EP0839199A1 - Papillomviren, mittel zu deren nachweis sowie zur therapie von durch sie verursachten erkrankungen - Google Patents

Papillomviren, mittel zu deren nachweis sowie zur therapie von durch sie verursachten erkrankungen

Info

Publication number
EP0839199A1
EP0839199A1 EP96928326A EP96928326A EP0839199A1 EP 0839199 A1 EP0839199 A1 EP 0839199A1 EP 96928326 A EP96928326 A EP 96928326A EP 96928326 A EP96928326 A EP 96928326A EP 0839199 A1 EP0839199 A1 EP 0839199A1
Authority
EP
European Patent Office
Prior art keywords
dna
virus
protein
papillomavirus
genome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP96928326A
Other languages
English (en)
French (fr)
Inventor
Vladimir Shamanin
Ethel-Michele De Villiers-Zur Hausen
Harald Zur Hausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Krebsforschungszentrum DKFZ
Original Assignee
Deutsches Krebsforschungszentrum DKFZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Krebsforschungszentrum DKFZ filed Critical Deutsches Krebsforschungszentrum DKFZ
Publication of EP0839199A1 publication Critical patent/EP0839199A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • Papillomaviruses means for their detection and for the therapy of diseases caused by them
  • the invention relates to a DNA coding for a peptide of a papillomavirus main capsid protein.
  • the invention further relates to a papilloma virus genome containing such a DNA.
  • the invention relates to proteins and virus-like particles encoded by the papillomavirus genome and to antibodies directed against them and their use in diagnosis, therapy and vaccination.
  • HP viruses Human papilloma viruses
  • benign e.g. Warts, genital condylomas, and malignancies, e.g. Carcinomas of the skin and uterus, epithelial neoplasms (see Kir Hausen, H., Cancer Research 49 (1989), pages 4677-4681).
  • HP viruses are also considered for the development of malignant tumors of the respiratory tract (cf. Ober Hausen, H., Cancer Research 36 (1976), page 530).
  • HP viruses are considered to be at least partly responsible for the development of squamous carcinomas of the lungs (cf. Syrjänen, K.J., Lung 158 (1980), pages 131-142).
  • Papilloma viruses have an icosahedral capsid without a shell, in which a circular, double-stranded DNA molecule of approximately 7900 bp is present.
  • the capsid comprises a major capsid protein (L1) and a minor capsid protein (L2). Both proteins, coexpressed or L1 expressed alone, lead to the formation of virus-like particles in vitro (cf. Kirnbauer, R. et al., Journal of Virology, (1993), pages 6929-6936).
  • Papilloma viruses cannot be propagated in monolayer cell culture. It is extremely difficult to characterize the detection of papilloma viruses creates considerable problems. This is particularly true for papilloma viruses in skin carcinomas. So far, no reliable proof of this and therefore no targeted action against it is possible.
  • the object of the present invention is therefore to provide an agent with which papilloma viruses, in particular in carcinomas of the skin, can be detected.
  • a means should also be provided to treat these papillomaviruses therapeutically.
  • the invention thus relates to a DNA coding for a peptide of a papillomavirus main capsid protein (L1), the peptide comprising the amino acid sequence of FIGS. 1, 2, 3, 4, 5, 6 , 7, 8, 9 or 10, or an amino acid sequence different from one or more amino acids.
  • L1 papillomavirus main capsid protein
  • Another object of the invention is a DNA coding for a peptide of a papillomavirus main capsid protein, the DNA being the base sequence of FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG 7, 8, 9 or 10 or one of these base sequences which are different by one or more base pairs.
  • FIG. 1 shows the base sequence and the amino acid sequence derived therefrom of a DNA coding for a peptide from L1 of a papilloma virus. This DNA was deposited as plasmid VS19-6 at DSM (German Collection of Microorganisms and Cell Cultures) under DSM 10104 on July 11, 1995.
  • Fig. 2 shows the base sequence and the amino acid sequence derived therefrom one for a peptide of L1 one DNA encoding papilloma virus. This DNA was deposited as plasmid VS200-1 with the DSM under DSM 10096 on July 11, 1995.
  • FIG. 3 shows the base sequence and the amino acid sequence derived therefrom of a DNA coding for a peptide from L1 of a papilloma virus. This DNA was deposited as plasmid VS201-1 with the DSM under DSM 10097 on July 11, 1995.
  • FIG. 4 shows the base sequence and the amino acid sequence derived therefrom of a DNA coding for a peptide from L1 of a papillomavirus. This DNA was deposited as plasmid VS202-8 with the DSM under DSM 10098 on July 11, 1995.
  • FIG. 5 shows the base sequence and the amino acid sequence derived therefrom of a DNA coding for a peptide from L1 of a papilloma virus. This DNA was deposited as plasmid VS203-2 with the DSM under DSM 10099 on July 11, 1995.
  • FIG. 6 shows the base sequence and the amino acid sequence derived therefrom of a DNA coding for a peptide from Ll of a papillomavirus. This DNA was deposited as plasmid VS204-4 with the DSM under DSM 10100 on July 11, 1995.
  • FIG. 7 shows the base sequence and the amino acid sequence derived therefrom of a DNA coding for a peptide from Ll of a papillomavirus. This DNA was deposited as plasmid VS205-1 with the DSM under DSM 10101 on July 11, 1995.
  • FIG. 8 shows the base sequence and the amino acid sequence derived therefrom of a DNA coding for a peptide from Ll of a papilloma virus. This DNA was deposited as plasmid VS206-2 with the DSM under DSM 10109 on July 13, 1995.
  • Fig. 9 shows the • base sequence and the deduced amino acid sequence of a gene coding for a peptide of a papillomavirus Ll DNA.
  • This DNA was called a plasmid VS207-22 deposited with the DSM under DSM 10102 on July 11, 1995.
  • FIG. 10 shows the base sequence and the amino acid sequence derived therefrom of a DNA coding for a peptide from Ll of a papilloma virus. This DNA was deposited as plasmid VS208-1 with the DSM under DSM 10103 on July 11, 1995.
  • the above DNA has the following sequence homology with known papilloma viruses:
  • the above DNA can be present in a vector or expression vector.
  • examples of such are known to the person skilled in the art.
  • these are e.g. pGEMEX, pUC derivatives, pGEM-T and pGEX-2T.
  • yeast e.g. to call pYlOO and Ycpadi
  • animal cells e.g. pKCR, pEF-BOS, cDM8 and pCEV4 must be specified.
  • suitable cells in order to express the above DNA present in an expression vector.
  • suitable cells include the E. coli strains HB101, DH1, xl776, JM101, JM 109 and XLl-Blue, the yeast strain Saccharomyces cerevisiae and the animal cells L, NH-3T3, FM3A, CHO, COS, Vero, and Hey.
  • the person skilled in the art knows how the above DNA has to be inserted into an expression vector. He is also aware that the above DNA can be inserted in connection with a DNA coding for another protein or peptide, so that the above DNA can be expressed in the form of a fusion protein.
  • papilloma virus genome comprising the above DNA.
  • the term "papilloma virus genome” also includes an incomplete genome, i.e. Fragments of a papilloma virus genome comprising the above DNA. This can e.g. be a DNA coding for Ll or a part thereof.
  • a method comprising the following method steps can be used to provide the above papillomavirus genome:
  • epithelial neoplasm encompasses any neoplasms of epithelial tissue in humans and animals. Examples of such Neoplasms are warts, condylomas in the genital area and carcinomas of the skin. The latter are preferably used in the present case to isolate the above papillomavirus genome.
  • vector includes any vector suitable for cloning chromosomal or extrachromosomal DNA.
  • examples of such vectors are cosmids such as pWE15 and Super Cosl, and phages such as ⁇ phages, e.g. ⁇ ZAP Expressvector, ⁇ ZAPII Vector and ⁇ gtlO Vector.
  • ⁇ phages are preferably used.
  • the above vectors are known and are available from Stratagene.
  • Papillomavirus genomes according to the invention can be integrated in chromosomal DNA or extrachromosomal. Methods are known to the person skilled in the art to clarify this. He also knows how to find the optimal restriction enzymes for cloning the papillomavirus genomes. It will be based on genomes of known papilloma viruses. In particular, the person skilled in the art will observe the aforementioned HP viruses accordingly.
  • a papilloma virus genome designated VS19-6 is described by way of example.
  • the total DNA is isolated from a biopsy of a squamous cell carcinoma, cleaved with BamHI and electrophoretically separated in an agarose gel.
  • the agarose gel is then subjected to a blotting process, whereby the DNA is transferred to a nitrocellulose membrane.
  • This is used in a hybridization process in which the DNA from FIG. 1, possibly in combination with a DNA from HP virus 65, is used as the labeled sample. Hybridization with the papilloma virus DNA present in the total DNA is obtained.
  • the above total DNA cleaved with BamHI is cloned in a ⁇ phage.
  • the corresponding clones ie the clones containing the papillomavirus DNA, are hybridized with the DNA from FIG. 1, if appropriate in combination with a DNA of the HP virus 65 identified.
  • the insert of these clones is then subjected to further cloning in a plasmid vector, whereby a clone is obtained which contains the papillomavirus genome VS19-6-G. The genome is confirmed by sequencing.
  • papillomavirus genomes are provided. They are named according to the DNAs used to provide them, with: VS200-1-G, VS201-1-G, VS202-8-G, VS203-2-G, VS204-4-G, VS205-1-G, VS206 -2- G, VS207-22-G or VS208-1-G.
  • Another object of the invention is a protein encoded by the above papillomavirus genome.
  • a protein is e.g. a major capsid protein (Ll) or a minor capsid protein (L2).
  • L1 or L2 of the papilloma virus genome VS19-6-G is described by way of example.
  • the HP virus 65 related to the DNA of FIG. 1 is used.
  • the complete sequence and the position of individual DNA regions coding for proteins are known from this.
  • These DNAs are identified on the papillomavirus genome VS19-6-G by parallel restriction cleavages of both genomes and subsequent hybridization with different fragments relating to the L1 or L2 coding DNA. They are confirmed by sequencing.
  • the DNA coding for L1 is designated VS19-6-G-L1-DNA and the DNA coding for L2 with VS19-6-G-L2-DNA.
  • the DNA coding for L1 or L2 is inserted into an expression vector.
  • E. coli examples of such for E. coli, yeast and animal cells are mentioned above.
  • vector pGEX-2T for expression in E. coli (cf. Kirnbauer, R. et al., Supra).
  • pGEX-2T-VS19-6-G-L1 or pGEX-2T-VS19-6-G-L2 is obtained.
  • These expression vectors express after transformation of E. coli a glutathione S-transferase-L1 or glutathione S-transferase-L2 fusion protein. These proteins are purified in the usual way.
  • the bacculovirus or vaccinia virus system is called for a further expression of the above-mentioned L1 or L2 coding DNA.
  • Expression vectors that can be used for this are, for example, pEV mod. and pSynwtVI " for the bacculovirus system (cf. Kirnbauer, R. et al., supra).
  • vectors with the vaccinia virus are" early "(p7.5k) - or” late "(Psynth, pllK) promoter (cf. Hagensee, M., E. et al., Journal of Virology (1993), pages 315-322).
  • the bacculovirus system is preferred.
  • a particle comprises an Ll protein
  • an L2 protein in addition to an Ll protein.
  • a virus-like particle of the latter case is also obtained by inserting the above VS19-6-G-L1 and VS19-6-G-L2 DNAs together into the expression vector pSynwtVI " and the resulting pSynwtVI " VS19-6-G -Ll / L2 is used to infect SF-9 insect cells.
  • the above virus-like particles are cleaned in the usual way. They also represent an object of the invention.
  • Another object of the invention is an antibody directed against an above protein or virus-like particle.
  • Such is produced in the usual way. It is described by way of example for the production of an antibody which is directed against an L1 of VS19-6-G comprising the virus-like particle.
  • the Virus-like particles BALB / c mice injected subcutaneously. This injection is repeated every 3 weeks. About 2 weeks after the last injection, the serum containing the antibody is isolated and tested in the usual way.
  • the antibody is a monoclonal antibody.
  • spleen cells are removed from the mice after the fourth injection above and these are fused with myeloma cells in the usual way. The further cloning is also carried out according to known methods.
  • the present invention makes it possible to detect papilloma viruses, in particular in carcinomas of the skin.
  • the DNA according to the invention can be used as such or encompassed by a further DNA.
  • the latter can also be a papilloma virus gome or part of it.
  • the present invention also enables the provision of previously unknown papilloma viruses. These are found particularly in carcinomas of the skin. Furthermore, the invention provides proteins and virus-like particles which are due to these papillomaviruses. Antibodies are also provided which are directed against these proteins or particles.
  • the present invention thus makes it possible to take diagnostic and therapeutic measures for papillomavirus diseases. In addition, it provides the opportunity to build a vaccine against papillomavirus infections.
  • the present invention thus represents a breakthrough in the field of papilloma virus research.
  • Example 1 Identification of the papilloma virus genome VS19-6-G
  • the total DNA is isolated from an immunosuppressed person. 10 ⁇ g of this DNA are cleaved with the restriction enzyme BamHI and electrophoresed in a 0.5% agarose gel. At the same time, 10 ⁇ g of the above DNA, which has not been cleaved, are also separated.
  • the agarose gel is subjected to a blotting process, whereby the DNA from the agarose gel is transferred to a nitrocellulose membrane. This is used in a hybridization process in which the above DNA from FIG. 1 is used in combination with HP virus 65 DNA as a p 32 -labeled sample. Hybridization with the blotted DNA is obtained.
  • the biopsy DNA obtained from Example 1 is cleaved with the restriction enzyme BamHI.
  • the fragments obtained are used in a ligase reaction in which the ⁇ ZAP Express vector, which has been cleaved and dephosphorylated with BamHI, is also present.
  • the recombinant DNA molecules obtained in this way are packaged in bacteriophages and used to infect bacteria.
  • the ZAP Express Vector Kit offered by Stratagene is used for these process steps.
  • the phage plaques obtained are then subjected to a hybridization process in which the p 32 -labeled DNA from FIG. 1 used in Example 1 is used in combination with p 32 -labeled HP virus 65 DNA. Hybridization with corresponding phage plaques is obtained.
  • the BamHI fragments of VS19-6-G are isolated from these and together with a BamHI -cleaved, phosphorylated plasmid vector, pBluescript, used in a further ligase reaction.
  • the recombinant DNA molecules obtained are used to transform bacteria, E. coli XII-Blue.
  • a bacterial clone containing the papillomavirus genome VS19-6-G is identified by restriction cleavage or hybridization with the above DNA samples.
  • the plasmid of this bacterial clone is designated pBlue-VS19-6-G.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Die Erfindung betrifft eine für ein Peptid eines Papillomvirus-Hauptcapsid-Proteins codierende DNA. Ferner betrifft die Erfindung ein eine solche DNA enthaltendes Papillomvirus-Genom. Des weiteren betrifft die Erfindung durch das Papillomvirus-Genom codierte Proteine und Virus-ähnliche Partikel sowie gegen sie gerichtete Antikörper und deren Verwendung in Diagnose, Therapie und Vakzinierung.

Description

Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
Die Erfindung betrifft eine für ein Peptid eines Papillomvirus- Hauptcapsid-Proteins codierende DNA. Ferner betrifft die Erfindung ein eine solche DNA enthaltendes Papillomvirus-Genom. Desweiteren betrifft die Erfindung durch das Papillomvirus-Genom codierte Proteine und Virus-ähnliche Partikel sowie gegen sie gerichtete Antikörper und deren Verwendung in Diagnose, Therapie und Vakzinierung.
Es ist bekannt, daß Papillomviren das Epithelgewebe von Mensch und Tier infizieren. Human-Papillomviren (nachstehend mit HP- Viren bezeichnet) finden sich in benignen, z.B. Warzen, Kondylome im Genitalbereich, und malignen, z.B. Karzinome der Haut und der Gebärmutter, epithelialen Neoplasmen (vgl. zur Hausen, H. , Cancer Research 49 (1989) , Seiten 4677-4681) . Auch werden HP-Viren für die Entwicklung maligner Tumoren des Respirationstrakts in Betracht gezogen (vgl. zur Hausen, H. , Cancer Research 36 (1976) , Seite 530) . Desweiteren werden HP- Viren für die Entwicklung squamöser Karzinome der Lunge als zumindest mitverantwortlich angesehen (vgl. Syrjänen, K.J., Lung 158 (1980) , Seiten 131-142) .
Papillomviren weisen ein ikosaedrisches Capsid ohne Hülle auf, in dem ein zirkuläres, doppelsträngiges DNA-Molekül von etwa 7900 bp vorliegt. Das Capsid umfaßt ein Hauptcapsid-Protein (Ll) und ein Nebencapsid-Protein (L2) . Beide Proteine, coexprimiert oder Ll alleine exprimiert, führen in vitro zur Ausbildung von Virus-ähnlichen Partikeln (vgl. Kirnbauer, R. et al . , Journal of Virology, (1993), Seiten 6929-6936) .
Papillomviren lassen sich nicht in Monolayer-Zellkultur vermehren. Ihre Charakterisierung ist daher äußerst schwierig, wobei bereits der Nachweis von Papillomviren erhebliche Probleme schafft. Dies trifft insbesondere für Papillomviren in Karzinomen der Haut zu. Hier ist bisher kein verläßlicher Nachweis dieser und damit kein gezieltes Vorgehen gegen sie möglich.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Mittel bereitzustellen, mit dem Papillomviren, insbesondere in Karzinomen der Haut, nachgewiesen werden können. Ferner sollte ein Mittel bereitgestellt werden, um gegen diese Papillomviren therapeutisch vorgehen zu können.
Erfindungsgemäß wird dies durch die Bereitstellung der Gegenstände in den Patentansprüchen erreicht.
Gegenstand der Erfindung ist somit eine für ein Peptid eines Papillomvirus-Hauptcapsid-Proteins (Ll) codierende DNA, wobei das Peptid die Aminosäuresequenz von Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9 oder Fig. 10 oder eine davon durch ein oder mehrere Aminosäuren unterschiedliche Aminosauresequenz umfaßt.
Ein weiterer Gegenstand der Erfindung ist eine für ein Peptid eines Papillomvirus-Hauptcapsid-Proteins codierende DNA, wobei die DNA die Basensequenz von Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9 oder Fig. 10 oder eine davon durch ein oder mehrere Basenpaare unterschiedliche Basen¬ sequenz umfaßt.
Fig. 1 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS19- 6 bei der DSM (Deutsche Sammlung von Mikroorganismen und Zellkulturen) unter DSM 10104 am 11. Juli 1995 hinterlegt.
Fig. 2 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS200-1 bei der DSM unter DSM 10096 am 11. Juli 1995 hinterlegt.
Fig. 3 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS201-1 bei der DSM unter DSM 10097 am 11. Juli 1995 hinterlegt .
Fig. 4 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS202-8 bei der DSM unter DSM 10098 am 11. Juli 1995 hinterlegt.
Fig. 5 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS203-2 bei der DSM unter DSM 10099 am 11. Juli 1995 hinterlegt.
Fig. 6 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS204-4 bei der DSM unter DSM 10100 am 11. Juli 1995 hinterlegt.
Fig. 7 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS205-1 bei der DSM unter DSM 10101 am 11. Juli 1995 hinterlegt.
Fig. 8 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS206-2 bei der DSM unter DSM 10109 am 13. Juli 1995 hinterlegt.
Fig. 9 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS207-22 bei der DSM unter DSM 10102 am 11. Juli 1995 hinterlegt.
Fig. 10 zeigt die Basensequenz und die davon abgeleitete Aminosäuresequenz einer für ein Peptid von Ll eines Papillomvirus codierenden DNA. Diese DNA wurde als Plasmid VS208-1 bei der DSM unter DSM 10103 am 11. Juli 1995 hinterlegt.
Vorstehende DNA weist zu bekannten Papillomviren folgende Sequenzhomologie auf :
DNA von Fig. 1 69 1 % zu HP-Virus 65
DNA von Fig. 2 80 7 % zu HP-Virus 24
DNA von Fig. 3 69 4 g, "o zu HP-Virus 48
DNA von Fig. 4 66 3 % zu HP-Virus 48
DNA von Fig. 5 66 9 % zu HP-Virus 65
DNA von Fig. 6 66 4 % zu HP-Virus 65
DNA von Fig. 7 69 1 % zu HP-Virus 4
DNA von Fig. 8 68 7 % zu HP-Virus 48
DNA von Fig. 9 76 6 % zu HP-Virus 48
DNA von Fig. IC ): 81 .8 q, *o zu HP-Virus 68
Erfindungsgemäß kann vorstehende DNA in einem Vektor bzw. Expressionsvektor vorliegen. Beispiele solcher sind dem Fachmann bekannt. Im Falle eines Expressionsvektors für E. coli sind dies z.B. pGEMEX, pUC-Derivate, pGEM-T und pGEX-2T. Für die Expression in Hefe sind z.B. pYlOO und Ycpadi zu nennen, während für die Expression in tierischen Zellen z.B. pKCR, pEF-BOS, cDM8 und pCEV4, anzugeben sind.
Der Fachmann kennt geeignete Zellen, um vorstehende, in einem Expressionsvektor vorliegende DNA zu exprimieren. Beispiele solcher Zellen umfassen die E.coli-Stämme HB101, DH1, xl776, JM101, JM 109 und XLl-Blue, den Hefe-Stamm Saccharomyces cerevisiae und die tierischen Zellen L, NH-3T3, FM3A, CHO, COS, Vero, und Heia. Der Fachmann weiß, in welcher Weise vorstehende DNA in einen Expressionsvektor inseriert werden muß. Ihm ist auch bekannt, daß vorstehende DNA in Verbindung mit einer für ein anderes Protein bzw. Peptid codierenden DNA inseriert werden kann, so daß vorstehende DNA in Form eines Fusionsproteins exprimiert werden kann.
Ein weiterer Gegenstand der Erfindung ist ein Papillomvirus- Genom, das vorstehende DNA umfaßt. Der Ausdruck "Papillomvirus- Genom" umfaßt auch ein unvollständiges Genom, d.h. Fragmente eines Papillomvirus-Genoms, die vorstehende DNA umfassen. Dies kann z.B. eine für Ll codierende DNA oder ein Teil davon sein.
Zur Bereitstellung vorstehenden Papillomvirus-Genoms kann ein Verfahren verwendet werden, das folgende Verfahrensschritte umfaßt:
(a) Isolierung der Gesamt-DNA aus einer Biopsie epithelialen Neoplasmas,
(b) Hybridisierung der Gesamt-DNA von (a) mit vorstehender DNA, wodurch ein in der Gesamt-DNA von (a) enthaltenes Papillomvirus-Genom nachgewiesen wird, und
(c) Klonierung der das Papillomvirus-Genom enthaltenden Gesamt- DNA von (a) in einem Vektor, und gegebenenfalls Subklonierung des erhaltenen Klons, wobei sämtliche Verfahrensschritte üblicher DNA-Rekombinationstechnik entstammen.
Hinsichtlich der Isolierung, Hybridisierung und Klonierung von Zeil-DNA wird ergänzend auf Sambrook et al . , Molecular Cloning, A Laboratory Manual, zweite Ausgabe, Cold Spring Harbor Laboratory (1989) verwiesen.
Der Ausdruck "epitheliales Neoplasma" umfaßt jegliche Neoplasmen des Epithelgewebes bei Mensch und Tier. Beispiele solcher Neoplasmen sind Warzen, Kondylome im Genitalbereich und Karzinome der Haut. Letztere werden vorliegend bevorzugt verwendet, um vorstehendes Papillomvirus-Genom zu isolieren.
Der Ausdruck "Vektor" umfaßt jegliche zur Klonierung von chromosomaler bzw. extrachromosomaler DNA geeignete Vektoren. Beispiele solcher Vektoren sind Cosmide, wie pWE15 und Super Cosl, und Phagen, wie λ-Phagen, z.B. λZAP Expressvector, λZAPII Vector und λgtlO Vektor. Vorliegend werden λ-Phagen bevorzugt verwendet. Vorstehende Vektoren sind bekannt und bei der Firma Stratagene erhältlich.
Erfindungsgemäße Papillomvirus-Genome können integriert in chromosomaler DNA oder extrachromosomal vorliegen. Dem Fachmann sind Verfahren bekannt, dies abzuklären. Auch weiß er um Verfahren, die zur Klonierung der Papillomvirus-Genome optimalen Restriktionsenzyme herauszufinden. Er wird sich an Genomen bekannter Papillomviren orientieren. Insbesondere wird der Fachmann die vorstehend genannten HP-Viren entsprechend beachten.
Beispielhaft wird die Bereitstellung eines mit VS19-6 bezeichneten Papillomvirus-Genoms beschrieben. Hierzu wird die Gesamt-DNA aus einer Biopsie eines plattenepithelialen Karzinoms isoliert, mit BamHI gespalten und in einem Agarosegel elektrophoretisch aufgetrennt. Das Agarosegel wird danach einem Blotting-Verfahren unterzogen, wodurch die DNA auf eine Nitrozellulosemembran übertragen wird. Diese wird in ein Hybridisierungsverfahren eingesetzt, in dem die DNA von Fig. 1, ggfs. in Kombination mit einer DNA von HP-Virus 65 als markierte Probe verwendet wird. Es wird eine Hybridisierung mit der in der Gesamt-DNA vorliegenden Papillomvirus-DNA erhalten.
Im weiteren wird vorstehende mit BamHI gespaltene Gesamt-DNA in einem λ-Phagen kloniert. Die entsprechenden Klone, d.h. die die Papillomvirus -DNA enthaltenden Klone, werden durch Hybridisierung mit der DNA von Fig. 1, ggfs. in Kombination mit einer DNA des HP-Virus 65 identifiziert. Das Insert dieser Klone wird dann einer weiteren Klonierung in einem Plasmid-Vektor unterzogen, wodurch ein Klon erhalten wird, der das Papillomvirus-Genom VS19-6-G enthält. Das Genom wird durch Sequenzierung bestätigt.
In analoger Weise werden weitere Papillomvirus-Genome bereitgestellt. Sie werden entsprechend der zu ihrer Bereitstellung verwendeten DNAs bezeichnet, mit: VS200-1-G, VS201-1-G, VS202-8-G, VS203-2-G, VS204-4-G, VS205-1-G, VS206-2- G, VS207-22-G bzw. VS208-1-G.
Ein weiterer Gegenstand der Erfindung ist ein Protein, das durch vorstehendes Papillomvirus-Genom codiert wird. Ein solches Protein ist z.B. ein Hauptcapsid-Protein (Ll) oder ein Nebencapsidprotein (L2) . Die Herstellung eines vorstehenden Pro¬ teins erfolgt in üblicher Weise. Beispielhaft wird die Her¬ stellung von Ll bzw. L2 des Papillomvirus-Genoms VS19-6-G beschrieben. Hierzu wird das zu der DNA von Fig. 1 verwandte HP-Virus 65 herangezogen. Von diesem ist die vollständige Sequenz und die Lage einzelner für Proteine codierender DNA- Bereiche bekannt. Durch parallele Restriktionsspaltungen beider Genome und anschließender Hybridisierung mit verschiedenen, die Ll bzw. L2 codierende DNA betreffenden Fragmenten werden diese DNAs auf dem Papillomvirus-Genom VS19-6-G identifiziert. Sie werden durch Sequenzierung bestätigt. Die für Ll codierende DNA wird mit VS19-6-G-L1-DNA und die für L2 codierende DNA mit VS19- 6-G-L2-DNA bezeichnet.
Im weiteren wird die für Ll bzw. L2 codierende DNA in einen Expressionsvektor inseriert. Beispiele eines solchen für E. coli, Hefe und tierische Zellen sind vorstehend genannt. Ergänzend hierzu wird für die Expression in E. coli auf den Vektor pGEX-2T verwiesen (vgl. Kirnbauer, R. et al . , supra) . Nach Insertion der VS19-6-G-L1- bzw. VS19-6-G-L2-DNA wird pGEX- 2T-VS19-6-G-L1 bzw. pGEX-2T-VS19-6-G-L2 erhalten. Diese Expressionsvektoren exprimieren nach Transformation von E. coli ein Glutathion S-Transferase-Ll- bzw. Glutathion S-Transferase- L2-Fusionsprotein. Die Reinigung dieser Proteine erfolgt in üblicher Weise.
Für eine weitere Expression vorstehender Ll bzw. L2 codierender DNA wird das Bacculovirus- bzw. Vacciniavirus-System genannt. Hierfür verwendbare Expressionsvektoren sind z.B. pEV mod. und pSynwtVI" für das Bacculovirus-System (vgl. Kirnbauer, R. et al. , supra) . Für das Vacciniavirus-System sind insbesondere Vektoren mit dem Vacciniavirus "early" (p7.5k)- bzw. "late" (Psynth, pllK) -Promotor zu nennen (vgl. Hagensee, M. , E. et al . , Journal of Virology (1993) , Seiten 315-322) . Vorliegend wird das Bacculovirus-System bevorzugt. Nach Insertion vorstehender Ll bzw. L2 codierender DNA in pEV mod. wird pEVmod. -VS19-6-G-L1 bzw. pEVmod. -VS19-6-G-L2 erhalten.
Der erstere Express ionsvektor alleine bzw. beide Expressionsvektoren zusammen führen nach Infektion von SF-9 Insektenzellen zur Ausbildung von Virus-ähnlichen Partikeln. Im ersteren Fall umfaßt ein solches Partikel ein Ll-Protein, während es im letzteren Fall neben einem Ll- auch ein L2-Protein enthält.
Ein Virus-ähnliches Partikel letzteren Falls wird auch erhalten, indem die vorstehenden VS19-6-G-L1- und VS19-6-G-L2-DNAs gemeinsam in den Expressionsvektor pSynwtVI" inseriert werden und das erhaltene pSynwtVI"VS19-6-G-Ll/L2 zur Infektion von SF-9 Insektenzellen verwendet wird. Die Reinigung vorstehender Virus- ähnlicher Partikel erfolgt in üblicher Weise. Sie stellen auch einen Gegenstand der Erfindung dar.
Ein weiterer Gegenstand der Erfindung ist ein gegen ein vorstehendes Protein bzw. Virus-ähnliches Partikel gerichteter Antikörper. Die Herstellung eines solchen erfolgt in üblicher Weise. Beispielhaft wird es für die Herstellung eines Antikörpers beschrieben, der gegen ein Ll von VS19-6-G umfassen¬ des Virus-ähnliches Partikel gerichtet ist. Hierzu wird das Virus-ähnliche Partikel BALB/c-Mäusen subcutan injiziert. Diese Injektion wird im Abstand von jeweils 3 Wochen wiederholt. Etwa 2 Wochen nach der letzten Injektion wird das den Antikörper enthaltende Serum isoliert und in üblicher Weise getestet.
In bevorzugter Ausführungsform ist der Antikörper ein monoklonaler Antikörper. Zu seiner Herstellung werden nach vorstehender vierten Injektion den Mäusen Milzzellen entnommen und diese in üblicher Weise mit Myelomzellen fusioniert . Die weitere Klonierung erfolgt ebenso nach bekannten Verfahren.
Mit der vorliegenden Erfindung wird es ermöglicht, Papil¬ lomviren, insbesondere in Karzinomen der Haut, nachzuweisen. Hierzu kann die erfindungsgemäße DNA als solche oder von einer weiteren DNA umfaßt eingesetzt werden. Letztere kann auch ein Papillomvirus-Gom oder ein Teil davon sein.
Die vorliegende Erfindung ermöglicht ferner die Bereitstellung von bisher nicht gekannten Papillomviren. Diese finden sich insbesondere in Karzinomen der Haut. Desweiteren liefert die Erfindung Proteine und Virus-ähnliche Partikel, die auf diese Papillomviren zurückgehen. Darüberhinaus werden Antikörper bereitgestellt, die gegen diese Proteine bzw. Partikel gerichtet sind.
Die vorliegende Erfindung ermöglicht es also, diagnostische und therapeutische Maßnahmen bei Papillomvirus-Erkrankungen zu ergreifen. Darüberhinaus liefert sie die Möglichkeit, eine Vakzine gegen Papillomvirus-Infektionen aufzubauen. Die vorliegende Erfindung stellt somit einen Durchbruch auf dem Gebiet der Papillomvirus-Forschung dar.
Die Erfindung wird durch die Beispiele erläutert.
Beispiel 1: Identifizierung des Papillomvirus-Genoms VS19-6-G
Aus der Biopsie eines plattenepithelialen Karzinoms einer immunsupprimierten Person wird die Gesamt-DNA isoliert . lOμg dieser DNA werden mit dem Restriktionsenzym BamHI gespalten und in einem 0,5 % Agarosegel elektrophoretisch aufgetrennt. Gleichzeitig werden auch lOμg vorstehender DNA aufgetrennt, die nicht gespalten worden ist. Das Agarosegel wird einem Blotting-Verfahren unterzogen, wodurch die DNA aus dem Agarosegel auf eine Nitrozellulosemembran übertragen wird. Diese wird in ein Hybridisierungsverfahren eingesetzt, in dem die vorstehende DNA von Fig. 1 in Kombination mit HP-Virus-65 DNA als p32-markierte Probe verwendet wird. Es wird eine Hybridisierung mit der geblotteten DNA erhalten.
Vorstehende Verfahren sind dem Fachmann auf dem Gebiet der DNA-Rekombinationstechnik bekannt. Ergänzend wird auf Sambrook et al. , supra verwiesen.
Beispiel 2: Klonierung des Papillomvirus-Genoms VS19-6-G
Die aus Beispiel 1 erhaltene Biopsie-DNA wird mit dem Restriktionsenzym BamHI gespalten. Die erhaltenen Fragmente werden in eine Ligasereaktion eingesetzt, in der ebenfalls der mit BamHI gespaltene und dephosphorylierte Vektor λZAP Express vorliegt . Die hierbei erhaltenen rekombinanten DNA-Moleküle werden in Bakteriophagen verpackt und diese zur Infektion von Bakterien verwendet. Für diese Verfahrensschritte wird der von der Firma Stratagene angebotene ZAP Express Vektor Kit verwendet. Die erhaltenen Phagenplaques werden dann einem Hybridisierungsverfahren unterzogen, in dem die in Beispiel 1 verwendete p32-markierte DNA von Fig. 1 in Kombination mit p32-markierter HP-Virus- 65-DNA verwendet wird. Es wird eine Hybridisierung mit entsprechenden Phagenplaques erhalten. Aus diesen werden die BamHI-Fragmente von VS19-6-G isoliert und zusammen mit einem BamHI -gespaltenen , de- phosphorylierten Plasmid-Vektor, pBluescript, in eine weitere Ligasereaktion eingesetzt. Die erhaltenen rekombinanten DNA-Moleküle werden zur Transformation von Bakterien, E. coli XII-Blue, verwendet. Durch Restriktionsspaltungen bzw. Hybridisierung mit vorstehenden DNA-Proben wird ein das Papillomvirus- Genom VS19-6-G enthaltender Bakterienklon identifi¬ ziert. Das Plasmid dieses Bakterienklons wird mit pBlue-VS19-6-G bezeichnet.

Claims

Patentansprüche
1. DNA, codierend für ein Peptid eines Papillomvirus- Haup t c ap s i d - Pro t e i n s , wobei das Peptid die Aminosäuresequenz von Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6. Fig. 7, Fig. 8, Fig. 9 oder Fig. 10 oder eine davon durch ein oder mehrere Aminosäuren unterschiedliche Aminosäuresequenz umfaßt .
2. DNA nach Anspruch 1, dadurch gekennzeichnet, daß die für das Peptid des Papillomvirus-Hauptcapsid-Proteins codierende DNA die Basensequenz von Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6. Fig. 7, Fig. 8, Fig. 9 oder Fig. 10 oder eine davon durch ein oder mehrere Basenpaare unter¬ schiedliche Basensequenz umfaßt.
3. Papillomvirus-Genom mit der DNA nach Anspruch 1 oder 2.
4. Verfahren zur Bereitstellung des Papillomvirus-Genoms nach Anspruch 3, umfassend die folgenden Verfahrensschritte:
(a) Isolierung der Gesamt-DNA aus einer Biopsie epithelialen Neoplasmas,
(b) Hybridierung der Gesamt-DNA von (a) mit einer DNA nach Anspruch 1 oder 2, wodurch ein in der Gesamt-DNA von
(a) enthaltenes Papillomvirus-Genom nachgewiesen wird, und
(c) Klonierung der das Papillomvirus-Genom enthaltenden Gesamt-DNA von (a) in einem Vektor, und gegebenenfalls Subklonierung des erhaltenen Klons, wobei sämtliche Verfahrensschritte üblicher DNA-Rekombinationtechnik entstammen.
5. Protein, codiert durch das Papillomvirus-Genom nach Anspruch 3.
6. Protein nach Anspruch 5, dadurch gekennzeichnet, daß es ein Papillomvirus-Hauptcapsid-Protein ist.
7. Protein nach Anspruch 5, dadurch gekennzeichnet, daß es ein Papillomvirus-Nebencapsid-Protein ist.
8. Expressionsvektor, umfassend eine für das Protein nach einem der Ansprüche 5-7 codierende DNA.
9. Transformante, enthaltend den Expressionsvektor nach Anspruch 8.
10. Verfahren zur Herstellung des Proteins nach einem der Ansprüche 5-7, umfassend die Kultivierung der Transformante nach Anspruch 9 unter geeigneten Bedingungen.
11. Virus-ähnliches Partikel, umfassend das Papillomvirus- Hauptcapsid-Protein nach Anspruch 6.
12. Virus-ähnliches Partikel nach Anspruch 11, umfassend zusätzlich das Nebencapsid-Protein nach Anspruch 7.
13. Antikörper, gerichtet gegen das Protein nach einem der Ansprüche 5-7.
14. Antikörper, gerichtet gegen das Virus-ähnliche Partikel nach Anspruch 11 oder 12.
15. Verwendung der DNA nach Anspruch 1 oder 2 als Reagens zur Diagnose.
16. Verwendung des Proteins nach einem der Ansprüche 5-7 als Reagens zur Diagnose, Therapie und/oder Vakzinierung.
17. Verwendung des Virus-ähnlichen Partikels nach Anspruch 11 oder 12 als Reagens zur Diagnose, Therapie und/oder Vakzinierung.
18. Verwendung des Antikörpers nach Anspruch 13 oder 14 als Reagens zur Diagnose und/oder Therapie.
EP96928326A 1995-07-19 1996-07-19 Papillomviren, mittel zu deren nachweis sowie zur therapie von durch sie verursachten erkrankungen Ceased EP0839199A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19526386 1995-07-19
DE19526386A DE19526386C1 (de) 1995-07-19 1995-07-19 Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
PCT/DE1996/001369 WO1997004099A2 (de) 1995-07-19 1996-07-19 Papillomviren, mittel zu deren nachweis sowie zur therapie von durch sie verursachten erkrankungen

Publications (1)

Publication Number Publication Date
EP0839199A1 true EP0839199A1 (de) 1998-05-06

Family

ID=7767261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96928326A Ceased EP0839199A1 (de) 1995-07-19 1996-07-19 Papillomviren, mittel zu deren nachweis sowie zur therapie von durch sie verursachten erkrankungen

Country Status (5)

Country Link
US (4) US6322795B1 (de)
EP (1) EP0839199A1 (de)
JP (1) JPH11512925A (de)
DE (1) DE19526386C1 (de)
WO (1) WO1997004099A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648962C1 (de) * 1996-11-26 1998-02-26 Deutsches Krebsforsch Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
DE19712541C1 (de) * 1997-03-25 1998-11-05 Deutsches Krebsforsch Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
DE19735118C1 (de) 1997-08-13 1998-08-13 Deutsches Krebsforsch Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
WO2003020742A1 (en) * 2001-08-31 2003-03-13 Gen-Probe Incorporated Assay for detection of human parvovirus b19 nucleic acid
CN103830725A (zh) 2005-06-08 2014-06-04 达纳-法伯癌症研究院 通过抑制程序性细胞死亡1(pd-1)途经治疗持续性感染和癌症的方法及组合物
NZ720288A (en) 2006-12-27 2020-02-28 Harvard College Compositions and methods for the treatment of infections and tumors
MX2011005691A (es) 2008-11-28 2011-07-20 Univ Emory Metodos para el tratamiento de infecciones y tumores.
EP2576840B1 (de) 2010-05-25 2018-10-17 QIAGEN Gaithersburg, Inc. Hybrid-capture-assay mit schneller ergebnislieferung und zugehörige strategisch gekürzte sonden
CN110753755B (zh) 2016-03-21 2023-12-29 丹娜法伯癌症研究院 T细胞耗竭状态特异性基因表达调节子及其用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3722968A1 (de) * 1987-07-11 1989-01-19 Behringwerke Ag Humaner papillomvirus typ 41, seine dna und die dafuer kodierenden proteine
CA1339729C (en) * 1988-10-26 1998-03-17 Wayne D. Lancaster Human papillomavirus type 52 dna sequences and methods for employing thesame
US5437951A (en) 1992-09-03 1995-08-01 The United States Of America As Represented By The Department Of Health And Human Services Self-assembling recombinant papillomavirus capsid proteins
DE4415743C2 (de) * 1994-05-04 1996-10-10 Deutsches Krebsforsch Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9704099A3 *

Also Published As

Publication number Publication date
US6555345B2 (en) 2003-04-29
US6368832B1 (en) 2002-04-09
JPH11512925A (ja) 1999-11-09
WO1997004099A3 (de) 2001-04-12
US6322795B1 (en) 2001-11-27
US20020110865A1 (en) 2002-08-15
DE19526386C1 (de) 1997-01-02
US6562597B2 (en) 2003-05-13
WO1997004099A2 (de) 1997-02-06
US20020110866A1 (en) 2002-08-15

Similar Documents

Publication Publication Date Title
DE4435919C1 (de) Zinkfinger-DNA, -Protein und ihre Verwendung
DE4040339C2 (de) Virales Agens
DE69333859T2 (de) Sich selbst-zusammenbauende rekombinante hpv16 papillomavirus hüllproteine
DE68922336T2 (de) Sonden für Papilloma-Virus (HPV49, HPV50, HPV54, HPV55), zu diesem Papilloma-Virus genetisch und immunologisch verwandte Produkte und in vitro Methoden zur Diagnose von Papilloma-Virusinfektionen und Herstellung von Antikörpern gegen diese Papilloma-Viren.
DE69104380T2 (de) Vom genom des papillomavirus-hpv-39 abgeleitete dns-sequenzen, deren anwendung in der in vitro-diagnose und zur herstellung einer immunogenenzusammensetzung.
EP0809700A1 (de) Papillomavirusähnliche partikel, fusionsproteine sowie verfahren zu deren herstellung
DE69531308T2 (de) Verfahren zur Herstellung von gereinigten papillomavirus Proteinen
DE4415743C2 (de) Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
DE19526386C1 (de) Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
DE69933875T2 (de) Protein-verabreichungssystem, das dem menschlichen papillomavirus ähnliche partikel benützt.
DE19648962C1 (de) Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
DE19735118C1 (de) Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
DE19712541C1 (de) Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
DE69130562T2 (de) Verbesserung in zusammenhang mit dem nachweis von viren
DE69528578T2 (de) Verändertes l2-protein des papillomavirus und damit gestellte viroide
DE4447664C2 (de) Fusionsproteine, Verfahren zu deren Herstellung sowie deren Anwendung
DE19840263C1 (de) Papillomviren, Mittel zu deren Nachweis sowie zur Therapie von durch sie verursachten Erkrankungen
DE19649606C1 (de) Systeme zur Bestimmung von Wirksubstanzen gegen HPV-assoziierte Karzinome
DE19905883C2 (de) Chimäre Virus-ähnliche Partikel bzw. chimäre Capsomere von BPV
WO2002055542A2 (de) Hpv-spezifische peptide, die die bindung von hpv an die wirtszelle blockieren
DE19526752A1 (de) Hocheffiziente Bildung von Papillomavirusähnlichen Partikeln
DE19520421A1 (de) Autoantigen, geeignet zur Feststellung einer Thromboseneigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20010514

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20040215