EP0830699B1 - Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation - Google Patents

Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation Download PDF

Info

Publication number
EP0830699B1
EP0830699B1 EP96915870A EP96915870A EP0830699B1 EP 0830699 B1 EP0830699 B1 EP 0830699B1 EP 96915870 A EP96915870 A EP 96915870A EP 96915870 A EP96915870 A EP 96915870A EP 0830699 B1 EP0830699 B1 EP 0830699B1
Authority
EP
European Patent Office
Prior art keywords
actuator
current
interrupter
control system
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96915870A
Other languages
German (de)
English (en)
Other versions
EP0830699A1 (fr
EP0830699B2 (fr
EP0830699A4 (fr
Inventor
Michael P. Dunk
Garrett P. Mccormick
John Baranowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cooper Industries LLC
Original Assignee
Cooper Industries LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23750169&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0830699(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cooper Industries LLC filed Critical Cooper Industries LLC
Publication of EP0830699A1 publication Critical patent/EP0830699A1/fr
Publication of EP0830699A4 publication Critical patent/EP0830699A4/fr
Publication of EP0830699B1 publication Critical patent/EP0830699B1/fr
Application granted granted Critical
Publication of EP0830699B2 publication Critical patent/EP0830699B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1894Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/268Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor using a linear motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H2009/566Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle with self learning, e.g. measured delay is used in later actuations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/593Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for ensuring operation of the switch at a predetermined point of the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator

Definitions

  • the present invention relates to a method and device for controlling electrical switchgear. More particularly, the invention relates to a method and device for controlling a switchgear utilizing a voice coil actuator to rapidly and positively open and close a current interrupter.
  • switchgear may be incorporated into the system for a number of reasons, such as to provide automatic protection in response to abnormal load conditions or to permit opening and closing of sections of the system.
  • Various types of switchgear include a switch for deliberately opening and closing a power transmission line, such as a line to a capacitor bank; a fault interrupter for automatically opening a line upon the detection of a fault; and a recloser which, upon the detection of a fault, opens and closes rapidly a predetermined number of times until either the fault clears or the recloser locks in an open position.
  • Vacuum interrupters have been widely employed in the art because they provide fast, low energy arc interruption with long contact life, low mechanical stress and a high degree of operating safety.
  • a vacuum interrupter the contacts are sealed in a vacuum enclosure.
  • One of the contacts is a moveable contact having an operating member extending through a vacuum seal in the enclosure.
  • One of the objects of the present invention is to provide a switchgear actuator mechanism and control therefore that minimizes arcing and generated transients during opening and closing.
  • Another object of the present invention is to provide a switchgear actuator mechanism and control therefore that provides accurate monitoring of the system.
  • Another object of the present invention is to provide a switchgear actuator mechanism capable of a range of motion profiles, thereby eliminating the need for many types of mechanical systems.
  • Another object of the present invention is to provide a switchgear actuator mechanism capable of being controlled by any commercially available motor control circuitry or dedicated motion control circuitry.
  • Still another object of the present invention is to provide a switchgear actuator mechanism capable of procuring speeds and forces not readily achievable with prior art mechanical systems.
  • Still another object of the present invention is to provide an improved synchronously operating switchgear that results in a significant reduction in transients generated during the switching operation.
  • switchgear incorporating vacuum interrupters have utilized various spring loaded mechanisms which are connected to an operating member to positively open or close the interrupter contacts.
  • One such device which is commonly used is the simple toggle linkage. The primary function of these mechanisms is to minimize arcing by very rapidly driving the contacts into their open or closed positiions.
  • Various applications may require the use of a number of spring loaded mechanisms with associated latches and linkages.
  • an actuator In order to prime these mechanical systems, either by compressiopn or extension of the drive spring, an actuator is normally provided.
  • These actuators can include, but are not limited to, solenoids, motors or hydraulic devices.
  • these actuators are relatively slow with poor response times. For this reason they are not normally used to directly drive the interrupter contacts but are utilized to prime the fast acting spring mechanisms.
  • the prime disadvantage of this system is that the spring driven operation does not lend itself to being easily controllable and it requires considerable engineering effort to finely adjust the mechanism's performance.
  • a further feature of a controlled, synchronously operating switchgear unit is that the velocity at which the contacts close can be controlled.
  • the contacts are driven together in an uncontrolled fashion at very high velocity anti it is possible that the contracts will bounce open a number of times before coming to rest. This bounce phenomenon is undesirable because the ensuing arcing can soften the contacts and create strong welds when the contacts finally mate.
  • a current interrupter comprising:
  • a corresponding method is also provided.
  • an incoming power line 2 is coupled in series with a current interrupter 4, thereby allowing the current interrupter 4 to open the line.
  • the line 2 may be opened upon a predetermined command or, in the case of a fault interrupter, if a fault exceeds a predetermined threshold level.
  • One of the contacts of the current interrupter 4 is connected to one end of an operating rod 6.
  • the other end of the operating rod 6 is operatively coupled to an actuator, such as a voice coil actuator 8.
  • the voice coil actuator 8 directly acts upon the operating rod 6 in order to open or close the contacts of the current interrupter 4.
  • the voice coil actuator 8 is a direct drive, limited motion device that uses a magnetic field and a coil winding 10, to produce a force proportional to the current applied to the coil.
  • the electromechanical conversion of the voice coil actuator 8 is governed by the Lorentz Force Principle, which states that if a current-carrying conductor is placed in a magnetic field, a force will act upon it.
  • control mechanism 12 The current passing through the voice coil winding 10 is controlled by a control mechanism 12. Any commercially available control mechanism 12 could be utilized.
  • suitable control mechanisms 12 include: single loop controllers, programmable logic controllers, or distributed control systems.
  • the control mechanism 12 may be coupled to a feedback device 14, which provides input regarding the position of the operating rod 6.
  • the control mechanism 12 may also be coupled to a latching device 16.
  • the latching device 16 When instructed to secure the operating rod 6 by the control mechanism 12, the latching device 16 fastens the operating rod 6 in its current position.
  • the latching mechanism 16 may be a permanent magnet or mechanical latch that is not coupled to the control device 12.
  • FIG. 2 a cross-sectional view of one of the embodiments of the invention is shown.
  • a one piece, elongated, solidly insulated encapsulation 18 encloses the operating rod 6 and the current interrupter 4.
  • the encapsulation 18 may be formed out of ceramic, porcelain, any suitable epoxy, or any other appropriate solid insulating material.
  • a line side high voltage electrical terminal 22 and a load side high voltage electrical terminal 20 protrude through the solidly insulated enclosure 18, and are coupled to the current interrupter 4.
  • the high voltage electrical terminals 20 and 22 are diametrically disposed, 180 degrees apart, and are parallel with respect to one another.
  • the encapsulation 18 provides both the solid insulation between the high voltage electrical terminals 20 and 22 and the solid insulation between each high voltage electrical terminal 20 and 22 and electrical ground (not shown).
  • the current interrupter 4 includes a vacuum module or bottle 24, shown in cross section in FIG. 3, with a pair of switch contacts 71, 72 disposed within the vacuum module 24.
  • the vacuum module 24 provides a housing and an evacuated environment for the operation of the pair of switch contacts.
  • the module 24 is usually constructed from an elongated, generally tubular, evacuated, ceramic casing 73, preferably formed from alumina.
  • One of the switch contacts 71 is movable, and the other switch contact 72 is stationary or fixed.
  • a special fitting 76 is attached to the stem of the stationary contact 72, permitting the associated high voltage electrical terminal 22 to exit at a 90° angle.
  • the movable switch contact 71 is fastened to the uppermost, longitudinal end of the operating rod 6.
  • One method of fastening is to use a stud 32 threaded into a tapped connection 74 in the moving stem 75 of the movable contact 71.
  • the current interrupter 4 further includes a current exchange assembly and an interface 26 between the vacuum module 24 and the current exchange assembly.
  • the current exchange assembly contains a moving piston 28 and a fixed outer housing 30.
  • the operating rod 6 is made from an electrically insulated material.
  • the other end of the operating rod 6 is secured to a flange 34 on the voice coil actuator 8 by a rigid pin 36.
  • the pin 36 which retains the foregoing components in position, can be secured by any suitable means, such as a pair of retaining rings.
  • a recirculating linear ball bearing 38 and split rings 40 which hold the ball bearing, provide smooth movement of the operating rod 6.
  • the voice coil winding 10 is disposed between the outer body of the voice coil actuator 8 and the flange 34.
  • Side flanges 42 are attached to the outer body of the voice coil actuator 8, and connect to side brackets 44, thereby securely fastening the voice coil actuator 8 to a protective case 46.
  • the protective case 46 is attached to a lid 50 for the protective case 46 via housing flanges 48, and the protective case lid 50 is connected to the solid insulation enclosure 18 via lid flanges 52.
  • the protective case 46 is also formed out of ceramic, porcelain, any suitable epoxy, or any other appropriate solid insulating material.
  • the feedback device 14 is a position sensor, such as a linear potentiometer 14.
  • the linear potentiometer 14 can be made from a three-terminal rheostat or a resistor with one or more adjustable sliding contacts, thereby functioning as an adjustable voltage divider.
  • the linear potentiometer 14 provides information regarding the position of the operating rod 6 to the control mechanism 12, which controls the voice coil actuator 8.
  • the feedback device 14 may be an optical encoder.
  • the latching device 16 is intended to secure the operating rod 6.
  • the latching device may be a controllable device, such as an electromagnet, or a simple mechanical or permanent magnet latch including: a latching magnet 54, a spacer 56 made from nonferrous material, a bolt 58 securing the latching magnet 54 to the protective case lid 50, a latch plate 60 made from steel or iron, and a latch plate pin 62 securing the latch plate 60 to the operating rod 6.
  • FIG. 4 shows an enlarged view of the operating mechanism of the preferred embodiment displayed in FIG. 2, and
  • FIG. 5 shows an exploded view of the primary components of the operating mechanism.
  • FIG. 6 illustrates a voltage signal 100 plotted on a graph comparing the voltage level v(t) versus time t.
  • each half cycle is ideally 8.33 ms.
  • actual cycles may vary due to harmonics or assymetric conditions so that a given half cycle may be greater than or less than 8.33 ms.
  • the contacts of the interrupter are ideally closed instantaneously at the null points when v(t) equals zero. See point A in FIG. 6.
  • the timing of the initiation of the opening and closing sequences should be carefully controlled in order to minimize transients and arcing.
  • FIG. 7 A preferred embodiment of a control circuit 200 for use with the present invention is illustrated in FIG. 7.
  • a microprocessor 202 that is suitable for use in a broad temperature range.
  • the voltage waveform of the power line being controlled by the interrupter 4 is analyzed with a voltage waveform analyzer 204, a phase lock loop circuit 206, and a V zero crossing detection circuit 208.
  • Information concerning the voltage waveform of the line to be interrupted, including the timing of null points A wherein the voltage v(t) is zero, is input to the microprocessor 202.
  • a voltage waveform analyzer 204 could be used that measures the voltage waveform directly off the line without the phase lock loop circuit 206.
  • Open and close commands are input to the microprocessor 202 via inputs 210 and 212, respectively.
  • the open and close commands may be created manually, may be initiated at preset times by a clock, may be initiated by an external control, or may be triggered by the detection of a fault, depending on the particular application of the interrupter 4.
  • a reset signal 214 may be input to the microprocessor 202 to manually reset the microprocessor 202 when necessary. For example, if the interrupter 4 is manually manipulated, the microprocessor 202 may not be set to the current status of the interrupter 4. In such a situation, the microprocessor 202 should be reset.
  • Status indicators may be provided to indicate various conditions of the circuit 200 or the interrupter 4. Such indicators may include a maintenance light 216 to indicate when maintenance is required, a power on light 218, a switch open indicator 220, a switch closed indicator 222, and a counter 224 that may be used to count cycles or operations of the system.
  • a preferred embodiment of the present invention may include two control systems.
  • a first control system is conventional, and thus not disclosed herein in detail, and determines when the fire controlled by the interrupter 4 is to be opened or closed.
  • the first control system may include a fault detector or a timer for interrupting the line upon the detection of a fault, or at a predetermined time.
  • an open or close command may be input directly to the system.
  • the open and close commands, whether originating from the first control system or manually, are input to the microprocessor 202 at inputs 210 and 212, respectively.
  • the second control system 200 analyzes the voltage waveform of the line and determines the best time for initiating opening and closing the interrupter 4 in order to minimize transients and arcing.
  • Each interrupter 4 has a dielectric strength that defines the likelihood of an arc jumping from one contact to another.
  • the dielectric strength depends upon a number of factors including the medium inside the interrupter 4 and the distance between the contacts 71, 72.
  • FIG. 6 illustrates the changing or descent of the dielectric strength between the contacts 71, 72 versus time as the distance between the contacts closes. See line C in FIG. 6.
  • the dielectric strength between the contacts would be infinite until the exact moment of closing of the contacts 71, 72. See line B in FIG. 6.
  • the dielectric slopes downward, reducing quickly as the contacts approach each other. See line C in FIG. 6. If the slope of the dielectric descent is sufficiently high, and the dielectric strength remains greater than the voltage of the waveform, the generation of arcing and transients is eliminated or significantly reduced.
  • FIG. 8 illustrates an example of a motion profile, wherein the abscissa represents the location of the moving contact 71 and the ordinate represents the velocity at which the contact 71 is moving.
  • Point 0 on the abscissa represents the starting or maximum open position of the contact 71, and point x represents the closed position, wherein the contact 71 is touching the stationary contact 72.
  • the velocity is zero.
  • the velocity is increased as quickly a possible to a maximum velocity V max .
  • the velocity remains at V max for as long as possible, but is then reduced as the point of contact x approaches in order to minimize bounce.
  • the motion profile is also important to prevent the occurrence of restrikes or re-ignitions shortly after opening. If the contacts separate at too slow a speed, or at a time when the voltage level is too high, excessive arcing may occur. Desired motion profiles for opening and closing sequences can be determined by those of skill in the art and preprogrammed into the circuit 200.
  • FIG. 12 relates to the opening sequence of a system that includes a capacitor bank.
  • Line 4 indicates the voltage level of the fully charged capacitors.
  • the switch begins to open at point 2, and an arc forms. However, at this point, the current is decaying and the arc is extinguished at current zero, point 3.
  • the system voltage is now at its peak, but the voltage across the contacts is small because of the charge on the capacitor bank, which approximates the peak system voltage.
  • the voltage on the capacitor bank stays high, resulting in an increase in the voltage across the contacts.
  • the contacts should part with enough acceleration so that the dielectric rises faster than the escalating voltage between the contacts in order to avoid restrikes and re-ignitions.
  • the motion control function can be achieved by means of software loaded into the microprocessor/microcontroller or by the addition of dedicated motion control chips which interface with the microprocessor.
  • a particular motion profile is programmed into a memory, which may be a separate EEPROM chip in an external motion control circuit 226, or onboard memory on the microprocessor or microcontroller.
  • the motion control circuit 226 is connected to the feedback device (encoder) 14 and to a pulse width modulation (PWM) circuit 228.
  • PWM pulse width modulation
  • the PWM 228 controls the current that is applied to the voice coil actuator 8. Since the force driving the voice coil actuator 8 is proportional to the current supplied to the voice coil actuator 8, the velocity of the actuator 6 (and the moving contact 71) is controlled by the PWM 228.
  • the voice coil actuator 8 is controlled by a closed loop feedback system that includes the position encoder 14 that sends a position signal of the actuator 8 to the motion control circuit 226.
  • the motion control circuit 226 compares the actual position of the actuator 8 to the ideal motion profile preprogrammed into the motion control circuit 226. Based on the comparison of the actual position to the ideal motion profile, the voice coil actuator 8 is controlled by the PWM so that its motion closely approximates the ideal intended motion.
  • Control of the actuator is further modified by the circuits 204, 206, 208 that monitor that actual voltage waveform of the line to be interrupted. For example, for a particular application, it may be determined that the contacts 71, 72 should open or close within 1 ms of the zero crossing A (FIG. 6) of the voltage signal v(t).
  • the ideal motion profile preprogrammed into the motion control circuit 226 includes the total reaction and travel time of the actuator 8 from the time an initiating signal is sent to the time the contacts 71, 72 close.
  • the microprocessor analyzes the actual voltage waveform of the line to be interrupted and determines a specific time between null points at which the initiating signal should be sent.
  • the circuits 204, 206, 208 first establish the actual cycle period and the resulting length of time between zero crossings.
  • the control circuit 200 then initiates operation of the voice coil actuator 8 at a time after a zero crossing that is equal to the actual time between null crossings minus the reaction and travel time of the actuator 8.
  • the opening sequence is initiated at 1.3 ms after a zero crossing.
  • the system may assume that the actual time between zero crossings is 8.33 ms, and the initiation is calculated based on that assumption.
  • a plurality of motion profiles can be preprogrammed into the circuit 200, and the appropriate motion profile can be selected by an input from the operator.
  • the actual motion of the actuator 8 is monitored by the encoder 14 and compared against the ideal motion profile.
  • the current applied to the actuator 8 is adjusted by the PWM 228 based on the comparison of the actual movement of the actuator 8 to the ideal motion profile.
  • FIG. 9 illustrates another embodiment of a voice coil actuator 308 that may be used with any of the embodiments of the present invention.
  • the voice coil actuator 308 includes a ring shaped magnet 310, which is preferably a 4 MGO ceramic magnet.
  • the magnet 310 is housed with a bottom pole piece 312 and a top pole piece 314. These pole pieces are formed from ferromagnetic materials, such as iron or steel.
  • the pole pieces 312, 314 include a central aperture 316 through which an operating rod 318 extends.
  • the operating rod 318 is supported in the pole pieces 312, 314 with self-lubricating polymer bearings 320, such as IGUSTM bearings 320.
  • An aluminum plate 328 is fixed to the rod 318.
  • a coil 330 extends from the plate 328 into an air groove 332 formed between the bottom pole piece 312 and the magnet 310.
  • the coil 330 may be formed from flattened wire so as to maximize the number of turns that will fit within the air groove 332.
  • the actuator 308 may be driven by a 24 volt battery, or any other suitable power source, including an autoranging AC to DC converter.
  • the operating rod 318 may include a groove 320 within which is located a ball 322. See FIG. 10.
  • a spring 324 and cap 326 urge the ball 322 into the groove 320 to retain the rod 318 in a fixed position.
  • the rod 318 may be freed from the ball 322 upon the application of a force, the level of which depends on the strength of the spring 324.
  • a spring 340 may be applied to the rod 6 (or 318) to urge the contact 71 against the contact 72 with a predetermined force, such as 60 - 100 pounds.
  • the spring may be compressed by the action of the actuator.
  • the operating rod 6, 318 may include a flange 342 that provides a surface against which the spring 340 presses.
  • Another abutment surface 344 may be provided to support the opposite end of the spring 340.
  • the spring 340 provides the additional benefit of maintaining an adequate force between the two contacts 71, 72. For example, after repeated operations, arcing may cause the contacts to wear. Because of the spring force, the two contacts are urged against each other, even if they have become worn. In addition, the application of the force causes a reduction in the electrical resistance between the contacts in the closed position, thereby reducing heat losses.
  • the operating rod 6, 318 will move a greater distance in order to accommodate the wear. Since the position sensor 14 senses the distance moved by the operating rod 6, 318, the system can be programmed to illuminate the maintenance signal 216, or some other indicator, to indicate that excessive wear has occurred on the contacts 71, 72. The system can also modify its motion profile to allow for such incremental increases in stroke.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Keying Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Control Of Position Or Direction (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Linear Motors (AREA)

Claims (12)

  1. Un interrupteur de courant (4) comprenant :
    un dispositif d'interruption de courant ayant au moins un contact mobile (6) ; et un actionneur (8) couplé au contact mobile de l'interrupteur de courant ; caractérisé par :
    un capteur de réaction (14) pour surveiller la position de l'actionneur durant un cycle d'actionnement ;
    un capteur, pour appréhender la forme d'onde d'une tension dans une ligne à commuter et fournir une information concernant la forme d'onde de la tension ; et
    un système de commande (12) couplé au capteur de réaction de manière à recevoir de l'information depuis le capteur de réaction, concernant la position de l'actionneur durant le cycle d'actionnement et couplé au capteur de manière à recevoir une information depuis le capteur, concernant la forme d'onde de la tension, le système de commande contrôlant le déplacement de l'actionneur durant le cycle d'actionnement, d'après l'information venant du capteur de réaction et l'information venant du capteur, de manière à interrompre ou établir le courant dans la ligne à commuter, à un emplacement souhaité sur la forme d'onde de tension.
  2. L'interrupteur de courant (4) selon la revendication 1, comprenant en outre :
    des moyens (200) pour mémoriser un profil de déplacement souhaité de l'actionneur (8) ; et
    des moyens (200) pour comparer le déplacement de l'actionneur au profil de déplacement souhaité et pour contrôler le déplacement de l'actionneur d'après une comparaison entre le déplacement de l'actionneur et le profil de déplacement souhaité.
  3. L'interrupteur de courant (4) selon la revendication 1, dans lequel l'actionneur est un actionneur à bobine mobile (8).
  4. L'interrupteur de courant (4) selon la revendication 1, dans lequel le capteur de réaction (14) est un potentiomètre linéaire.
  5. L'interrupteur de courant (4) selon la revendication 1, dans lequel le dispositif d'interruption de courant est un interrupteur à vide.
  6. L'interrupteur de courant (4) selon la revendication 1, comprenant en outre un ressort, plaçant le dispositif d'interruption de courant à la position fermée.
  7. L'interrupteur de courant (4) selon la revendication 1, comprenant en outre un verrou (16) pour restreindre le déplacement de l'actionneur.
  8. L'interrupteur de courant (4) selon la revendication 1, dans lequel l'actionneur (8) est un actionneur à bobine mobile (8) ; le capteur de réaction (14) est un potentiomètre linéaire (14 ); le dispositif d'interruption de courant est un interrupteur à vide ; et
       comprenant en outre un ressort, déplaçant (340) le dispositif d'interruption de courant en position fermée et un verrou (16) restreignant le déplacement de l'actionneur.
  9. L'interrupteur de courant (4) selon la revendication 1, comprenant en outre :
    un capteur pour appréhender la forme d'onde d'un courant dans une ligne à commuter et fournir de l'information concernant la forme d'onde du courant, au système de commande ;
    dans lequel le système de commande commande le déplacement de l'actionneur également basé sur l'information concernant la forme d'onde du courant.
  10. Un procédé de commande d'un interrupteur de courant (4) comprenant un actionneur (8), incluant les étapes consistant à :
    surveiller la position de l'actionneur avec un capteur de réaction (14) durant une séquence d'actionnement ;
    fournir un résultat de la surveillance de position durant la séquence d'actionnement à un système de commande (12) pour contrôler le déplacement de l'actionneur ;
    appréhender une forme d'onde de tension dans une ligne à interrompre durant la séquence d'actionnement ; et
    fournir un résultat de la détection de forme d'onde de tension au système de commande durant la séquence d'actionnement ; et
    commander le déplacement de l'actionneur durant la séquence d'actionnement avec le système de commande, d'après le résultat de la surveillance de position et le résultat de la détection de forme d'onde de tension, fourni au système de commande de manière à interrompre ou établir le courant passant dans la ligne à commuter, en un emplacement souhaité sur la courbe d'onde de tension.
  11. Le procédé selon la revendication 10, comprenant en outre les étapes consistant à :
    stocker un profil de déplacement souhaité du déplacement de l'actionneur ;
    comparer le résultat de surveillance au profil de déplacement souhaité ; et
    contrôler en outre le déplacement d'actionnement d'après également l'étape de comparaison.
  12. Le procédé selon la revendication 10, comprenant en outre les étapes consistant à :
    appréhender une forme d'onde de courant dans une ligne à interrompre ;
    fournir un résultat de la détection de forme d'onde de courant au système de commande (12) et en outre contrôler le déplacement de l'actionneur (8) avec le système de commande basé également sur le résultat de détection de forme d'onde de courant fourni au système de commande.
EP96915870A 1995-05-15 1996-05-15 Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation Expired - Lifetime EP0830699B2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US44078395A 1995-05-15 1995-05-15
US440783 1995-05-15
PCT/US1996/007114 WO1996036982A1 (fr) 1995-05-15 1996-05-15 Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation

Publications (4)

Publication Number Publication Date
EP0830699A1 EP0830699A1 (fr) 1998-03-25
EP0830699A4 EP0830699A4 (fr) 1999-04-14
EP0830699B1 true EP0830699B1 (fr) 2002-02-20
EP0830699B2 EP0830699B2 (fr) 2005-09-07

Family

ID=23750169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96915870A Expired - Lifetime EP0830699B2 (fr) 1995-05-15 1996-05-15 Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation

Country Status (12)

Country Link
EP (1) EP0830699B2 (fr)
JP (2) JP3759751B2 (fr)
KR (1) KR100438526B1 (fr)
CN (1) CN1085398C (fr)
BR (1) BR9608875A (fr)
CA (1) CA2219282C (fr)
DE (1) DE69619367T3 (fr)
ES (1) ES2173282T5 (fr)
HK (1) HK1015526A1 (fr)
MX (1) MX9708859A (fr)
TW (1) TW315477B (fr)
WO (1) WO1996036982A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084387A1 (fr) 2003-03-17 2004-09-30 Siemens Aktiengesellschaft Entrainement lineaire magnetique

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538347B1 (en) 1995-05-15 2003-03-25 Mcgraw-Edison Company Electrical switchgear with synchronous control system and actuator
US6331687B1 (en) 1995-05-15 2001-12-18 Cooper Industries Inc. Control method and device for a switchgear actuator
US6291911B1 (en) 1995-05-15 2001-09-18 Cooper Industries, Inc. Electrical switchgear with synchronous control system and actuator
FR2764431B1 (fr) * 1997-06-04 1999-07-09 Gec Alsthom T & D Sa Methode de controle et diagnostic du fonctionnement d'un appareillage electrique a haute tension
DE19837009A1 (de) * 1998-08-14 2000-02-17 Abb Patent Gmbh Antrieb für das bewegliche Kontaktstück eines Hochspannungsleistungsschalters
EP1006537B1 (fr) * 1998-12-03 2005-02-16 ABB Research Ltd. Dispositif pour la commande d'un appareil de commutation électrique et procédé associé
ATE358325T1 (de) * 1999-07-14 2007-04-15 Abb Research Ltd Betätigung und steuervorrichtung für elektrische schaltanlage
DE19948551C1 (de) * 1999-10-08 2001-07-05 Siemens Ag Verfahren zur Vergleichmäßigung von Gesamtabbränden eines elektromagnetischen Schaltgeräts und hiermit korrespondierendes elektromagnetisches Schaltgerät
DE19963256C1 (de) * 1999-12-17 2001-05-23 Siemens Ag Hochspannungs-Leistungsschalter
ES2270561T3 (es) 1999-12-23 2007-04-01 Abb Technology Ag Dispositivo para controlar la operacion de apertura/cierre de un interrruptor electrico y metodo relacionado.
JP2002062944A (ja) * 2000-08-18 2002-02-28 Alps Electric Co Ltd 車載用入力装置
US7151353B2 (en) 2000-09-18 2006-12-19 Abb Ab Switching device
US6753493B2 (en) * 2001-06-01 2004-06-22 Hubbell Incorporated Electrical circuit interrupting device
US7215228B2 (en) 2001-06-01 2007-05-08 Hubbell Incorporated Circuit interrupting device with a turnbuckle and weld break assembly
FR2865572B1 (fr) * 2004-01-23 2006-05-26 Alstom T & D Sa Dispositif de commande de dispositif de coupure d'energie electrique
US8450630B2 (en) * 2007-06-05 2013-05-28 Cooper Technologies Company Contact backing for a vacuum interrupter
US7999416B2 (en) * 2008-04-14 2011-08-16 Emergie H. T. International Inc. Module for controlling a switch in a high voltage electrical substation
CN101908435B (zh) * 2010-08-05 2012-12-19 西安通大思源电器有限公司 一种永磁操动的真空断路器
CN102013355B (zh) * 2010-08-05 2013-05-01 西安通大思源电器有限公司 一种提高永磁操动真空断路器寿命的控制方法
JP5606289B2 (ja) * 2010-11-17 2014-10-15 株式会社東芝 開閉器の状態検知装置および状態検知装置の取付方法
FR2971883B1 (fr) * 2011-02-23 2013-02-22 Dauphinoise Const Elect Mec Dispositif et procede de controle d'un signal de commande destine a un sectionneur
US9837229B2 (en) 2011-06-24 2017-12-05 Tavrida Electric Holding Ag Method and apparatus for controlling circuit breaker operation
US9208978B2 (en) 2011-07-07 2015-12-08 Mitsubishi Electric Corporation Electromagnetic operating device
US9698600B2 (en) * 2011-11-03 2017-07-04 Hubbell Incorporated Control system for synchronous capacitor switch
CN103377860B (zh) * 2012-04-20 2017-03-01 施耐德电器工业公司 断路器及监测断路器触头磨损程度的方法
JP2013229247A (ja) * 2012-04-26 2013-11-07 Toshiba Corp 電力用開閉装置、及びその操作機構
ES2694124T3 (es) * 2012-06-11 2018-12-18 Abb Oy Aparato de conmutación de la corriente eléctrica
JP6053173B2 (ja) * 2013-11-01 2016-12-27 株式会社日立製作所 開閉装置
US9934923B2 (en) * 2013-12-13 2018-04-03 Te Connectivity Corporation Relay with integral phase controlled switching
EP3270398B1 (fr) 2016-07-12 2021-04-07 ABB Schweiz AG Actionneur pour un disjoncteur moyenne tension
CN106935438B (zh) * 2017-03-08 2020-03-13 平高集团有限公司 一种磁力操动机构控制方法及控制装置
CN107068484B (zh) * 2017-06-05 2020-12-25 西安交通大学 一种基于植物油的高压直流快速开关及其分断方法
JP6766019B2 (ja) * 2017-08-29 2020-10-07 株式会社日立産機システム 真空開閉装置及びその異常監視方法
EP3503150B1 (fr) * 2017-12-21 2024-02-14 ABB Schweiz AG Procédé de fonctionnement de l'entraînement d'un interrupteur sous vide et interrupteur sous vide lui-même
GB2573139B (en) 2018-04-25 2021-06-23 Ge Aviat Systems Ltd Zero crossing contactor and method of operating
US11935712B2 (en) * 2018-07-31 2024-03-19 Panasonic Intellectual Property Management Co., Ltd. Control system and interrupter system
CN110491731A (zh) * 2019-09-26 2019-11-22 河南宏泽电子科技有限公司 交流接触器的驱动和动作信号反馈机构

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1640586A1 (de) 1968-02-12 1970-12-17 Inst Prueffeld Fuer Elek Sche Verfahren und Einrichtung zur synchronen Steuerung eines Wechselstromschalters,insbesondere eines Hochspannungsleistungsschalters
GB1263375A (en) * 1968-06-10 1972-02-09 Tokyo Shibaura Electric Co A vacuum switching apparatus
US3792390A (en) * 1973-05-29 1974-02-19 Allis Chalmers Magnetic actuator device
US3917987A (en) * 1973-12-28 1975-11-04 Fujitsu Ltd Voice coil motor control system
US3946277A (en) * 1974-08-28 1976-03-23 Lange George M Zero current switching circuitry
US4027203A (en) * 1975-03-06 1977-05-31 Mcgraw-Edison Company Protective switch device for electrical distribution systems
USRE30134E (en) * 1975-05-22 1979-10-30 Esco Manufacturing Company Protection of polyphase equipment
DE2601799A1 (de) * 1976-01-20 1977-07-21 Licentia Gmbh Schaltanordnung zur betaetigung eines elektromagnetsystems
US4247879A (en) * 1978-04-19 1981-01-27 Westinghouse Electric Corp. People protecting ground fault circuit breaker utilizing waveform characteristics
US4387280A (en) * 1978-05-29 1983-06-07 General Electric Company High speed hydraulically-actuated operating system for an electric circuit breaker
JPS5699931A (en) * 1979-12-15 1981-08-11 Meidensha Electric Mfg Co Ltd Vacuum switch
DE3110314A1 (de) 1980-07-31 1982-04-01 LGZ Landis & Gyr Zug AG, 6301 Zug System und einrichtung zur betaetigung eines elektromagneten
DE3224165A1 (de) 1982-06-29 1983-12-29 Brown, Boveri & Cie Ag, 6800 Mannheim Elektromagnetische vorrichtung zum antrieb eines gekapselten schaltgeraetes fuer mittelspannungs- oder hochspannungsschalt- und -verteileranlagen
US4725799A (en) * 1986-09-30 1988-02-16 Westinghouse Electric Corp. Circuit breaker with remote control
DE3905822A1 (de) 1989-02-22 1990-08-23 Siemens Ag Verfahren zum betrieb eines leistungsschalters
DE4005532A1 (de) 1990-02-19 1991-08-22 Siemens Ag Generator-leistungsschalter
DE4105697C2 (de) 1991-02-21 1995-11-02 Eaw Schaltgeraete Gmbh Synchronisiert schaltendes Vakuumschütz mit Einzelantrieb
US5255152A (en) * 1991-08-21 1993-10-19 Eaton Corporation Controller for fixed-time pull-in of a relay
DE4141564C2 (de) 1991-12-17 1998-10-15 Abb Patent Gmbh Antrieb für Schaltgeräte
AU665433B2 (en) * 1992-05-12 1996-01-04 Square D Company System for monitoring circuit breaker operations and alerting need of preventative maintenance
US5361184A (en) * 1992-10-20 1994-11-01 Board Of Regents Of The University Of Washington Adaptive sequential controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084387A1 (fr) 2003-03-17 2004-09-30 Siemens Aktiengesellschaft Entrainement lineaire magnetique

Also Published As

Publication number Publication date
WO1996036982A1 (fr) 1996-11-21
JP2006054193A (ja) 2006-02-23
EP0830699A1 (fr) 1998-03-25
CA2219282A1 (fr) 1996-11-21
MX9708859A (es) 1998-03-31
JP3759751B2 (ja) 2006-03-29
AU697096B2 (en) 1998-09-24
HK1015526A1 (en) 1999-10-15
EP0830699B2 (fr) 2005-09-07
DE69619367T3 (de) 2006-02-02
KR19990014777A (ko) 1999-02-25
JPH11505366A (ja) 1999-05-18
TW315477B (fr) 1997-09-11
DE69619367T2 (de) 2002-08-14
CA2219282C (fr) 2006-08-15
KR100438526B1 (ko) 2004-09-10
EP0830699A4 (fr) 1999-04-14
ES2173282T5 (es) 2006-03-16
BR9608875A (pt) 1999-07-06
CN1085398C (zh) 2002-05-22
DE69619367D1 (de) 2002-03-28
ES2173282T3 (es) 2002-10-16
CN1190487A (zh) 1998-08-12
AU5752796A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
EP0830699B1 (fr) Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation
US6331687B1 (en) Control method and device for a switchgear actuator
US7317264B2 (en) Method and apparatus to independently control contactors in a multiple contactor configuration
US6956728B2 (en) Method and apparatus to control modular asynchronous contactors
US8138440B2 (en) Medium-voltage circuit-breaker
US6611413B2 (en) Switching apparatus
US7508636B2 (en) Hybrid circuit breaker device
EP1662524A2 (fr) Procédé et appareil pour contrôler des contacteurs modulaires asynchrones
US7196434B2 (en) Modular contactor assembly having independently controllable contractors
RU2020631C1 (ru) Вакуумный выключатель модульный серии "tel"
US10032589B2 (en) Actuating apparatus for a vacuum interrupter and disconnecting arrangement
AU697096C (en) Control method and device for a switchgear actuator
WO2014048483A1 (fr) Interrupteur électrique à commande par bobine thomson
US20230091491A1 (en) Switch System
RU2715393C1 (ru) Приводной механизм для средневольтного автоматического выключателя
WO2020055317A1 (fr) Interrupteur de courant à commande de temps de marche d'actionneur
GB2318913A (en) Performing a switching operation on a switching device
IL197132A (en) Medium-voltage circuit breaker
JPH0477534B2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB NL

A4 Supplementary search report drawn up and despatched

Effective date: 19990224

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE ES FR GB NL

17Q First examination report despatched

Effective date: 20000620

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB NL

REF Corresponds to:

Ref document number: 69619367

Country of ref document: DE

Date of ref document: 20020328

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2173282

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: ABB PATENT GMBH

Effective date: 20021120

Opponent name: SIEMENS AG ABTEILUNG: CT IP PTD

Effective date: 20021118

NLR1 Nl: opposition has been filed with the epo

Opponent name: ABB PATENT GMBH

Opponent name: SIEMENS AG ABTEILUNG: CT IP PTD

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20050907

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB NL

NLR2 Nl: decision of opposition

Effective date: 20050907

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20051118

Kind code of ref document: T5

ET3 Fr: translation filed ** decision concerning opposition
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140425

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140424

Year of fee payment: 19

Ref country code: ES

Payment date: 20140523

Year of fee payment: 19

Ref country code: DE

Payment date: 20140602

Year of fee payment: 19

Ref country code: NL

Payment date: 20140513

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69619367

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150516