WO1996036982A1 - Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation - Google Patents

Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation Download PDF

Info

Publication number
WO1996036982A1
WO1996036982A1 PCT/US1996/007114 US9607114W WO9636982A1 WO 1996036982 A1 WO1996036982 A1 WO 1996036982A1 US 9607114 W US9607114 W US 9607114W WO 9636982 A1 WO9636982 A1 WO 9636982A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
current
movement
interrupter
control system
Prior art date
Application number
PCT/US1996/007114
Other languages
English (en)
Inventor
Michael P. Dunk
Garrett P. Mccormick
Original Assignee
Cooper Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23750169&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996036982(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to MX9708859A priority Critical patent/MX9708859A/es
Priority to BR9608875A priority patent/BR9608875A/pt
Priority to CA002219282A priority patent/CA2219282C/fr
Priority to DE69619367T priority patent/DE69619367T3/de
Priority to JP53507296A priority patent/JP3759751B2/ja
Application filed by Cooper Industries, Inc. filed Critical Cooper Industries, Inc.
Priority to US08/945,384 priority patent/US6331687B1/en
Priority to AU57527/96A priority patent/AU697096C/en
Priority to EP96915870A priority patent/EP0830699B2/fr
Priority to TW085110432A priority patent/TW315477B/zh
Publication of WO1996036982A1 publication Critical patent/WO1996036982A1/fr
Priority to HK99100583A priority patent/HK1015526A1/xx
Priority to US09/343,094 priority patent/US6538347B1/en
Priority to US10/301,678 priority patent/US6921989B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1894Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/268Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor using a linear motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H2009/566Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle with self learning, e.g. measured delay is used in later actuations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/593Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for ensuring operation of the switch at a predetermined point of the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator

Definitions

  • the present invention relates to a method and device for controlling electrical switchgear. More particularly, the invention relates to a method and device for controlling a switchgear utilizing a voice coil actuator to rapidly and positively open and close a current interrupter.
  • switchgear may be incorporated into the system for a number of reasons, such as to provide automatic protection in response to abnormal load conditions or to permit opening and closing of sections of the system.
  • Various types of switchgear include a switch for deliberately opening and closing a power transmission line, such as a line to a capacitor bank; a fault interrupter for automatically opening a line upon the detection of a fault; and a recloser which, upon the detection of a fault, opens and closes rapidly a predetermined number of times until either the fault clears or the recloser locks in an open position.
  • Vacuum interrupters have been widely employed in the art because they provide fast, low energy arc interruption with long contact life, low mechanical stress and a high degree of operating safety.
  • a vacuum interrupter the contacts are sealed in a vacuum enclosure.
  • One of the contacts is a moveable contact having an operating member extending through a vacuum seal in the enclosure.
  • Another object of the present invention is to provide a switchgear actuator mechanism and control therefore that provides accurate monitoring of the system.
  • Another object of the present invention is to provide a switchgear actuator mechanism capable of a range of motion profiles, thereby eliminating the need for many types of mechanical systems.
  • Another object of the present invention is to provide a switchgear actuator mechanism capable of being controlled by any commercially available motor control circuitry or dedicated motion control circuitry.
  • Still another object of the present invention is to provide a switchgear actuator mechanism capable of procuring speeds and forces not readily achievable with prior art mechanical systems.
  • Still another object of the present invention is to provide an improved synchronously operating switchgear that results in a significant reduction in transients generated during the switching operation.
  • switchgear incorporating vacuum interrupters have utilized various spring loaded mechanisms which are connected to an operating member to positively open or close the interrupter contacts.
  • One such device which is commonly used is the simple toggle linkage. The primary function of these mechanisms is to minimize arcing by very rapidly driving the contacts into their open or closed positiions.
  • Various applications may require the use of a number of spring loaded mechanisms with associated latches and linkages.
  • an actuator is normally provided in order to prime these mechanical systems, either by compressiopn or extension of the drive spring.
  • actuators can include, but are not limited to, solenoids, motors or hydraulic devices. In comparison to the inherent speed requirements of the interrupter to effectively interrupt current, these actuators are relatively slow with poor response times.
  • a further feature of a controlled, synchronously operating switchgear unit is that the velocity at which the contacts close can be controlled.
  • the contacts are driven together in an uncontrolled fashion at very high velocity and it is possible that the contracts will bounce open a number of times before coming to rest. This bounce phenomenon is undesirable because the ensuing arcing can soften the contacts and create strong welds when the contacts finally mate.
  • a current interrupter includes a current interrupting device having at least one movable contact; an actuator coupled to the movable contact of the current interrupter; a feedback sensor for monitoring movement of the actuator; and a control system coupled to the feedback sensor so as to receive information from the feedback sensor concerning the movement of the actuator and for controlling movement of the actuator based on the information.
  • the interrupter further includes a memory for storing a desired motion profile of the actuator; and a microprocessor for comparing the movement of the actuator with the desired motion profile and controlling movement of the actuator based also on a comparison of the movement of the actuator with the desired motion profile.
  • the interrupter further includes a sensor for sensing a waveform of a voltage or current in a line to be switched and providing information concerning the waveform to the control system; wherein the control system controls the movement of the actuator based also on the information concerning the waveform.
  • FIG. 1 shows a schematic diagram of switchgear employing a voice coil actuator
  • FIG. 2 shows a cross-sectional view of one embodiment of a switchgear
  • FIG. 3 is a cross-sectional view of the vacuum module shown in FIG. 2;
  • FIG. 4 shows an enlarged view of the operating mechanism of the embodiment displayed in FIG. 2;
  • FIG. 5 shows an exploded view of the primary components of the operating mechanism
  • FIG. 6 shows a graph illustrating the system voltage vs. time and the dielectric descent of the interrupter
  • FIG. 7 is a schematic view of a circuit that may be used with the present invention.
  • FIG. 8 is a graph illustrating a motion profile that may be used with the present invention.
  • FIG. 9 is an illustration of a voice coil actuator that may be used with the present invention.
  • FIG. 10 is a view of a latching mechanism that may be used with the present invention
  • FIG. 11 is a view of a contact pressure spring mechanism that may be used with the present invention
  • FIG. 12 is a graph illustrating the synchronous timing of an opening operation of a capacitor switch.
  • an incoming power line 2 is coupled in series with a current interrupter 4, thereby allowing the current interrupter 4 to open the line.
  • the line 2 may be opened upon a predetermined command or, in the case of a fault interrupter, if a fault exceeds a predetermined threshold level.
  • One of the contacts of the current interrupter 4 is connected to one end of an operating rod 6.
  • the other end of the operating rod 6 is operatively coupled to an actuator, such as a voice coil actuator 8.
  • the voice coil actuator 8 directly acts upon the operating rod 6 in order to open or close the contacts of the current interrupter 4.
  • the voice coil actuator 8 is a direct drive, limited motion device that uses a magnetic field and a coil winding 10, to produce a force proportional to the current applied to the coil.
  • the electromechanical conversion of the voice coil actuator 8 is governed by the Lorentz Force Principle, which states that if a current-carrying conductor is placed in a magnetic field, a force will act upon it. The magnitude of the force is determined by the equation:
  • F force
  • k is a constant
  • B is the magnetic flux density
  • L is the length of the conductor
  • I is the current in the conductor
  • N is the number of turns of the conductor.
  • control mechanism 12 The current passing through the voice coil winding 10 is controlled by a control mechanism 12. Any commercially available control mechanism 12 could be utilized.
  • suitable control mechanisms 12 include: single loop controllers, programmable logic controllers, or distributed control systems.
  • the control mechanism 12 may be coupled to a feedback device 14, which provides input regarding the position of the operating rod 6.
  • the control mechanism 12 may also be coupled to a latching device 16.
  • the latching device 16 When instructed to secure the operating rod 6 by the control mechanism 12, the latching device 16 fastens the operating rod 6 in its current position.
  • the latching mechanism 16 may be a permanent magnet or mechanical latch that is not coupled to the control device 12.
  • FIG. 2 a cross-sectional view of one of the embodiments of the invention is shown.
  • a one piece, elongated, solidly insulated encapsulation 18 encloses the operating rod 6 and the current interrupter 4.
  • the encapsulation 18 may be formed out of ceramic, porcelain, any suitable epoxy, or any other appropriate solid insulating material.
  • a line side high voltage electrical terminal 22 and a load side high voltage electrical terminal 20 protrude through the solidly insulated enclosure 18, and are coupled to the current interrupter 4.
  • the high voltage electrical terminals 20 and 22 are diametrically disposed, 180 degrees apart, and are parallel with respect to one another.
  • the encapsulation 18 provides both the solid insulation between the high voltage electrical terminals 20 and 22 and the solid insulation between each high voltage electrical terminal 20 and 22 and electrical ground (not shown) .
  • the current interrupter 4 includes a vacuum module or bottle 24, shown in cross section in FIG. 3, with a pair of switch contacts 71, 72. disposed within the vacuum module 24.
  • the vacuum module 24 provides a housing and an evacuated environment for the operation of the pair of switch contacts.
  • the module 24 is usually constructed from an elongated, generally tubular, evacuated, ceramic casing 73, preferably formed from alumina.
  • One of the switch contacts 71 is movable, and the other switch contact 72 is stationary or fixed.
  • a special fitting 76 is attached to the stem of the stationary contact 72, permitting the associated high voltage electrical terminal 22 to exit at a 90° angle.
  • the movable switch contact 71 is fastened to the uppermost, longitudinal end of the operating rod 6.
  • One method of fastening is to use a stud 32 threaded into a tapped connection 74 in the moving stem 75 of the movable contact 71.
  • the current interrupter 4 further includes a current exchange assembly and an interface 26 between the vacuum module 24 and the current exchange assembly.
  • the current exchange assembly contains a moving piston 28 and a fixed outer housing 30.
  • the operating rod 6 is made from an electrically insulated material.
  • the other end of the operating rod 6 is secured to a flange 34 on the voice coil actuator 8 by a rigid pin 36.
  • the pin 36 which retains the foregoing components in position, can be secured by any suitable means, such as a pair of retaining rings.
  • a recirculating linear ball bearing 38 and split rings 40 which hold the ball bearing, provide smooth movement of the operating rod 6.
  • the voice coil winding 10 is disposed between the outer body of the voice coil actuator 8 and the flange 34.
  • Side flanges 42 are attached to the outer body of the voice coil actuator 8, and connect to side brackets 44, thereby securely fastening the voice coil actuator 8 to a protective case 46.
  • the protective case 46 is attached to a lid 50 for the protective case 46 via housing flanges 48, and the protective case lid 50 is connected to the solid insulation enclosure 18 via lid flanges 52.
  • the protective case 46 is also formed out of ceramic, porcelain, any suitable epoxy, or any other appropriate solid insulating material.
  • the feedback device 14 is a position sensor, such as a linear potentiometer 14.
  • the linear potentiometer 14 can be made from a three-terminal rheostat or a resistor with one or more adjustable sliding contacts, thereby functioning as an adjustable voltage divider.
  • the linear potentiometer 14 provides information regarding the position of the operating rod 6 to the control mechanism 12, which controls the voice coil actuator 8.
  • the feedback device 14 may be an optical encoder.
  • the latching device 16 is intended to secure the operating rod 6.
  • the latching device may be a controllable device, such as an electromagnet, or a simple mechanical or permanent magnet latch including: a latching magnet 54, a spacer 56 made from nonferrous material, a bolt 58 securing the latching magnet 54 to the protective case lid 50, a latch plate 60 made from steel or iron, and a latch plate pin 62 securing the latch plate 60 to the operating rod 6.
  • FIGS. 4 and 5 shows an enlarged view of the operating mechanism of the preferred embodiment displayed in FIG. 2
  • FIG. 5 shows an exploded view of the primary components of the operating mechanism. Details concerning the control mechanism of the present invention will now be described.
  • FIG. 6 illustrates a voltage signal 100 plotted on a graph comparing the voltage level v(t) versus time t.
  • each half cycle is ideally 8.33 ms.
  • actual cycles may vary due to harmonics or assymetric conditions so that a given half cycle may be greater than or less than 8.33 ms.
  • the contacts of the interrupter are ideally closed instantaneously at the null points when v(t) equals zero. See point A in FIG. 6.
  • the timing of the initiation of the opening and closing sequences should be carefully controlled in order to minimize transients and arcing.
  • FIG. 7 A preferred embodiment of a control circuit 200 for use with the present invention is illustrated in FIG. 7.
  • a microprocessor 202 that is suitable for use in a broad temperature range.
  • the voltage waveform of the power line being controlled by the interrupter 4 is analyzed with a voltage waveform analyzer 204, a phase lock loop circuit 206, and a V zero crossing detection circuit 208.
  • Information concerning the voltage waveform of the line to be interrupted, including the timing of null points A wherein the voltage v(t) is zero, is input to the microprocessor 202.
  • a voltage waveform analyzer 204 could be used that measures the voltage waveform directly off the line without the phase lock loop circuit 206.
  • Open and close commands are input to the microprocessor 202 via inputs 210 and 212, respectively.
  • the open and close commands may be created manually, may be initiated at preset times by a clock, may be initiated by an external control, or may be triggered by the detection of a fault, depending on the particular application of the interrupter 4.
  • a reset signal 214 may be input to the microprocessor 202 to manually reset the microprocessor 202 when necessary. For example, if the interrupter 4 is manually manipulated, the microprocessor 202 may not be set to the current status of the interrupter 4. In such a situation, the microprocessor 202 should be reset. Status indicators may be provided to indicate various conditions of the circuit 200 or the interrupter 4. Such indicators may include a maintenance light 216 to indicate when maintenance is required, a power on light 218, a switch open indicator 220, a switch closed indicator 222, and a counter 224 that may be used to count cycles or operations of the system.
  • a preferred embodiment of the present invention may include two control systems.
  • a first control system is conventional, and thus not disclosed herein in detail, and determines when the line controlled by the interrupter 4 is to be opened or closed.
  • the first control system may include a fault detector or a timer for interrupting the line upon the detection of a fault, or at a predetermined time.
  • an open or close command may be input directly to the system.
  • the open and close commands whether originating from the first control system or manually, are input to the microprocessor 202 at inputs 210 and 212, respectively.
  • the second control system 200 illustrated in FIG. 7, analyzes the voltage waveform of the line and determines the best time for initiating opening and closing the interrupter 4 in order to minimize transients and arcing.
  • Each interrupter 4 has a dielectric strength that defines the likelihood of an arc jumping from one contact to another.
  • the dielectric strength depends upon a number of factors including the medium inside the interrupter 4 and the distance between the contacts 71, 72.
  • FIG. 6 illustrates the changing or descent of the dielectric strength between the contacts 71, 72 versus time as the distance between the contacts closes. See line C in FIG. 6.
  • the dielectric strength between the contacts would be infinite until the exact moment of closing of the contacts 71, 72. See line B in FIG. 6.
  • the dielectric slopes downward, reducing quickly as the contacts approach each other. See line C in FIG. 6. If the slope of the dielectric descent is sufficiently high, and the dielectric strength remains greater than the voltage of the waveform, the generation of arcing and transients is eliminated or significantly reduced.
  • FIG. 8 illustrates an example of a motion profile, wherein the abscissa represents the location of the moving contact 71 and the ordinate represents the velocity at which the contact 71 is moving.
  • Point 0 on the abscissa represents the starting or maximum open position of the contact 71, and point x represents the closed position, wherein the contact 71 is touching the stationary contact 72.
  • the velocity is zero.
  • the velocity is increased as quickly a possible to a maximum velocity V max .
  • the velocity remains at V max for as long as possible, but is then reduced as the point of contact x approaches in order to minimize bounce.
  • the motion profile is also important to prevent the occurrence of restrikes or re-ignitions shortly after opening. If the contacts separate at too slow a speed, or at a time when the voltage level is too high, excessive arcing may occur. Desired motion profiles for opening and closing sequences can be determined by those of skill in the art and preprogrammed into the circuit 200.
  • FIG. 12 relates to the opening sequence of a system that includes a capacitor bank.
  • Line 4 indicates the voltage level of the fully charged capacitors.
  • the switch begins to open at point 2, and an arc forms. However, at this point, the current is decaying and the arc is extinguished at current zero, point 3.
  • the system voltage is now at its peak, but the voltage across the contacts is small because of the charge on the capacitor bank, which approximates the peak system voltage.
  • the voltage on the capacitor bank stays high, resulting in an increase in the voltage across the contacts.
  • the contacts should part with enough acceleration so that the dielectric rises faster than the escalating voltage between the contacts in order to avoid restrikes and re- ignitions.
  • the motion control function can be achieved by means of software loaded into the microprocessor/microcontroller or by the addition of dedicated motion control chips which interface with the microprocessor.
  • a particular motion profile is programmed into a memory, which may be a separate EEPROM chip in an external motion control circuit 226, or onboard memory on the microprocessor or microcontroller.
  • the motion control circuit 226 is connected to the feedback device (encoder) 14 and to a pulse width modulation (PWM) circuit 228.
  • PWM pulse width modulation
  • the PWM 228 controls the current that is applied to the voice coil actuator 8. Since the force driving the voice coil actuator 8 is proportional to the current supplied to the voice coil actuator 8, the velocity of the actuator 6 (and the moving contact 71) is controlled by the PWM 228.
  • the voice coil actuator 8 is controlled by a closed loop feedback system that includes the position encoder 14 that sends a position signal of the actuator 8 to the motion control circuit 226.
  • the motion control circuit 226 compares the actual position of the actuator 8 to the ideal motion profile preprogrammed into the motion control circuit 226. Based on the comparison of the actual position to the ideal motion profile, the voice coil actuator 8 is controlled by the PWM so that its motion closely approximates the ideal intended motion.
  • Control of the actuator is further modified by the circuits 204, 206, 208 that monitor that actual voltage waveform of the line to be interrupted. For example, for a particular application, it may be determined that the contacts 71, 72 should open or close within 1 ms of the zero crossing A (FIG. 6) of the voltage signal v(t) .
  • the ideal motion profile preprogrammed into the motion control circuit 226 includes the total reaction and travel time of the actuator 8 from the time an initiating signal is sent to the time the contacts 71, 72 close.
  • the microprocessor analyzes the actual voltage waveform of the line to be interrupted and determines a specific time between null points at which the initiating signal should be sent.
  • the circuits 204, 206, 208 first establish the actual cycle period and the resulting length of time between zero crossings.
  • the control circuit 200 then initiates operation of the voice coil actuator 8 at a time after a zero crossing that is equal to the actual time between null crossings minus the reaction and travel time of the actuator 8.
  • the opening sequence is initiated at 1.3 ms after a zero crossing.
  • the system may assume that the actual time between zero crossings is 8.33 ms, and the initiation is calculated based on that assumption.
  • a plurality of motion profiles can be preprogrammed into the circuit 200, and the appropriate motion profile can be selected by an input from the operator.
  • the actual motion of the actuator 8 is monitored by the encoder 14 and compared against the ideal motion profile.
  • the current applied to the actuator 8 is adjusted by the PWM 228 based on the comparison of the actual movement of the actuator 8 to the ideal motion profile.
  • FIG. 9 illustrates another embodiment of a voice coil actuator 308 that may be used with any of the embodiments of the present invention.
  • the voice coil actuator 308 includes a ring shaped magnet 310, which is preferably a 4 MGO ceramic magnet.
  • the magnet 310 is housed with a bottom pole piece 312 and a top pole piece 314. These pole pieces are formed from ferromagnetic materials, such as iron or steel.
  • the pole pieces 312, 314 include a central aperture 316 through which an operating rod 318 extends.
  • the operating rod 318 is supported in the pole pieces 312, 314 with self-lubricating polymer bearings 320, such as IGUSTM bearings 320.
  • An aluminum plate 328 is fixed to the rod 318.
  • a coil 330 extends from the plate 328 into an air groove 332 formed between the bottom pole piece 312 and the magnet 310.
  • the coil 330 may be formed from flattened wire so as to maximize the number of turns that will fit within the air groove 332.
  • the actuator 308 may be driven by a 24 volt battery, or any other suitable power source, including an autoranging AC to DC converter.
  • the operating rod 318 may include a groove 320 within which is located a ball 322. See FIG. 10.
  • a spring 324 and cap 326 urge the ball 322 into the groove 320 to retain the rod 318 in a fixed position.
  • the rod 318 may be freed from the ball 322 upon the application of a force, the level of which depends on the strength of the spring 324.
  • a spring 340 may be applied to the rod 6 (or 318) to urge the contact 71 against the contact 72 with a predetermined force, such as 60 - 100 pounds.
  • the spring may be compressed by the action of the actuator.
  • the operating rod 6, 318 may include a flange 342 that provides a surface against which the spring 340 presses.
  • Another abutment surface 344 may be provided to support the opposite end of the spring 340.
  • the spring 340 provides the additional benefit of maintaining an adequate force between the two contacts 71, 72. For example, after repeated operations, arcing may cause the contacts to wear. Because of the spring force, the two contacts are urged against each other, even if they have become worn. In addition, the application of the force causes a reduction in the electrical resistance between the contacts in the closed position, thereby reducing heat losses. If the contacts become worn, the operating rod 6, 318 will move a greater distance in order to accommodate the wear. Since the position sensor 14 senses the distance moved by the operating rod 6, 318, the system can be programmed to illuminate the maintenance signal 216, or some other indicator, to indicate that excessive wear has occurred on the contacts 71, 72. The system can also modify its motion profile to allow for such incremental increases in stroke.

Abstract

Un interrupteur de courant (4) comprend un dispositif interrupteur de courant (4) ayant au moins un contact mobile (71); un dispositif d'actionnement (8) couplé au contact mobile (71) de l'interrupteur de courant (4); un détecteur de rétroaction (14) pour surveiller le mouvement du dispositif d'actionnement (8); et un système de commande (12) couplé au détecteur de rétroaction (14) pour recevoir une information du détecteur de rétroaction (4) concernant le mouvement du dispositif d'actionnement (8) et pour commander le mouvement du dispositif d'actionnement (8) sur la base de cette information. L'interrupteur (14) comporte en outre une mémoire (202) pour enregistrer un profil de mouvement souhaité du dispositif d'actionnement (8); et un microprocesseur (202) pour comparer le mouvement du dispositif d'actionnement (8) avec le profil de mouvement souhaité et pour commander le mouvement du dispositif d'actionnement (8) en fonction également de la comparaison du mouvement du dispositif d'actionnement (8) avec le profil de mouvement souhaité. L'interrupteur (4) comprend en outre un détecteur (204) pour détecter la forme d'une tension dans une ligne destinée à être interrompue et fournir une information concernant la forme de la tension au système de commande (12). Dans cet appareil, le système de commande (12) commande le mouvement du dispositif d'actionnement (8) également en fonction de l'information concernant la forme de la tension.
PCT/US1996/007114 1995-05-15 1996-05-15 Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation WO1996036982A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP96915870A EP0830699B2 (fr) 1995-05-15 1996-05-15 Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation
AU57527/96A AU697096C (en) 1995-05-15 1996-05-15 Control method and device for a switchgear actuator
CA002219282A CA2219282C (fr) 1995-05-15 1996-05-15 Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation
DE69619367T DE69619367T3 (de) 1995-05-15 1996-05-15 Steuerungsverfahren und -vorrichtung für schalterantrieb
JP53507296A JP3759751B2 (ja) 1995-05-15 1996-05-15 開閉装置の操作装置用の制御方法および装置
MX9708859A MX9708859A (es) 1995-05-15 1996-05-15 Metodo de control y dispositivo para un actuador de aparato conmutador.
US08/945,384 US6331687B1 (en) 1995-05-15 1996-05-15 Control method and device for a switchgear actuator
BR9608875A BR9608875A (pt) 1995-05-15 1996-05-15 Método de controle e dispositivo para um atuador de chave a óleo
TW085110432A TW315477B (fr) 1995-05-15 1996-08-27
HK99100583A HK1015526A1 (en) 1995-05-15 1999-02-11 Control method and device for a switchgear actuator
US09/343,094 US6538347B1 (en) 1995-05-15 1999-06-30 Electrical switchgear with synchronous control system and actuator
US10/301,678 US6921989B2 (en) 1995-05-15 2002-11-22 Electrical switchgear with synchronous control system and actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44078395A 1995-05-15 1995-05-15
US08/440,783 1995-05-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US44078395A Continuation-In-Part 1995-05-15 1995-05-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09343094 A-371-Of-International 1996-05-15
US10/301,678 Division US6921989B2 (en) 1995-05-15 2002-11-22 Electrical switchgear with synchronous control system and actuator

Publications (1)

Publication Number Publication Date
WO1996036982A1 true WO1996036982A1 (fr) 1996-11-21

Family

ID=23750169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/007114 WO1996036982A1 (fr) 1995-05-15 1996-05-15 Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation

Country Status (12)

Country Link
EP (1) EP0830699B2 (fr)
JP (2) JP3759751B2 (fr)
KR (1) KR100438526B1 (fr)
CN (1) CN1085398C (fr)
BR (1) BR9608875A (fr)
CA (1) CA2219282C (fr)
DE (1) DE69619367T3 (fr)
ES (1) ES2173282T5 (fr)
HK (1) HK1015526A1 (fr)
MX (1) MX9708859A (fr)
TW (1) TW315477B (fr)
WO (1) WO1996036982A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0883145A1 (fr) * 1997-06-04 1998-12-09 Gec Alsthom T & D Sa Méthode de contrÔle et diagnostic du fonctionnement d'un appareillage électrique à haute tension
EP0974993A2 (fr) * 1998-06-25 2000-01-26 Cooper Industries, Inc. Appareil de commutation avec système de commande synchrone
WO2000010186A1 (fr) * 1998-08-14 2000-02-24 Abb Patent Gmbh Element d'entrainement pour l'element de contact mobile d'un commutateur de puissance haute tension
EP1006537A1 (fr) * 1998-12-03 2000-06-07 ABB Research Ltd. Dispositif pour la commande d'un appareil de commutation électrique et procédé associé
WO2001001429A2 (fr) * 1999-06-30 2001-01-04 Mcgraw-Edison Company Appareillage de commutation electrique a controleur et actionneur synchrones
EP1069579A1 (fr) * 1999-07-14 2001-01-17 ABB Research Ltd. Dispositif d'actionnement et de commande pour appareillage de commutation électrique
WO2001027951A1 (fr) * 1999-10-08 2001-04-19 Siemens Aktiengesellschaft Procede d'homogeneisation de l'usure globale des contacts d'un appareil de distribution electromagnetique et appareil de distribution electromagnetique correspondant
EP1109185A2 (fr) * 1999-12-17 2001-06-20 Siemens Aktiengesellschaft Disjoncteur haute tension
EP1111639A1 (fr) * 1999-12-23 2001-06-27 ABB T&D Technology Ltd. Dispositif et procédé pour commander l'ouverture et la fermeture d'un appareil de commutation électrique
US6331687B1 (en) 1995-05-15 2001-12-18 Cooper Industries Inc. Control method and device for a switchgear actuator
EP1402548A1 (fr) * 2001-06-01 2004-03-31 Hubbell Incorporated Dispositif d'interruption de circuits electriques
WO2004084387A1 (fr) * 2003-03-17 2004-09-30 Siemens Aktiengesellschaft Entrainement lineaire magnetique
FR2865572A1 (fr) * 2004-01-23 2005-07-29 Alstom T & D Sa Dispositif de commande de dispositif de coupure d'energie electrique
US7151353B2 (en) 2000-09-18 2006-12-19 Abb Ab Switching device
US7215228B2 (en) 2001-06-01 2007-05-08 Hubbell Incorporated Circuit interrupting device with a turnbuckle and weld break assembly
CN101908435A (zh) * 2010-08-05 2010-12-08 西安通大思源电器有限公司 一种永磁操动的长寿命真空断路器
FR2971883A1 (fr) * 2011-02-23 2012-08-24 Dauphinoise Const Elect Mec Dispositif et procede de controle d'un signal de commande destine a un sectionneur
EP2851920A4 (fr) * 2012-04-26 2016-01-06 Toshiba Inc Kk Mécanisme d'actionnement et dispositif de commutation électrique le comprenant
US9673005B2 (en) 2013-11-01 2017-06-06 Hitachi, Ltd. Switchgear
EP2538429B1 (fr) 2011-06-24 2019-10-16 Tavrida Electric Holding AG Procédé et appareil de contrôle de fonctionnement de disjoncteur
EP3561838B1 (fr) 2018-04-25 2020-12-02 GE Aviation Systems Limited Contacteur de passage à zéro et son procédé de fonctionnement

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062944A (ja) * 2000-08-18 2002-02-28 Alps Electric Co Ltd 車載用入力装置
US8450630B2 (en) 2007-06-05 2013-05-28 Cooper Technologies Company Contact backing for a vacuum interrupter
US7999416B2 (en) * 2008-04-14 2011-08-16 Emergie H. T. International Inc. Module for controlling a switch in a high voltage electrical substation
CN102013355B (zh) * 2010-08-05 2013-05-01 西安通大思源电器有限公司 一种提高永磁操动真空断路器寿命的控制方法
JP5606289B2 (ja) * 2010-11-17 2014-10-15 株式会社東芝 開閉器の状態検知装置および状態検知装置の取付方法
AU2011372573B2 (en) 2011-07-07 2015-10-29 Mitsubishi Electric Corporation Electromagnetic control device
CA2854438C (fr) * 2011-11-03 2018-12-11 Hubbell Incorporated Systeme de commande pour commutateur de condensateur synchrone
CN103377860B (zh) * 2012-04-20 2017-03-01 施耐德电器工业公司 断路器及监测断路器触头磨损程度的方法
EP2674951B1 (fr) * 2012-06-11 2018-08-08 ABB Oy Appareil de commutation de courant électrique
US9934923B2 (en) * 2013-12-13 2018-04-03 Te Connectivity Corporation Relay with integral phase controlled switching
EP3270398B1 (fr) * 2016-07-12 2021-04-07 ABB Schweiz AG Actionneur pour un disjoncteur moyenne tension
CN106935438B (zh) * 2017-03-08 2020-03-13 平高集团有限公司 一种磁力操动机构控制方法及控制装置
CN107068484B (zh) * 2017-06-05 2020-12-25 西安交通大学 一种基于植物油的高压直流快速开关及其分断方法
JP6766019B2 (ja) * 2017-08-29 2020-10-07 株式会社日立産機システム 真空開閉装置及びその異常監視方法
EP3503150B1 (fr) * 2017-12-21 2024-02-14 ABB Schweiz AG Procédé de fonctionnement de l'entraînement d'un interrupteur sous vide et interrupteur sous vide lui-même
CN112437966A (zh) * 2018-07-31 2021-03-02 松下知识产权经营株式会社 控制系统和断路系统
CN110491731A (zh) * 2019-09-26 2019-11-22 河南宏泽电子科技有限公司 交流接触器的驱动和动作信号反馈机构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562682A (en) * 1968-06-10 1971-02-09 Tokyo Shibaura Electric Co Vacuum switching apparatus
US3792390A (en) * 1973-05-29 1974-02-19 Allis Chalmers Magnetic actuator device
US3917987A (en) * 1973-12-28 1975-11-04 Fujitsu Ltd Voice coil motor control system
US3946277A (en) * 1974-08-28 1976-03-23 Lange George M Zero current switching circuitry
US4027203A (en) * 1975-03-06 1977-05-31 Mcgraw-Edison Company Protective switch device for electrical distribution systems
USRE30134E (en) * 1975-05-22 1979-10-30 Esco Manufacturing Company Protection of polyphase equipment
US4247879A (en) * 1978-04-19 1981-01-27 Westinghouse Electric Corp. People protecting ground fault circuit breaker utilizing waveform characteristics
US4429197A (en) * 1979-12-15 1984-01-31 Kabushiki Kaisha Meidensha Vacuum power interrupting device
US4725799A (en) * 1986-09-30 1988-02-16 Westinghouse Electric Corp. Circuit breaker with remote control

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1640586A1 (de) 1968-02-12 1970-12-17 Inst Prueffeld Fuer Elek Sche Verfahren und Einrichtung zur synchronen Steuerung eines Wechselstromschalters,insbesondere eines Hochspannungsleistungsschalters
DE2601799A1 (de) * 1976-01-20 1977-07-21 Licentia Gmbh Schaltanordnung zur betaetigung eines elektromagnetsystems
US4387280A (en) * 1978-05-29 1983-06-07 General Electric Company High speed hydraulically-actuated operating system for an electric circuit breaker
DE3110314A1 (de) 1980-07-31 1982-04-01 LGZ Landis & Gyr Zug AG, 6301 Zug System und einrichtung zur betaetigung eines elektromagneten
DE3224165A1 (de) 1982-06-29 1983-12-29 Brown, Boveri & Cie Ag, 6800 Mannheim Elektromagnetische vorrichtung zum antrieb eines gekapselten schaltgeraetes fuer mittelspannungs- oder hochspannungsschalt- und -verteileranlagen
DE3905822A1 (de) 1989-02-22 1990-08-23 Siemens Ag Verfahren zum betrieb eines leistungsschalters
DE4005532A1 (de) 1990-02-19 1991-08-22 Siemens Ag Generator-leistungsschalter
DE4105697C2 (de) 1991-02-21 1995-11-02 Eaw Schaltgeraete Gmbh Synchronisiert schaltendes Vakuumschütz mit Einzelantrieb
US5255152A (en) * 1991-08-21 1993-10-19 Eaton Corporation Controller for fixed-time pull-in of a relay
DE4141564C2 (de) 1991-12-17 1998-10-15 Abb Patent Gmbh Antrieb für Schaltgeräte
EP0594830A4 (fr) * 1992-05-12 1994-11-23 Square D Co Systeme de surveillance du fonctionnement d'un coupe-circuit et systeme d'alarme prevenant d'un besoin de maintenance a titre preventif.
US5361184A (en) * 1992-10-20 1994-11-01 Board Of Regents Of The University Of Washington Adaptive sequential controller

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562682A (en) * 1968-06-10 1971-02-09 Tokyo Shibaura Electric Co Vacuum switching apparatus
US3792390A (en) * 1973-05-29 1974-02-19 Allis Chalmers Magnetic actuator device
US3917987A (en) * 1973-12-28 1975-11-04 Fujitsu Ltd Voice coil motor control system
US3946277A (en) * 1974-08-28 1976-03-23 Lange George M Zero current switching circuitry
US4027203A (en) * 1975-03-06 1977-05-31 Mcgraw-Edison Company Protective switch device for electrical distribution systems
USRE30134E (en) * 1975-05-22 1979-10-30 Esco Manufacturing Company Protection of polyphase equipment
US4247879A (en) * 1978-04-19 1981-01-27 Westinghouse Electric Corp. People protecting ground fault circuit breaker utilizing waveform characteristics
US4429197A (en) * 1979-12-15 1984-01-31 Kabushiki Kaisha Meidensha Vacuum power interrupting device
US4725799A (en) * 1986-09-30 1988-02-16 Westinghouse Electric Corp. Circuit breaker with remote control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0830699A4 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538347B1 (en) 1995-05-15 2003-03-25 Mcgraw-Edison Company Electrical switchgear with synchronous control system and actuator
US6291911B1 (en) 1995-05-15 2001-09-18 Cooper Industries, Inc. Electrical switchgear with synchronous control system and actuator
US6331687B1 (en) 1995-05-15 2001-12-18 Cooper Industries Inc. Control method and device for a switchgear actuator
US6023404A (en) * 1997-06-04 2000-02-08 Gec Alsthom T & D Sa Method of monitoring and diagnosing the operation of high voltage electrical apparatus
EP0883145A1 (fr) * 1997-06-04 1998-12-09 Gec Alsthom T & D Sa Méthode de contrÔle et diagnostic du fonctionnement d'un appareillage électrique à haute tension
FR2764431A1 (fr) * 1997-06-04 1998-12-11 Gec Alsthom T & D Sa Methode de controle et diagnostic du fonctionnement d'un appareillage electrique a haute tension
EP0974993A3 (fr) * 1998-06-25 2000-07-12 Cooper Industries, Inc. Appareil de commutation avec système de commande synchrone
EP0974993A2 (fr) * 1998-06-25 2000-01-26 Cooper Industries, Inc. Appareil de commutation avec système de commande synchrone
AU732787B2 (en) * 1998-06-25 2001-04-26 Cooper Industries, Inc. Electrical switchgear with synchronous control system and actuator
WO2000010186A1 (fr) * 1998-08-14 2000-02-24 Abb Patent Gmbh Element d'entrainement pour l'element de contact mobile d'un commutateur de puissance haute tension
EP1006537A1 (fr) * 1998-12-03 2000-06-07 ABB Research Ltd. Dispositif pour la commande d'un appareil de commutation électrique et procédé associé
WO2001001429A2 (fr) * 1999-06-30 2001-01-04 Mcgraw-Edison Company Appareillage de commutation electrique a controleur et actionneur synchrones
WO2001001429A3 (fr) * 1999-06-30 2001-07-26 Mc Graw Edison Co Appareillage de commutation electrique a controleur et actionneur synchrones
US6750567B1 (en) 1999-07-14 2004-06-15 Abb Research Ltd Actuation and control device for electric switchgear
EP1069579A1 (fr) * 1999-07-14 2001-01-17 ABB Research Ltd. Dispositif d'actionnement et de commande pour appareillage de commutation électrique
WO2001006528A1 (fr) * 1999-07-14 2001-01-25 Abb Research Ltd Actionneur et dispositif de commande de commutateur electrique
WO2001027951A1 (fr) * 1999-10-08 2001-04-19 Siemens Aktiengesellschaft Procede d'homogeneisation de l'usure globale des contacts d'un appareil de distribution electromagnetique et appareil de distribution electromagnetique correspondant
EP1109185A3 (fr) * 1999-12-17 2003-08-06 Siemens Aktiengesellschaft Disjoncteur haute tension
EP1109185A2 (fr) * 1999-12-17 2001-06-20 Siemens Aktiengesellschaft Disjoncteur haute tension
WO2001048775A1 (fr) * 1999-12-23 2001-07-05 Abb T&D Technology Ltd. Dispositif de commande d'un appareillage de commutation electrique et procede associe
EP1111639A1 (fr) * 1999-12-23 2001-06-27 ABB T&D Technology Ltd. Dispositif et procédé pour commander l'ouverture et la fermeture d'un appareil de commutation électrique
US6859350B1 (en) 1999-12-23 2005-02-22 Abb Technology Ag Device for controlling an electric switchgear and related method
US7151353B2 (en) 2000-09-18 2006-12-19 Abb Ab Switching device
EP1402548A1 (fr) * 2001-06-01 2004-03-31 Hubbell Incorporated Dispositif d'interruption de circuits electriques
AU2006201687B2 (en) * 2001-06-01 2008-03-13 Hubbell Incorporated Electrical circuit interrupting device
EP1402548A4 (fr) * 2001-06-01 2005-03-16 Hubbell Inc Dispositif d'interruption de circuits electriques
EP2256775A3 (fr) * 2001-06-01 2014-05-14 Hubbell Incorporated Dispositif d'interruption de circuits électriques
AU2006201685B2 (en) * 2001-06-01 2008-03-13 Hubbell Incorporated Electrical circuit interrupting device
AU2002310200B2 (en) * 2001-06-01 2006-05-04 Hubbell Incorporated Electrical circuit interrupting device
US7215228B2 (en) 2001-06-01 2007-05-08 Hubbell Incorporated Circuit interrupting device with a turnbuckle and weld break assembly
AU2006201684B2 (en) * 2001-06-01 2007-11-22 Hubbell Incorporated Electrical circuit interrupting device
WO2004084387A1 (fr) * 2003-03-17 2004-09-30 Siemens Aktiengesellschaft Entrainement lineaire magnetique
WO2005076303A1 (fr) * 2004-01-23 2005-08-18 Areva T & D Sa Dispositif de commande de dispositif de coupure d'energie electrique
US7642478B2 (en) 2004-01-23 2010-01-05 Areva T&D Sa Device for controlling an electric power cutoff device
FR2865572A1 (fr) * 2004-01-23 2005-07-29 Alstom T & D Sa Dispositif de commande de dispositif de coupure d'energie electrique
CN101908435A (zh) * 2010-08-05 2010-12-08 西安通大思源电器有限公司 一种永磁操动的长寿命真空断路器
FR2971883A1 (fr) * 2011-02-23 2012-08-24 Dauphinoise Const Elect Mec Dispositif et procede de controle d'un signal de commande destine a un sectionneur
WO2012114013A1 (fr) * 2011-02-23 2012-08-30 Societe Dauphinoise De Constructions Electromecaniques Dispositif et procede de controle d'un signal de commande destine a un sectionneur
EP2538429B1 (fr) 2011-06-24 2019-10-16 Tavrida Electric Holding AG Procédé et appareil de contrôle de fonctionnement de disjoncteur
EP2851920A4 (fr) * 2012-04-26 2016-01-06 Toshiba Inc Kk Mécanisme d'actionnement et dispositif de commutation électrique le comprenant
US9673005B2 (en) 2013-11-01 2017-06-06 Hitachi, Ltd. Switchgear
EP3561838B1 (fr) 2018-04-25 2020-12-02 GE Aviation Systems Limited Contacteur de passage à zéro et son procédé de fonctionnement
US11189449B2 (en) 2018-04-25 2021-11-30 Ge Aviation Systems Limited Zero crossing contactor and method of operating
US11664180B2 (en) 2018-04-25 2023-05-30 Ge Aviation Systems Limited Zero crossing contactor and method of operating

Also Published As

Publication number Publication date
ES2173282T5 (es) 2006-03-16
CN1085398C (zh) 2002-05-22
KR100438526B1 (ko) 2004-09-10
BR9608875A (pt) 1999-07-06
DE69619367D1 (de) 2002-03-28
HK1015526A1 (en) 1999-10-15
JPH11505366A (ja) 1999-05-18
TW315477B (fr) 1997-09-11
MX9708859A (es) 1998-03-31
EP0830699B2 (fr) 2005-09-07
JP3759751B2 (ja) 2006-03-29
JP2006054193A (ja) 2006-02-23
EP0830699B1 (fr) 2002-02-20
EP0830699A4 (fr) 1999-04-14
CN1190487A (zh) 1998-08-12
KR19990014777A (ko) 1999-02-25
DE69619367T3 (de) 2006-02-02
ES2173282T3 (es) 2002-10-16
EP0830699A1 (fr) 1998-03-25
AU697096B2 (en) 1998-09-24
CA2219282A1 (fr) 1996-11-21
AU5752796A (en) 1996-11-29
CA2219282C (fr) 2006-08-15
DE69619367T2 (de) 2002-08-14

Similar Documents

Publication Publication Date Title
US6331687B1 (en) Control method and device for a switchgear actuator
CA2219282C (fr) Procede et dispositif de commande pour un dispositf d'actionnement d'un appareil de commutation
US8138440B2 (en) Medium-voltage circuit-breaker
US7317264B2 (en) Method and apparatus to independently control contactors in a multiple contactor configuration
US7508636B2 (en) Hybrid circuit breaker device
US6611413B2 (en) Switching apparatus
US6921989B2 (en) Electrical switchgear with synchronous control system and actuator
EP1662524A2 (fr) Procédé et appareil pour contrôler des contacteurs modulaires asynchrones
US7196434B2 (en) Modular contactor assembly having independently controllable contractors
Dullni A vacuum circuit-breaker with permanent magnetic actuator for frequent operations
CA2459108A1 (fr) Methode et dispositif de commande de contacteurs asynchrones modulaires
US10032589B2 (en) Actuating apparatus for a vacuum interrupter and disconnecting arrangement
AU697096C (en) Control method and device for a switchgear actuator
WO2014048483A1 (fr) Interrupteur électrique à commande par bobine thomson
EP3913647B1 (fr) Système de commutation
EP0147036A1 (fr) Arrangement pour disjoncteur
RU2715393C1 (ru) Приводной механизм для средневольтного автоматического выключателя
WO2020055317A1 (fr) Interrupteur de courant à commande de temps de marche d'actionneur
EP3503150B1 (fr) Procédé de fonctionnement de l'entraînement d'un interrupteur sous vide et interrupteur sous vide lui-même
RU2062551C1 (ru) Плазмоэрозионный размыкатель
IL197132A (en) Medium-voltage circuit breaker
JPH0477534B2 (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195303.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2219282

Country of ref document: CA

Ref document number: 2219282

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996915870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970708120

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1996 535072

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996915870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08945384

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019970708120

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996915870

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970708120

Country of ref document: KR