.
  • the level, ie the water level H, at the time “fire ON” and the ratio of fuel flow to feed water flow is selected such that pure steam is present at the outlet collector 10, so that no water flows into the superheater heating surface 28 .
  • the branch line 26 from the connecting line 24 is arranged at the inlet height of the superheater heating surface 28.
  • any water present in the outlet collector 10 will flow past this branch to the superheater heating surface 28 and collect in the lower part of the perpendicular connecting line 24. From there, this water can either be discharged via the drain valve 46 or fed to the inlet manifold 8 of the evaporator. Alternatively, this water, which may be present, can also be fed to the line 12 between the economizer 15 and the inlet collector 8 of the evaporator. A backflow to the outlet manifold 10 is prevented by the check valve 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

A process is disclosed for starting a flow steam generator (1) with a combustion chamber (6) having a plurality of burners (5) for a fossil fuel (B) and a gas-tight external wall (2) made of at least approximately vertical evaporator pipes (4) through which feed water flows upwards. In order to avoid starting losses, the water level (H) in the evaporator pipes (4) and the ratio between fuel flow and feed water flow are set in such a way that the water (S) completely evaporates when flowing through the evaporator pipes (4), so that no more water is available at the evaporator outlet (10). For that purpose, a starting system (84) is used having regulating means (66) for regulating the water level (H) in the evaporator (4), as well as the ratio between fuel flow and feed water flow.

Description

Beschreibungdescription
Verfahren und System zum Anfahren eines Durchlaufdampferzeu¬ gersMethod and system for starting up a continuous steam generator
Die Erfindung bezieht sich auf ein Verfahren zum Anfahren ei¬ nes Durchlaufdampferzeugerε mit einer eine Anzahl von Bren¬ nern für einen fossilen Brennstoff aufweisenden Brennkammer, deren gasdichte Umfassungswand aus mindestens annähernd ver- tikal verlaufend angeordneten Verdampferrohren gebildet ist, die speisewasserseitig von unten nach oben durchströmt wer¬ den. Sie bezieht εich weiter auf ein Anfahrεyεtem zur Durch¬ führung deε Verfahrenε.The invention relates to a method for starting up a continuous steam generator with a combustion chamber having a number of burners for a fossil fuel, the gas-tight surrounding wall of which is formed from at least approximately vertically arranged evaporator tubes which flow through from the bottom to the top on the feed water side become. It further relates to a start-up system for performing the method.
In einem Durchlaufdampferzeuger führt die Beheizung von die gasdichte Umfassungswand einer Brennkammer bildenden vertikal angeordneten Rohren eines Verdampfers zu einer vollständigen Verdampfung des Strömungsmediumε in den Verdampferrohren in einem Durchgang. Üblicherweiεe wird dem Durchlaufström deε Verdampfers - und häufig auch einem im Durchlaufdampferzeuger angeordneten rauchgas-beheizten Vorwärmer oder Economizer - während des Anfahrens ein Umlaufström überlagert. Dadurch sollen durch entsprechend hohe Geschwindigkeiten in den Roh¬ ren diese sicher gekühlt werden. Dabei beträgt der aus Durch- laufεtrom und überlagertem Umlaufεtrom beεtehende Mindest¬ strom bei vertikal angeordneten Rohren in den Umfasεungswän- den der Brennkammer zwischen 25% und 50% des Vollaεtεtromε. Dieε bedeutet, daß beim Anfahren die Dampferzeugerlaεt erεt auf mindestens 25% bis 50% gesteigert werden muß, bevor der wirkungsgradmäßig günstige Durchlaufbetrieb mit seinen hohen Dampfaustrittεtemperaturen erreicht wird.In a once-through steam generator, the heating of vertically arranged tubes of an evaporator forming the gas-tight surrounding wall of a combustion chamber leads to complete evaporation of the flow medium in the evaporator tubes in one pass. A circulating flow is usually superimposed on the continuous flow of the evaporator - and often also a flue gas-heated preheater or economizer arranged in the continuous steam generator. As a result, the pipes are to be reliably cooled by correspondingly high speeds. In this case, the minimum current, consisting of continuous flow and superimposed circulating current, for vertically arranged pipes in the peripheral walls of the combustion chamber is between 25% and 50% of the full load flow. This means that when starting, the steam generator load must be increased to at least 25% to 50% before the continuous operation with its high steam outlet temperatures, which is favorable in terms of efficiency, is achieved.
Wie auε der Europäischen Patentschrift 0 054 601 Bl bekannt iεt, wird daher üblicherweiεe zum Anfahren und in einem unter einer bestimmten Grenzlast von 50% der Vollast liegendenAs is known from European patent specification 0 054 601 B1, it is therefore usually used for starting and in a load below a certain limit of 50% of the full load
Lastbereich die Menge des von einer Speisepumpe zu fördernden Strömungsmediums vorzugsweise konstant gehalten. Dabei ist der Förderεtrom der Speiεepumpe gleich dem Verdampferdurch- εatz. Bei dieεer Betriebεweise εind die mit dem Zünden eineε erεten Brenners des Durchlaufdampferzeugerε beginnenden und mit Erreichen deε Durchlaufbetriebε mit εeinen hohen Dampf- temperaturen endenden Anfahrzeiten sehr lang. Dies hat ver¬ hältnismäßig hohe Anfahrverluεte zur Folge, da deren Höhe we¬ sentlich von den Anfahrzeiten beeinflußt wird.Load range, the amount of the flow medium to be delivered by a feed pump is preferably kept constant. It is the feed flow of the feed pump is equal to the evaporator throughput. In this mode of operation, the start-up times beginning with the ignition of a first burner of the continuous steam generator and ending with continuous operation with high steam temperatures are very long. This results in comparatively high start-up losses, since their height is significantly influenced by the start-up times.
Hohe Anfahrverluste ergeben sich auch durch einen Waεεerüber- εchuß. Dieεer entsteht einerseits durch einen im Vergleich zur zugeführten Wärme hohen Wasεermaεεenεtrom und zum anderen durch den sogenannten Wasserausstoß. Dieser wiederum ent¬ steht, wenn die Verdampfung in der Mitte des Verdampfers be¬ ginnt und die stromabwärts vorhandene Waεεermenge (Waεεerpfropfen) ausschiebt. Daher ist in einem Durchlauf¬ dampferzeuger üblicherweise eine Abscheideeinrichtung vorge¬ sehen, aus der überεchüεεigeε Waεser abgezogen und entweder mittels einer Umwälzpumpe wieder dem Verdampfer zugeführt oder verworfen wird. In dieser Abscheideeinrichtung iεt somit während deε Anfahrenε daε Ende der Verdampfung festgelegt. Ein Anfahrsyεtem mit einer derartigen Abεcheideeinrichtung εowie dabei zuεätzlich erforderlichem Trenngefäß, Ventilen und einer Umwälzpumpe erfordert bei hohem techniεchen Aufwand hohe Inveεtitionskosten, die mit einer gewünschten Realisie- rung hoher und höchεter Dampfdrücke stark zunehmen.High start-up losses also result from excess water. This arises on the one hand from a high water mass flow compared to the heat supplied and on the other hand through the so-called water output. This in turn arises when the evaporation begins in the middle of the evaporator and pushes out the amount of water present downstream (water grafting). For this reason, a separating device is usually provided in a once-through steam generator, from which excess water is drawn off and either returned to the evaporator by means of a circulating pump or discarded. In this separating device, the end of the evaporation is thus fixed during startup. A start-up system with such a separating device, as well as additionally required separation vessel, valves and a circulating pump, requires high investment costs with high technical expenditure, which increases sharply with the desired realization of high and highest steam pressures.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Anfahren eineε Durchlaufdampferzeugerέ anzugeben, bei dem Anfahrverluεte, inεbesondere durch Abführen überschüεεigen Wasserε, weiteεtgehend vermieden εind. Dieε soll bei einem zur Durchführung deε Verfahrenε geeigneten Anfahrεyεtem mit einfachen Mitteln erreicht werden.The invention is therefore based on the object of specifying a method for starting a continuous-flow steam generator in which start-up losses, in particular due to the removal of excess water, are largely avoided. This should be achieved with simple means in a start-up system suitable for carrying out the method.
Bezüglich deε Verfahrenε wird dieεe Aufgabe erfindungsgemäß dadurch gelöεt, daß der Wasserstand in den Verdampferrohren und daε Verhältnis von Brennstoffεtrom zu Speiεewasserstrom derart eingestellt werden, daß daε Speiεewaεser beim Durch- lauf durch den Verdampfer vollεtändig verdampft, εo daß am Verdampferauεtritt kein Waεser mehr vorhanden ist.With regard to this method, this object is achieved according to the invention in that the water level in the evaporator tubes and the ratio of fuel flow to feed water flow are set in such a way that the feed water run through the evaporator completely evaporated, so that there is no more water at the evaporator outlet.
Die Erfindung geht dabei von der Überlegung auε, daß vor dem Anfahren, d.h. vor Feuerung deε erεten Brennerε, der Wasser¬ stand im Verdampfer auf eine definierte Höhe gefahren wird. Dabei soll der Waεεerstand in den Verdampferröhren einerseits hoch genug sein, um eine ausreichende Kühlung der Verdampfer¬ rohre zu gewährleisten. Andererseitε darf der Waεεerstand in den Verdampferrohren nicht zu hoch sein, um die Ausbildung eines während des Anfahrvorgangs εtromabwärtε deε Verdamp- fungεbeginnε entεtehenden Waεserpfropfenε zu vermeiden. Wäh¬ rend des Anfahrvorgangε, d.h. zum Zeitpunkt der Feuerung des (ersten) oder jedes Brenners, soll dannn die pro Zeiteinheit zuzuführende Speiεewaεεermenge in Abhängigkeit von der denThe invention is based on the consideration that before starting, i.e. before firing the first burner, the water level in the evaporator is raised to a defined level. On the one hand, the water level in the evaporator tubes should be high enough to ensure adequate cooling of the evaporator tubes. On the other hand, the water level in the evaporator tubes must not be too high in order to avoid the formation of a water plug which occurs during the start-up process downstream of the start of evaporation. During the start-up process, i.e. at the time of firing the (first) or each burner, the amount of feed water to be supplied per unit of time should then depend on the
Brennern pro Zeiteinheit zugeführten Brennstoffmenge mit dem Ziel eingeεtellt werden, daß auch ohne Abεcheideeinrichtung kein Wasser in dem Verdampfer dampfseitig nachgeεchaltete Überhitzerheizflächen gelangt.Burners per amount of fuel supplied per unit of time are set with the aim that even without a separating device, no water gets into the evaporator-connected superheater heating surfaces on the steam side.
Das Niveau des Wassers, d.h. der Wasserεtand in den Verdamp¬ ferrohren, kann auε dem εich über dem Verdampfer einteilen¬ den Differenzdruck abgeleitet werden. Daher wird in zweck¬ mäßiger Weiterbildung sowohl zur Ermittlung alε auch zur Ein- Stellung des Waεserstandes in den Verdampferrohren die Druck¬ differenz, vorzugsweise zwischen Verdampferaustritt und Ver¬ dampfereintritt, ermittelt.The level of water, i.e. the water level in the evaporator tubes can be derived from the differential pressure which is divided over the evaporator. Therefore, in an expedient development, the pressure difference, preferably between the evaporator outlet and the evaporator inlet, is determined both for determining and for adjusting the water level in the evaporator tubes.
Bezüglich des Anfahrεystemε für einen Durchlaufdampferzeuger mit einer eine Anzahl von Brennern für einen foεεilen Brenn- εtoff aufweisenden Brennkammer, deren gasdichte Umfaεεungε- wand mindeεtenε annähernd vertikal verlaufende Verdampferroh¬ re aufweiεt, die speiεewaεserseitig von unten nach oben durchströmbar sind, wird die genannte Aufgabe erfindungsgemäß gelöst durch eine Einεtelleinrichtung zum Einstellen des Was- εerεtandeε im Verdampfer εowie zum Einεtellen deε Verhältnis¬ ses von Brennstoffström zu Speisewaεεerεtrom. Die Einstell- oder Regelgröße ist zweckmäßigerweiεe der Ver¬ dampferdurchεatz, d.h. die Menge des dem Verdampfer medium- seitig pro Zeiteinheit zugeführten Speiεewassers. Die Ein- εtelleinrichtung iεt daher zweckmäßigerweise verbunden mit einem Stellglied und einem Durchflußmeßfühler, die in eine in den Verdampfer führende Speisewaεserleitung geschaltet εind. Weiter iεt die Einεtelleinrichtung mit einem Stellglied und einem Durchflußmeßfühler verbunden, die in eine an den oder jeden Brenner führende Brennεtoffleitung geεchaltet εind.With regard to the start-up system for a once-through steam generator with a combustion chamber having a number of burners for a fossil fuel, the gas-tight peripheral wall of which has at least approximately vertically running evaporator tubes which can be flowed through according to the invention from below to above on the feed water side by means of an adjusting device for adjusting the water level in the evaporator and for adjusting the ratio of fuel flow to feed water flow. The setting or control variable is expediently the evaporator throughput, ie the amount of feed water supplied to the evaporator on the medium side per unit of time. The setting device is therefore expediently connected to an actuator and a flow sensor, which are connected to a feed water line leading into the evaporator. Furthermore, the adjusting device is connected to an actuator and a flow sensor, which are connected in a fuel line leading to the or each burner.
Ferner ist die EinStelleinrichtung verbunden mit einem Stell¬ glied, daε in eine mit dem Verdampfer eingangεseitig verbun¬ dene Ablaßleitung zur Entwäsεerung geschaltet ist. Außerdem iεt die Einεtelleinrichtung verbunden mit Mitteln zur Ermitt- lung deε Waεεerεtandes im Verdampfer. Sowohl zur Ermittlung alε auch zur Einstellung deε Waεεerεtandeε im Verdampfer εind zweckmäßigerweiεe mindeεtenε zwei entlang deε Verdampferε an¬ geordnete Drucksensoren vorgeεehen.Furthermore, the adjusting device is connected to an actuator which is connected to a drain line connected to the evaporator on the inlet side for dewatering. In addition, the setting device is connected to means for determining the water level in the evaporator. Both for determining and for setting the water level in the evaporator, at least two pressure sensors arranged along the evaporator are expediently provided.
In vorteilhafter Ausgeεtaltung ist außerdem eine Verbindungs¬ leitung zwischen Verdampferaustritt und Verdampfereintritt vorgeεehen, in die eine Armatur, z.B. eine Rückεchlagklappe, zur Vermeidung einer Rückströmung zum Verdampferaustritt hin, geschaltet ist. Über die Verbindungsleitung kann am Verdamp- feraustritt eventuell vorhandenes Wasεer dem Verdampferein¬ tritt zugeführt werden, wenn die vorhandenen Druckverhält- nisεe eε erlauben. Andernfallε kann dieseε Wasser über eine an die Verbindungsleitung angeεchloεεene Abεtrömleitung abge¬ führt werden.In an advantageous embodiment, a connecting line between the evaporator outlet and the evaporator inlet is also provided, into which a fitting, e.g. a non-return valve is connected to avoid backflow towards the evaporator outlet. Any water that may be present at the evaporator outlet can be fed to the evaporator inlet via the connecting line if the existing pressure ratios permit it. Otherwise, this water can be discharged via an outflow line connected to the connecting line.
Die mit der Erfindung erzielten Vorteile beεtehen inεbeεon- dere darin, daß allein durch Verεtellen deε Verhältniεεeε von Brennεtoffεtrom zu Speiεewasεerεtrom bereits während deε An- fahrenε die Friεchdampftemperatur auf den erforderlichen Wert eingestellt oder geregelt werden kann, da es keinen definier¬ ten Verdampfungsendpunkt mehr gibt. Bei. einem Anfahrsystem mit Abscheideeinrichtung würde sich aufgrund des dort festge- haltenen Verdampfungsendes die Frischdampftemperatur entspre¬ chend dem Verhältnis von Verdampfer- zu Überhitzerheizfläche beim Anfahren zwangsläufig einstellen, so daß eine Einrege- lung der Frischdampftemperatur auf den erforderlichen Wert während des Anfahrens nicht möglich ist .The advantages achieved by the invention are, in particular, that simply by adjusting the ratio of fuel flow to feed water flow, the steam temperature can be adjusted or regulated to the required value during start-up, since there is no longer a defined evaporation end point. At. a start-up system with a separator would be fixed due to the When the end of the evaporation is stopped, the fresh steam temperature inevitably adjusts to the ratio of the evaporator to superheater heating surface when starting, so that it is not possible to adjust the fresh steam temperature to the required value during starting.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur schematisch einen Durchlaufdampferzeuger mit vertikalem Gaszug und mit einer Einsteileinrichtung eines Anfahrεyεtemε .An embodiment of the invention is explained in more detail with reference to a drawing. Therein the figure shows schematically a once-through steam generator with a vertical throttle cable and with a one-piece device of a start-up system.
Der vertikale Gaszug deε Dampferzeugerε 1 gemäß Figur 1 mit rechteckigem Querεchnitt iεt durch eine Umfassungswand 2 ge¬ bildet, die am Unterende des Gaszugs in einen trichterförmi- gen Boden 3 übergeht. Verdampferrohre 4 der Umfasεungεwand 2 εind an ihren Längεseiten gasdicht miteinander verbunden, z.B. verschweißt. Der Boden 3 umfaßt eine nicht näher darge¬ stellte Austragsöffnung 3a für Asche. Der untere Bereich der Umfaεεungswand 2 bildet die mit einer Anzahl von Brennern 5 versehene Brennkammer 6 des Durchlaufdampferzeugers 1.The vertical throttle cable of the steam generator 1 according to FIG. 1 with a rectangular cross-section is formed by a surrounding wall 2 which merges into a funnel-shaped bottom 3 at the lower end of the gas cable. Evaporator tubes 4 of the surrounding wall 2 are gas-tightly connected to one another on their long sides, e.g. welded. The bottom 3 comprises a discharge opening 3a for ashes, not shown. The lower region of the peripheral wall 2 forms the combustion chamber 6 of the once-through steam generator 1 provided with a number of burners 5.
Die mediumεeitig, d.h. von Speiεewaεser oder einem Was- εer/Wasser-Dampf-Gemiεch, von unten nach oben parallel - oder bei Verdampferrohrgruppen hintereinander - durchεtrömten Ver- dampferrohre 4 der Umfaεsungεwand 2 sind mit ihren Eintritts¬ enden an einen Eintrittεεammler 8 und mit ihren Auεtrittεen- den an einen Auεtrittεεammler 10 angeεchloεεen. Der Ein¬ trittssammler- 8 und der Austrittεεammler 10 befinden εich außerhalb deε Gaεzugε und εind z.B. jeweilε durch ein ring- förmigeε Rohr gebildet.The medium side, i.e. Evaporator tubes 4 of the circumferential wall 2 through which feed water or a water / steam mixture flows in parallel from bottom to top - or one behind the other in the case of evaporator tube groups - have their inlet ends at an inlet collector 8 and their outlet ends at an outlet collector 10 is connected. The entry collector 8 and the exit collector 10 are located outside the passageway and are e.g. each formed by an annular tube.
Der Eintrittεsammler 8 ist über eine Leitung 12 und einen Sammler 14 mit dem Ausgang eines Hochdruck-Vorwärmers oder Economizers 15 verbunden. Die Heizfläche deε Economizers 15 iεt in einem oberhalb der Brennkammer 6 liegenden Raum derThe inlet collector 8 is connected via a line 12 and a collector 14 to the outlet of a high-pressure preheater or economizer 15. The heating surface of the economizer 15 is in a space above the combustion chamber 6
Umfaεεungεwand 2 angeordnet. Der Economizer 15 iεt eingangs- εeitig über einen Sammler 16 und eine Speiεewaεεerleitung 18 it einem mittelε Dampf D beheizten Wärmetauεcher 20 verbun¬ den, der an die Druckseite einer Speiεewasserpumpe 22 ange¬ schloεsen ist. Die Saugseite der Speiεewasserpumpe 22 iεt in nicht näher dargeεtellter Art und Weiεe über einen Kondensa- tor mit einer Dampfturbine verbunden und somit in deren Was¬ ser-Dampf-Kreislauf geschaltet.Umfaεεungεwand 2 arranged. The economizer 15 is on the input side via a collector 16 and a feed water line 18 connected with a medium steam D heated heat exchanger 20 which is connected to the pressure side of a feed water pump 22. The suction side of the feed water pump 22 is connected in a manner not shown in more detail via a condenser to a steam turbine and thus switched into its water / steam cycle.
Der Austrittsεammler 10 iεt über eine Verbindungεleitung 24 und eine Abzweigleitung 26 mit einem Eintrittssammler 27 ei- nes Hochdruck-Überhitzers 28 verbunden, der innerhalb der Um- fasεungεwand 2 zwiεchen dem Economizer 15 und der Brennkammer 6 angeordnet iεt. Der Hochdruck-Überhitzer 28 iεt während des Betriebs ausgangsseitig über einen Sammler 30 mit einem Hoch¬ druckteil der Dampfturbine verbunden. Zwischen dem Hochdruck- Überhitzer 28 und dem Economizer 15 iεt innerhalb der Umfaε- sungswand 2 ein Zwiεchenüberhitzer 32 vorgesehen, der über Sammler 34, 36 zwiεchen den Hochdruckteil und einen Mittel¬ druckteil der Dampfturbine geschaltet ist. Der Economizer 15, der Hochdruck-Überhitzer 28 und der Zwischenüberhitzer 32 liegen als Konvektionε- oder Schottheizflächen im sogenannten Konvektionszug des Durchlaufdampferzeugers 1.The outlet header 10 is connected via a connecting line 24 and a branch line 26 to an inlet header 27 of a high-pressure superheater 28, which is arranged between the economizer 15 and the combustion chamber 6 within the peripheral wall 2. The high-pressure superheater 28 is connected to a high-pressure part of the steam turbine on the output side via a collector 30 during operation. Between the high-pressure superheater 28 and the economizer 15, an intermediate superheater 32 is provided within the surrounding wall 2, which is connected via collectors 34, 36 between the high-pressure part and a medium-pressure part of the steam turbine. The economizer 15, the high-pressure superheater 28 and the reheater 32 lie as convection or bulkhead heating surfaces in the so-called convection train of the continuous steam generator 1.
Die vom Austrittsεammler 10 der Umfasεungεwand 2 des Konvek- tionεzugeε deε Dampferzeugerε 1 zum tiefer liegenden Ein- trittsεammler 27 deε Hochdruck-Überhitzers 28 geführte Ver¬ bindungsleitung 24 ist senkrecht bis in Höhe des Eintritts- εammlerε 8, d.h. deε Verdampfereintritts, weitergeführt. In die Verbindungεleitung 24 ist eine Ruckschlagklappe 40 ge¬ schaltet. Auf beiden Seiten der Rückschlagklappe 40 sind an die Verbindungεleitung 24 Entwäεεerungsleitungen 42, 44 ange- εchloεεen, in die Entwäεserungεventile 46 bzw. 48 geεchaltet εind.The connecting line 24, which leads from the outlet header 10 of the surrounding wall 2 of the convection duct of the steam generator 1 to the lower-level inlet header 27 of the high-pressure superheater 28, is vertical up to the level of the inlet header 8, i.e. deε evaporator entry, continued. A check valve 40 is connected in the connecting line 24. On both sides of the non-return flap 40, drainage lines 42, 44 are connected to the connecting line 24 and are connected to the drainage valves 46 and 48, respectively.
In die Speiεewasserleitung 18 εind in Strömungεrichtung des Speiεewasserε S hinter dem Wärmetauscher 20 ein erεteε Ventil 50 und ein erεter Durchflußmeßfühler 52 geεchaltet. Der Durchflußmeßfühler 52 dient zur Ermittlung der pro Zeitein- heit über die Speisewasεerleitung 18 geführten Menge an Spei¬ sewasser S und somit zur Ermittlung des Speisewasserstromε. Die pro Zeiteinheit über die Speisewasεerleitung 18 geführte Menge deε Speiεewaεεerε S entspricht der dem auε den Verdamp- ferrohren 4 bestehenden Verdampfer zugeführten Speisewasser¬ menge und somit dem Verdampferdurchsatz.A first valve 50 and a first flow sensor 52 are connected into the feed water line 18 in the flow direction of the feed water S behind the heat exchanger 20. The flow sensor 52 is used to determine the quantity of feed water S conducted via the feed water line 18 and thus to determine the feed water flow. The amount of feed water S fed per unit of time via feed water line 18 corresponds to the feed water quantity supplied to the evaporator consisting of evaporator tubes 4 and thus to the evaporator throughput.
Ein zweiter Durchflußmeßfühler 54 ist in eine Brennεtofflei¬ tung 56 geschaltet, die über Teilleitungen 58 in die Brenner 5 mündet. In die Brennεtoffleitung 56 iεt ein zweiteε Ventil 60 zur Einstellung der dem oder jedem Brenner 5 pro Zeitein¬ heit zugeführten Menge an Brennstoff B und somit zur Einstel¬ lung deε BrennεtoffStroms geschaltet. Als Brennstoff B kann Öl, Gas oder Kohle eingesetzt werden.A second flow sensor 54 is connected to a fuel line 56 which opens into the burners 5 via sub-lines 58. A second valve 60 is connected in the fuel line 56 to adjust the quantity of fuel B supplied to the or each burner 5 per unit of time and thus to set the fuel flow. Oil, gas or coal can be used as fuel B.
Die Durchflußmeßfühler 52 und 54 sind über Signalleitungen 62 bzw. 64 mit einem Reglerbaustein 66 als Einεtelleinrichtung verbunden. Eine weitere mit dem Reglerbauεtein 66 verbundene Signalleitung 68 iεt über Meßleitungen 70 und 72 mit Druck- senεoren 74 bzw. 76 verbunden, die zur Meεεung deε Druckε p^ am Verdampfereintritt bzw. deε Drucks Ό& am Verdampferaus¬ tritt vorgesehen εind. Der Reglerbauεtein 66 iεt außerdem über Steuerleitungen 78, 80 und 82 mit den Ventilen 50, 60 bzw. 48 verbunden. Der Reglerbauεtein 66 und die Durchfluß- meßfühler 52, 54 εowie die zur Einstellung der Menge deεThe flow sensors 52 and 54 are connected via signal lines 62 and 64 to a controller module 66 as an adjusting device. Another signal line 68 connected to the controller module 66 is connected via measuring lines 70 and 72 to pressure sensors 74 and 76, respectively, which are provided for measuring the pressure p at the evaporator inlet or the pressure Ό and at the evaporator outlet. The regulator module 66 is also connected to the valves 50, 60 and 48 via control lines 78, 80 and 82. The controller module 66 and the flow sensors 52, 54 and those for setting the amount of the
Speiεewaεεerε S und zur Einstellung der Menge des Brennstoffε B dienenden Ventile 50 bzw. 60 sind Bestandteile eines An- fahrsyεtemε 84 zum Anfahren deε Durchlaufdampferzeugers 1. Weitere Beεtandteile deε Anfahrεyεtems 84 εind die über die Signalleitung 68 mit dem Reglerbauεtein 66 verbundenen Druck- εenεoren 74, 76 εowie daε über die Steuerleitung 82 mit dem Reglerbauεtein 66 verbundene Ventil 48 zum Entwäsεern auε dem unteren Verdampfertei1.Feed water S and valves 50 and 60 serving to adjust the amount of fuel B are components of a start-up system 84 for starting the continuous steam generator 1. Further components of the start-up system 84 are the pressure sensors 74 connected to the controller module 66 via the signal line 68, 76 and valve 48 connected to control module 66 via control line 82 for dewatering from the lower evaporator part 1.
Daε Anfahrεyεtem 84 dient zum Einεtellen deε Verhältnisses von Brennstoffström zu Speisewaεεerεtrom mit dem Ziel, daß daε Speiεewasεer Ξ während deε Durchlauf durch die Verdamp- ferrohre 4 vollεtändig verdampft, εo daß am Verdampferaus- tritt, d.h. am Austrittεεammler 10, kein Waεser mehr vorhan¬ den ist. Dabei wird der Wasεerεtand H in den Verdampferrohren 4 vor dem Anfahren im Verdampfer auf eine definierte Höhe Hmin gefahren, die kurz oberhalb der Brenner 5 liegt. Dieε erfolgt z.B. durch Nachεpeiεen von Speisewasεer S mittelε der Speiεewaεεerpumpe 22 oder durch Entwäεsern aus dem unteren Verdampferteil über die Entwäεserungεleitung 44. Der Wasser- εtand H in den Verdampferrohren 4, d.h. daε Wasεerniveau, wird mittelε einer Differenzdruckmeεεung über dem Verdampfer eingeεtellt. Dazu wird dem Reglerbauεtein 66 über die Signal¬ leitung 68 der Differenzdruck alε Meßwert zugeführt, der εich auε der Differenz zwiεchen den mittelε der Druckεen- εoren 74 und 76 gemeεεenen Drücken p^ und p^ am Verdampfer- auεtritt bzw. am Verdampfereintritt ergibt.The start-up system 84 is used to set the ratio of fuel flow to feed water flow with the aim that the feed water Ξ during the passage through the evaporator Ferrohre 4 completely evaporated, so that at the evaporator outlet, ie at the outlet collector 10, there is no longer any water. Here, the Wasεerεtand H is moved into the evaporator tubes in the evaporator 4 before starting to a defined height H m i n that lies just above the burner. 5 This takes place, for example, by replenishing feed water S by means of feed water pump 22 or by dewatering from the lower evaporator part via the dewatering line 44. For this purpose, the differential pressure is sent to the controller module 66 via the signal line 68 supplied as a measured value, which results from the difference between the mean pressure p ^ and p ^ measured at the pressure sensors 74 and 76 at the evaporator outlet or at the evaporator inlet.
Der Wasserstand H in den Verdampferröhren 4 wird dabei zwi¬ schen den beiden Grenzwerten Hmax und Hmin gehalten, wobeiThe water level H in the evaporator tubes 4 is thereby zwi¬ rule the two limit values H max and maintained H m i n, where
Hmin = H SB + L ^-F und Hmax = HKHF " τmin ' VWS iεt • H min = H SB + L ^ -F and H max = H KHF min 'V WS iεt •
Dabei sind: Hgg die Höhe (Oberkante) des höchsten Brennerε, der mit derHere are: Hgg the height (upper edge) of the highest burner, which with the
Startfeuerleiεtung in Betrieb iεt; L die Flammenlänge L bei Vollast des Brennerε; Pg die relative Startfeuerleiεtung deε Brenners;Start fire control in operation; L the flame length L at full load of the burner; Pg the relative start fire line of the burner;
F ein Anpassungsfaktor, der empirisch zu ca. 0,5 bis 2 ermittelt wurde; HKHF die Höhe, in der die Konvektionε- oder Schottheizflä¬ chen mit enger Teilung (< 400 mm) beginnen; τmin die Zeit (3 biε 10 Minuten) zum Füllen des Speichers, d.h. der Verdampferrohre biε zum Wasserstand H, mit der Geschwindigkeit vW/s; v^s die Wassergeεchwindigkeit in den Verdampferröhren beim Start des Speiεewaεserεtromε zum Zeitpunkt deε Zündenε deε erεten Brenners. Zur Einεtellung deε Verhältnisses von Brennεtoffεtrom zu Speiεewaεεerεtrom wird dem Reglerbauεtein 66 über die Signal¬ leitung 62 der mittelε deε Durchflußmeßfühlerε 52 gemeεεene aktuelle Wert derMenge deε dem Verdampfer, d.h. den Verdamp- ferrohren 4, pro Zeiteinheit zugeführten Speiεewassers S übermittelt. Dieser dem Reglerbauεtein 66 von dem Durchflu߬ meßfühler 52 zugeführte Wert entεpricht dem aktuellen Speise¬ wasserstrom und damit dem Verdampferdurchsatz. Außerdem wird dem Reglerbaustein 66 über die Signalleitung 64 der mittels des Durchflußmeßfühlers 54 zum aktuellen Zeitpunkt gemeεsene Wert der Menge des den Brennern 5 zugeführten Brennεtoffε B übermittelt. Dabei wird daε Niveau, d.h. der Waεεerstand H, zum Zeitpunkt "Feuer EIN" und daε Verhältniε von Brennεtoff- εtrom zu Speiεewaεεerεtrom derart gewählt, daß am Auεtrittε- εammler 10 reiner Dampf vorhanden iεt, εo daß kein Waεεer in die Überhitzer-Heizfläche 28 strömt.F is an adaptation factor that has been empirically determined to be approximately 0.5 to 2; H KHF the height at which the convection or bulkhead heating surfaces begin with a narrow pitch (<400 mm); τ min the time (3 to 10 minutes) to fill the storage tank, ie the evaporator tubes to the water level H, at the speed v W / s; v ^ s the water speed in the evaporator tubes at the start of the feed water flow at the time of the ignition of the first burner. To set the ratio of fuel flow to feed water flow, the controller module 66 is sent via signal line 62 the current value, measured by means of the flow sensor 52, of the amount of the feed water S supplied to the evaporator, ie the evaporator tubes 4, per unit time. This value supplied to the controller module 66 by the flow sensor 52 corresponds to the current feed water flow and thus the evaporator throughput. In addition, the value of the amount of fuel B supplied to the burners 5 is transmitted to the controller module 66 via the signal line 64 by means of the flow sensor 54 at the current time. The level, ie the water level H, at the time “fire ON” and the ratio of fuel flow to feed water flow is selected such that pure steam is present at the outlet collector 10, so that no water flows into the superheater heating surface 28 .
Die Abzweigleitung 26 von der Verbindungsleitung 24 iεt in Eintrittshöhe der Überhitzer-Heizfläche 28 angeordnet. Da- durch wird im Austrittsεammler 10 eventuell vorhandenes Waε¬ εer an diesem Abzweig zur Überhitzer-Heizfläche 28 vorbei¬ strömen und εich im unteren Teil der εenkrechten Verbindungε¬ leitung 24 sammeln. Von dort auε kann dieεeε Waεεer entweder über daε Entwässerungsventil 46 abgeführt oder dem Eintritts- Sammler 8 des Verdampfers zugeführt werden. Alternativ kann dies eventuell vorhandene Wasεer auch der Leitung 12 zwiεchen dem Economizer 15 und dem Eintrittsεammler 8 deε Verdampfers zugeführt werden. Dabei wird durch die Rückεchlagklappe 40 eine Rückεtrömung zum Auεtrittεsammler 10 verhindert. The branch line 26 from the connecting line 24 is arranged at the inlet height of the superheater heating surface 28. As a result, any water present in the outlet collector 10 will flow past this branch to the superheater heating surface 28 and collect in the lower part of the perpendicular connecting line 24. From there, this water can either be discharged via the drain valve 46 or fed to the inlet manifold 8 of the evaporator. Alternatively, this water, which may be present, can also be fed to the line 12 between the economizer 15 and the inlet collector 8 of the evaporator. A backflow to the outlet manifold 10 is prevented by the check valve 40.

Claims

Patentanεprüche Claims
1. Verfahren zum Anfahren eineε Durchlaufdampferzeugerε mit einer eine Anzahl von Brennern (5) für einen foεεilen Brenn- εtoff (B) aufweiεenden Brennkammer (6), deren gaεdichte Um- faεεungswand (2) aus mindestenε annähernd vertikal verlaufend angeordneten Verdampferröhren (4) gebildet iεt, die εpeiεe- waεεerεeitig von unten nach oben durchεtrömt werden, d a d u r c h g e k e n n z e i c h n e t , daß der Waε- serεtand (H) in den Verdampferröhren (4) und daε Verhältniε von Brennεtoffεtrom zu Speiεewasserεtrom derart eingeεtellt werden, daß daε Speisewasεer (S) beim Durchlauf durch die Verdampferröhre (4) vollεtändig verdampft.1. Method for starting up a continuous-flow steam generator with a combustion chamber (6) having a number of burners (5) for a fossil fuel (B), the gas-tight peripheral wall (2) of which consists of at least approximately vertically arranged evaporator tubes (4) iεt, which are flowed through from the bottom to the top on the feed water side, characterized in that the water level (H) in the evaporator tubes (4) and the ratio of fuel flow to feed water flow are set in such a way that the feed water flow passes through (S) Evaporator tube (4) completely evaporated.
2. Verfahren nach Anεpruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der Waε¬ εerstand (H) in den Verdampferrohren (4) auf eine oberhalb der Brenner (5) vorgesehene Höhe (Hm-j_n, Hmax) eingeεtellt wird.2. The method according to Anεpruch 1, characterized in that the Waε¬ εerstand (H) in the evaporator tubes (4) to a height above the burner (5) provided (H m -j_ n , H max ) is set.
3. Verfahren nach Anεpruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß zur Ein¬ stellung deε Waεεerεtandeε (H) in den Verdampferröhren (4) die Druckdifferenz (Δp^ ß) entlang der Verdampferrohre (4) ermittelt wird.3. The method according to claim 1 or 2, characterized in that the pressure difference (Δp ^ ß ) along the evaporator tubes (4) is determined in the evaporator tubes (4) for the adjustment of the water temperature (H).
4. Anfahrεyεtem für einen Durchlaufdampferzeuger mit einer eine Anzahl von Brennern (5) für einen foεεilen Brennεtoff (B) aufweiεenden Brennkammer (6), deren gaεdichte Umfaεεungs- wand (2) mindeεtenε annähernd vertikal verlaufende Verdamp¬ ferrohre (4) aufweiεt, die εpeiεewaεεerεeitig von unten nach oben durchεtrömbar εind, g e k e n n z e i c h n e t d u r c h eine Einεtellein¬ richtung (66) zum Einεtellen deε Waεεerεtandeε (H) im Ver- dampfer (4) εowie zum Einεtellen deε Verhältniεεeε von Brenn- εtoffεtrom zu Speiεewaεserεtrom. 4. Start-up system for a once-through steam generator with a combustion chamber (6) having a number of burners (5) for a fossil fuel (B), the gas-tight peripheral wall (2) of which has at least approximately vertically running evaporator tubes (4) which face the side Can be flowed through from bottom to top, characterized by an adjusting device (66) for adjusting the water level (H) in the evaporator (4) as well as for adjusting the ratio of fuel flow to feed water flow.
5. Anfahrεyεtem nach Anεpruch 4, d a d u r c h g e k e n n z e i c h n e t , daß die Ein¬ εtelleinrichtung (66) verbunden iεt mit einem erεten Stell¬ glied (50) und einem erεten Durchflußmeßfühler (52), die in eine in den Verdampfer (4) führende Speiεewaεserleitung (18) geschaltet sind, mit einem zweiten Stellglied (60) und einem zweiten Durchflußmeßfühler (54), die in eine an den oder je¬ den Brenner (5) führende Brennstoffleitung (56) geschaltet εind, mit einem in eine mit dem Verdampfer (4) eingangεεeitig verbundene Ablaßleitung (44) geεchalteten dritten Stellglied (48) εowie mit Mitteln (70, 74, 76) zur Ermittlung deε Waε¬ εerεtandeε (H) im Verdampfer (4) .5. Start-up system according to claim 4, characterized in that the adjusting device (66) is connected to a first actuator (50) and a first flow sensor (52), which leads into a feed water line (18) leading into the evaporator (4). are connected, with a second actuator (60) and a second flow sensor (54), which are connected in a fuel line (56) leading to the or each burner (5), with one in one with the evaporator (4) on the input side connected drain line (44) connected third actuator (48) and means (70, 74, 76) for determining the water level (H) in the evaporator (4).
6. Anfahrεyεtem nach Anεpruch 5, d a d u r c h g e k e n n z e i c h n e t , daß alε Mit¬ tel zur Ermittlung des Waεεerstands (H) im Verdampfer (4) mindeεtenε zwei entlang deε Verdampfers (4) angeordnete Drucksenεoren (74, 76) vorgeεehen εind.6. Start-up system according to claim 5, that also means that at least two pressure sensors (74, 76) arranged along the evaporator (4) are provided as a means of determining the water level (H) in the evaporator (4).
7. Anfahrεyεtem nach einem der Anεprüche 4 biε 6, g e k e n n z e i c h n e t d u r c h eine Verbindungε¬ leitung (24) zwiεchen Verdampferauεtritt (10) und Verdampfer¬ eintritt (8) , in die eine Armatur (40) zur Vermeidung einer Rückεtrömung zum Verdampferauεtritt (10) hin geεchaltet ist, und an die eine Abεtrömleitung (42) angeεchloεsen iεt. 7. Start-up system according to one of claims 4 to 6, characterized by a connecting line (24) between the evaporator outlet (10) and the evaporator inlet (8), into which a fitting (40) is switched to avoid a backflow to the evaporator outlet (10) and to which an outflow line (42) is connected.
EP96924761A 1995-08-02 1996-07-19 Process and system for starting a flow steam generator Expired - Lifetime EP0842381B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19528438 1995-03-02
DE19528438A DE19528438C2 (en) 1995-08-02 1995-08-02 Method and system for starting a once-through steam generator
PCT/DE1996/001343 WO1997005425A1 (en) 1995-08-02 1996-07-19 Process and system for starting a flow steam generator

Publications (2)

Publication Number Publication Date
EP0842381A1 true EP0842381A1 (en) 1998-05-20
EP0842381B1 EP0842381B1 (en) 2000-01-12

Family

ID=7768544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96924761A Expired - Lifetime EP0842381B1 (en) 1995-08-02 1996-07-19 Process and system for starting a flow steam generator

Country Status (6)

Country Link
US (1) US5983639A (en)
EP (1) EP0842381B1 (en)
JP (1) JPH11510241A (en)
DE (2) DE19528438C2 (en)
IN (1) IN189235B (en)
WO (1) WO1997005425A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717158C2 (en) 1997-04-23 1999-11-11 Siemens Ag Continuous steam generator and method for starting up a continuous steam generator
DE10039317A1 (en) * 2000-08-11 2002-04-11 Alstom Power Boiler Gmbh Steam generating plant
EP1288567A1 (en) * 2001-08-31 2003-03-05 Siemens Aktiengesellschaft Steam generator and process for starting a steam generator with a heating gas channel through which a heating gas can flow in a substantially horizontal direction
EP1701091A1 (en) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Once-through steam generator
EP2065641A3 (en) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator and once-through steam generator
US8381690B2 (en) 2007-12-17 2013-02-26 International Paper Company Controlling cooling flow in a sootblower based on lance tube temperature
EP2119880A1 (en) 2008-02-15 2009-11-18 Siemens Aktiengesellschaft Method for starting a steam producer
EP2180251A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
EP2180250A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
EP2182278A1 (en) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Continuous-flow steam generator
DE102010038883C5 (en) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Forced once-through steam generator
DE102013215456A1 (en) 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Through steam generator
US9541282B2 (en) 2014-03-10 2017-01-10 International Paper Company Boiler system controlling fuel to a furnace based on temperature of a structure in a superheater section
US9927231B2 (en) * 2014-07-25 2018-03-27 Integrated Test & Measurement (ITM), LLC System and methods for detecting, monitoring, and removing deposits on boiler heat exchanger surfaces using vibrational analysis
PL3172520T3 (en) 2014-07-25 2019-07-31 International Paper Company System and method for determining a location of fouling on boiler heat transfer surface
EP3048366A1 (en) * 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Waste heat steam generator
US10345028B2 (en) * 2016-06-17 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Evaporators, methods for defrosting an evaporator, and cooling apparatuses using the evaporator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072182A (en) * 1977-01-05 1978-02-07 International Power Technology, Inc. Pressure staged heat exchanger
US4241585A (en) * 1978-04-14 1980-12-30 Foster Wheeler Energy Corporation Method of operating a vapor generating system having integral separators and a constant pressure furnace circuitry
DE3166099D1 (en) * 1980-12-23 1984-10-25 Sulzer Ag Forced-circulation steam boiler
JPH04371712A (en) * 1991-06-21 1992-12-24 Mitsubishi Heavy Ind Ltd Combustion control method for garbage incinerator
DE4342156C1 (en) * 1993-12-10 1995-04-20 Balcke Duerr Ag Arrangement for improving the efficiency of a power station (generating station) or the like
US5535687A (en) * 1994-08-25 1996-07-16 Raytheon Engineers & Constructors Circulating fluidized bed repowering to reduce Sox and Nox emissions from industrial and utility boilers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9705425A1 *

Also Published As

Publication number Publication date
WO1997005425A1 (en) 1997-02-13
EP0842381B1 (en) 2000-01-12
DE19528438A1 (en) 1997-02-06
DE19528438C2 (en) 1998-01-22
JPH11510241A (en) 1999-09-07
IN189235B (en) 2003-01-11
US5983639A (en) 1999-11-16
DE59604183D1 (en) 2000-02-17

Similar Documents

Publication Publication Date Title
EP0842381A1 (en) Process and system for starting a flow steam generator
EP1848925B1 (en) Horizontally positioned steam generator
EP0436536B1 (en) Process and plant for generating steam using waste heat
DE69311549T2 (en) COOLING BOILER WITH INDUCED CIRCULATION
EP0617778B1 (en) Fossil-fuelled continuous steam generator
EP0977964B1 (en) Continuous-flow steam generator and method for starting same
EP2603672A2 (en) Waste heat steam generator
EP0657010B2 (en) Steam generator
WO2006106079A2 (en) Steam generator
EP1848926A2 (en) Continuous steam generator
WO2009106563A2 (en) Method for regulating a boiler and control circuit for a boiler
DE1426701B2 (en) START-UP DEVICE FOR FORCED FLOW STEAM GENERATOR
EP0808440B1 (en) Method and device for starting a once-through steam generator
EP1262638A1 (en) Device for cooling of the cooling fluid of a gas turbine and gas and steam turbine plant with such a device
EP1166015B1 (en) Fossil-fuel fired continuous-flow steam generator
EP0937218A1 (en) Method applicable to a continuous steam generator, and the steam generator needed for applying same
EP2676072B1 (en) Method for operating a once-through steam generator
CH653758A5 (en) Once-through boiler.
EP0812407B1 (en) Process and system for starting a continuous steam generator
WO2012062708A2 (en) Fossil fueled steam generator
DE19702133A1 (en) Flow-type steam generator e.g for Benson-boiler
DE2006409B2 (en) FORCED-ROTATION STEAM GENERATOR SUITABLE FOR SLIP PRESSURE OPERATION
DE3544504A1 (en) Combustion chamber/pipe arrangement in forced-through steam generators
DE4236835A1 (en) Steam generator
DE4229629A1 (en) Steam generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990528

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604183

Country of ref document: DE

Date of ref document: 20000217

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011018

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120802

Year of fee payment: 17

Ref country code: IT

Payment date: 20120726

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150918

Year of fee payment: 20

Ref country code: GB

Payment date: 20150709

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59604183

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160718