EP0826802B1 - Process and device for spinning multifilament yarns - Google Patents

Process and device for spinning multifilament yarns Download PDF

Info

Publication number
EP0826802B1
EP0826802B1 EP97113582A EP97113582A EP0826802B1 EP 0826802 B1 EP0826802 B1 EP 0826802B1 EP 97113582 A EP97113582 A EP 97113582A EP 97113582 A EP97113582 A EP 97113582A EP 0826802 B1 EP0826802 B1 EP 0826802B1
Authority
EP
European Patent Office
Prior art keywords
cooling
filaments
zone
cooling zone
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97113582A
Other languages
German (de)
French (fr)
Other versions
EP0826802A1 (en
Inventor
Heinz Dr. Schippers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG, Barmag Barmer Maschinenfabrik AG filed Critical Barmag AG
Publication of EP0826802A1 publication Critical patent/EP0826802A1/en
Application granted granted Critical
Publication of EP0826802B1 publication Critical patent/EP0826802B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods

Definitions

  • the invention relates to a method for spinning a multifilament thread a thermoplastic material and a device for cooling freshly spun Filaments made of a thermoplastic material according to the generic term of claim 1 and the preamble of claim 8.
  • a method and an apparatus of this type are known from US Pat. No. 4,909,976. After that, the filaments are left after leaving the nozzle plate and before cooled down to a thread. You will upon leaving out of the nozzle holes through a first cooling zone, a heating zone and then through led a second cooling zone. In this known method is already in the first cooling zone worked with a high cooling rate. After that the filaments in the heating zone are exposed to hot air exposed. After leaving the heating zone, the filaments are passed through the second cooling zone led where it the glass transition and solidification temperature to reach.
  • the known method is intended to serve the structure and properties of plastic threads using the melt spinning process in the broadest sense to improve, especially the orientation and crystallinity.
  • those emerging from the nozzle plate Filaments in the first cooling zone due to a weak flow of cooling air cooled that the filament skin solidifies first. It can no longer do so come that the molten filament flows away, d. H. Thickening or Forms dilutions.
  • the heating of the filaments in the heating zone by illumination has the surprising effect that it protects the filaments, especially The mechanical stress on the filaments is also reduced because of the reheating the filaments are not made by airflow alone. In this gentle way, the thread in the heating zone is reheated, and to a temperature that is within the plasticizing range of the polymer lies, but below the solidification temperature. This will freeze the frozen ones Molecular chains broken up again, so that the mobility of the molecular chains leads to disorientation.
  • the inventive method has the advantage that the gentle Disorientation an increase in the elongation at break of the thread is achieved and a subsequent stretchability at a given take-off speed of the thread can be increased.
  • the heating can the filaments in the heating zone are also made by blowing; the before mechanical stress on the filaments is then still reduced, because most of the warming is due to the spotlight.
  • Claim 3 is a particularly favorable one for many thermoplastic materials suitable temperature range is highlighted.
  • Claims 4 and 5 show advantageous options, such as the weak one Cooling air flow for the first cooling zone can be caused.
  • Claims 6 and 7 contain advantageous guides of the cooling air flow in the second cooling zone.
  • the advantages of the device according to the invention for cooling freshly spun Filaments according to claim 8 consist in the known three-part of the To maintain cooling section, but advantageous to modify that the Reheating the filaments in the heating zone by one to the Filament-directed radiant heater is made. This reduces the mechanical Strain on the filaments when heated also has a thermal effect gentle heating and is structurally easy to implement.
  • the arrangement of the radiant heater is advantageous on both Side walls of the cooling shaft extended.
  • Filaments advantageously at least partially enveloped by the radiant heater.
  • the advantage is also achieved that the radiant heater heats the returning cooling air.
  • the upper side walls of the cooling shaft are also made, So the side walls of the first cooling zone, permeable to air, so you can the ambient air use for cooling in the first cooling zone.
  • the radiant heaters are heated Reflector plates arranged in the blow duct. It is advantageous here if an already warmed air flow is supplied by the cross-flow blowing becomes. Through the reflector plates, the through the filament bundle cooled air flow heated again and returned to the filament bundle. This ensures high uniformity of the heat treatment of the filaments causes.
  • a spinning system is shown schematically, which consists of a spinning zone I, a stretching zone II and a winding zone III.
  • the extruder 3 is driven by a motor 4.
  • the motor 4 is controlled by a motor controller 8.
  • the extruder it will melted thermoplastic material.
  • the Deformation work that is introduced into the material by the extruder.
  • a heating device 5 in the form of a resistance heater provided, which is controlled by a heating controller 43.
  • Through the Melt line passes the melt to the gear pump 9 through the Pump motor 44 is driven.
  • the melt pressure before the pump will detected by the pressure sensor 7 and by feedback of the pressure signal the engine control 8 kept constant.
  • the pump motor is controlled by the pump controller 45 in such a way that that the pump speed can be adjusted sensitively.
  • the pump 9 promotes the Melt flow to the heated spin box 10, on the underside of which the spinneret 11 is located in a nozzle pot 53. Exits from the spinneret 11 the melt in the form of fine filament strands 12.
  • the Filament strands 12 pass through a cooling shaft 14 of a device for Cooling of the filaments.
  • the device is vertically below the Nozzle plate 11 arranged.
  • the filaments 12 pass through air-impermeable walls limited first cooling zone 46. That a heating zone 47 is then provided, in which the filament strands 12 can be heated by means of a radiator 52.
  • a second cooling zone 48 in which a transverse to A stream of filaments directed through an air-permeable blower wall flows.
  • the device is connected to an air supply 15.
  • the filament sheet is through a Preparation roller 13 combined into a thread 1 and with a Provide the preparation liquid.
  • the thread 1 then enters the Stretching zone II.
  • the string wraps around the trigger godet several times.
  • the overflow roller 17 is free rotatable.
  • the godet 16 is by the godet motor 18 and the Frequency generator 22 driven at a preset speed. This withdrawal speed is many times higher than the natural one Exit speed of the filaments from the spinneret 11.
  • the speed of the take-off godet 16 can be set. This will make the Pull-off speed of the thread 1 from the nozzle plate 11 is determined.
  • the Discharge godet 16 is followed by a stretch godet 19 with a further overflow roller 20. Both correspond in their structure to the deduction godet 16 Overflow roller 17.
  • the stretching motor 21 is used to drive the stretching godet 19 with the frequency transmitter 23.
  • the input frequency of the frequency converters 22 and 23 is controlled by the controllable frequency generator 24 given. In this way, the frequency converter 22 and 23 individually the speed of the take-off godet 16 or the extending godet 19 can be set.
  • the speed level of the trigger godet 16 and Plug-in godet 19, on the other hand, is collected collectively by the frequency converter 24 set.
  • the thread 1 runs into the winding zone III and there to the head thread guide 25 and from there into the traversing triangle 26.
  • the thread then runs into a traversing device (not shown here), the thread by means of guide elements along a traverse stroke and brought here.
  • the traversing device is as Reverse thread roller with a traversing thread guide or as Wing traversing device executable.
  • the runs from the traversing device Thread over a contact roller 28 to the bobbin 33 to be wound Contact roller 28 lies on the surface of the coil 33. It is used for Measurement of the surface speed of the coil 33.
  • the coil 33 is formed on a sleeve 35.
  • the sleeve 35 is on a winding spindle 34 spanned.
  • the spindle 34 is driven by the spindle motor 36 and Spindle control 37 driven such that the surface speed the coil 33 remains constant.
  • the speed of the freely rotatable contact roller 28 on the contact roller shaft 29 by means of a ferromagnetic insert 30 and a magnetic pulse generator 31st sensed and corrected.
  • the method according to the invention for spinning a multifilament thread is not limited to the arrangement shown in FIG. 1. Basically is the method can also be carried out in such an arrangement in which the Stretch zone II has only one take-off godet. It is also possible that Spinning zone I can be operated directly with winding zone III, i.e. without godets.
  • FIG. 2 shows a further exemplary embodiment of a device for Cooling of the filaments shown in the spinning zone.
  • a cooling shaft 14 receiving the filaments 12 Blow boxes 54 and 64 arranged on both sides are formed.
  • the blow boxes 54 and 64 have the air-impermeable side walls 51 and 61.
  • Sidewalls 51 and 61 form the first cooling zone.
  • the first cooling zone depends on Polymer type and thread type have a length of approx. 250 mm to 500 mm.
  • the radiant heaters 52.1 - 52.3 and 62.1 - 62.3 are included Distance to each other in the cooling shaft 14 parallel to Filament bundle 12 arranged so that an air inlet between the Radiant heaters in the cooling shaft 14 is possible.
  • the radiant heaters point a surface temperature that is above 400 ° C.
  • Below the The cooling shaft 14 becomes a radiant heater through air-permeable side walls 53 and 50 formed.
  • the blow box 54 and the blow box 64 are each on an air supply 15 connected.
  • the blown air now passes over the gaps between the radiant heaters 52.1 - 52.3 and 62.1 - 62.3 and through the air-permeable blowing wall 53 and 50 into the cooling shaft 14 inside.
  • the preparation roller 13 is below the cooling shaft 14 arranged where the filament bundle 12 merged into a thread 1 becomes.
  • FIG. 3 A cross section of the heating zone of a blow chamber 54 is shown in FIG. 3.
  • the filament bundle 12 passes through the cooling shaft 14 Cooling shaft 14 is limited by the side walls 57 and 58.
  • the blowing chamber 54 with the blowing wall 53 is of such a type transverse to the filament bundle arranged that the inflowing air in the blow chamber 54 through the Blower wall flows across the filaments along side walls 57 and 58.
  • Opposite the blower wall 53 on the opposite side of the A reflector plate 55 is arranged in the filament bundle.
  • the reflector plate is heated by a resistance heating wire 56. This will be a direct one Heating of the filaments and heating of the cooling air flowing back generated.
  • FIG. 4 is a further embodiment of a device for Cooling of the filaments shown in the spinning zone.
  • the arrangement shown is the side walls 51 and 61 of the cooling shaft 14 air permeable directly below the spinneret 11. Likewise, they are Radiant heaters 52.1 - 52.3 arranged on both sides of the filament bundle and 62.1 - 62.3 again arranged at a distance. This enables that the ambient air can flow into the blow duct and thus leads in particular to a better cooling effect in the first cooling zone.
  • the blow box 59 is connected to the air supply 15 connected.
  • the blow walls 53 and 50 are permeable to air, so that a Airflow from the blow chambers 59 and 60 across the filament bundle 12 in flows into the cooling shaft 14.
  • Below the cooling shaft 14 is again a preparation device 13 is arranged to form the thread 1.
  • the second cooling zone 48 is high in the processes Withdrawal speeds are also advantageously designed such that a self-priming air flow is drawn into the blow duct 14. Here active blowing would be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Spinnen eines multifilen Fadens aus einem thermoplastischen Material und eine Vorrichtung zur Kühlung frisch gesponnener Filamente aus einem thermoplastischen Material nach dem Oberbegriff des Anspruchs 1 und dem Oberbegriff des Anspruchs 8.The invention relates to a method for spinning a multifilament thread a thermoplastic material and a device for cooling freshly spun Filaments made of a thermoplastic material according to the generic term of claim 1 and the preamble of claim 8.

Ein Verfahren und eine Vorrichtung dieser Art sind aus der US-PS 4 909 976 bekannt. Danach werden die Filamente nach dem Verlassen der Düsenplatte und vor der Zusammenfassung zu einem Faden abgekühlt. Sie werden bei dem Austritt aus den Düsenlöchern durch eine erste Kühlzone, eine Heizzone und dann durch eine zweite Kühlzone geführt. Bei diesem bekannten Verfahren wird schon in der ersten Kühlzone mit einer großen Abkühlgeschwindigkeit gearbeitet. Danach werden die Filamente in der Heizzone einer Beaufschlagung durch heiße Luft ausgesetzt. Nach dem Verlassen der Heizzone werden die Filamente durch die zweite Kühlzone geführt, wo sie die Glasübergangs- und Erstarrungstemperatur erreichen. Das bekannte Verfahren soll dazu dienen, die Struktur und die Eigenschaften von Kunststoffäden nach dem Schmelzspinnverfahren im weitesten Sinne zu verbessern, insbesondere die Orientierung und Kristallinität.A method and an apparatus of this type are known from US Pat. No. 4,909,976. After that, the filaments are left after leaving the nozzle plate and before cooled down to a thread. You will upon leaving out of the nozzle holes through a first cooling zone, a heating zone and then through led a second cooling zone. In this known method is already in the first cooling zone worked with a high cooling rate. After that the filaments in the heating zone are exposed to hot air exposed. After leaving the heating zone, the filaments are passed through the second cooling zone led where it the glass transition and solidification temperature to reach. The known method is intended to serve the structure and properties of plastic threads using the melt spinning process in the broadest sense to improve, especially the orientation and crystallinity.

Bei der extrem raschen Abkühlung in der ersten Kühlzone des bekannten Verfahrens wirkt eine lebhafte Luftströmung mit hoher Geschwindigkeit auf die Filamente ein. Diese treten in fast noch schmelzflüssigem Zustand in die erste Kühlzone ein und sind dann nicht nur einem großen Temperatursprung, sondern auch den mechanischen Kräften der Luftströmung ausgesetzt. Das muß zu Unregelmäßigkeiten im Querschnitt der Filamente führen. Damit ist das bekannte Verfahren nicht zur Herstellung von Fäden geeignet, die von großer äußerer Gleichmäßigkeit sein sollen. Auch das anschließende Beaufschlagen der Filamente mit heißer Luft bringt eine mechanische Beanspruchung mit sich und ist damit ebenso ungünstig wie ein schroffer Temperaturwechsel.With the extremely rapid cooling in the first cooling zone of the known method a lively air flow acts on the filaments at high speed on. These enter the first cooling zone in an almost molten state and are not just a big jump in temperature, but also exposed to the mechanical forces of the air flow. That must lead to irregularities cross-section of the filaments. This is the known method not suitable for the production of threads with great external uniformity should be. The subsequent application of hot air to the filaments brings with it mechanical stress and is therefore just as unfavorable like a harsh temperature change.

Demgegenüber ist es Aufgabe der Erfindung, ein Verfahren der eingangs genannten Art sowie eine Vorrichtung zur Kühlung der Filamente bei diesem Verfahren derart weiterzubilden, daß ein Faden mit hoher Gleichmäßigkeit und hoher Verstreckfähigkeit, d. h. Reißdehnung, hergestellt wird.In contrast, it is an object of the invention to provide a method of the aforementioned Type and a device for cooling the filaments in this process to develop such that a thread with high uniformity and high Stretchability, d. H. Elongation at break, is produced.

Überraschenderweise hat sich herausgestellt, daß diese Aufgabe in bezug auf das Verfahren mit den Merkmalen des Anspruchs 1 und in bezug auf die Vorrichtung mit den Merkmalen des Anspruchs 8 gelöst wird.Surprisingly, it has been found that this task in relation to the Method with the features of claim 1 and with respect to the device is solved with the features of claim 8.

Bei dem erfindungsgemäßen Verfahren werden die aus der Düsenplatte austretenden Filamente in der ersten Kühlzone durch einen schwachen Kühlluftstrom derart gekühlt, daß zunächst die Filamenthaut erstarrt. Es kann somit nicht mehr dazu kommen, daß das schmelzflüssige Filament zerfließt, d. h. Verdickungen oder Verdünnungen bildet. Die Erwärmung der Filamente in der Heizzone durch Anstrahlung hat die überraschende Wirkung, daß sie die Filamente schont, zumal auch die mechanische Belastung der Filamente verringert ist, weil die Wiedererwärmung der Filamente nicht allein über eine Luftströmung vorgenommen wird. Auf diese schonende Weise wird der Faden in der Heizzone wieder erwärmt, und zwar auf eine Temperatur, die innerhalb des Plastifizierbereiches des Polymers liegt, aber unterhalb der Erstarrungstemperatur. Hierdurch werden die eingefrorenen Molekülketten wieder aufgebrochen, so daß die Beweglichkeit der Molekülketten zu einer Desorientierung führt.In the method according to the invention, those emerging from the nozzle plate Filaments in the first cooling zone due to a weak flow of cooling air cooled that the filament skin solidifies first. It can no longer do so come that the molten filament flows away, d. H. Thickening or Forms dilutions. The heating of the filaments in the heating zone by illumination has the surprising effect that it protects the filaments, especially The mechanical stress on the filaments is also reduced because of the reheating the filaments are not made by airflow alone. In this gentle way, the thread in the heating zone is reheated, and to a temperature that is within the plasticizing range of the polymer lies, but below the solidification temperature. This will freeze the frozen ones Molecular chains broken up again, so that the mobility of the molecular chains leads to disorientation.

Das erfindungsgemäße Verfahren weist den Vorteil auf, daß durch die schonende Desorientierung eine Erhöhung der Reißdehnung des Fadens erreicht wird und damit bei vorgegebener Abzugsgeschwindigkeit eine anschließende Verstreckbarkeit des Fadens erhöht werden kann.The inventive method has the advantage that the gentle Disorientation an increase in the elongation at break of the thread is achieved and a subsequent stretchability at a given take-off speed of the thread can be increased.

Nach der Weiterbildung des Verfahrens gemäß Anspruch 2 kann die Erwärmung der Filamente in der Heizzone zusätzlich auch durch Anblasung erfolgen; die vor allen Dingen mechanische Belastung der Filamente ist dann aber immer noch herabgesetzt, weil der größere Teil der Erwärmung auf das Anstrahlen zurückgeht.After further development of the method according to claim 2, the heating can the filaments in the heating zone are also made by blowing; the before mechanical stress on the filaments is then still reduced, because most of the warming is due to the spotlight.

Mit dem Anspruch 3 ist ein besonders günstiger, für viele thermoplastische Materialien geeigneter Temperaturbereich hervorgehoben.Claim 3 is a particularly favorable one for many thermoplastic materials suitable temperature range is highlighted.

Die Ansprüche 4 und 5 zeigen vorteilhafte Möglichkeiten auf, wie der schwache Kühlluftstrom für die erste Kühlzone hervorgerufen werden kann.Claims 4 and 5 show advantageous options, such as the weak one Cooling air flow for the first cooling zone can be caused.

Die Ansprüche 6 und 7 beinhalten vorteilhafte Führungen des Kühlluftstromes in der zweiten Kühlzone.Claims 6 and 7 contain advantageous guides of the cooling air flow in the second cooling zone.

Die Vorteile der erfindungsgemäßen Vorrichtung zur Kühlung frisch gesponnener Filamente nach Anspruch 8 bestehen darin, die bekannte Dreiteilung der Kühlstrecke zwar beizubehalten, aber dadurch vorteilhaft abzuwandeln, daß die Wiedererwärmung der Filamente in der Heizzone nunmehr durch einen zu den Filamenten gerichteten Heizstrahler erfolgt. Dieser verringert die mechanische Belastung der Filamente beim Erwärmen, bewirkt auch in thermischer Hinsicht ein schonendes Erwärmen und ist konstruktiv einfach zu verwirklichen.The advantages of the device according to the invention for cooling freshly spun Filaments according to claim 8 consist in the known three-part of the To maintain cooling section, but advantageous to modify that the Reheating the filaments in the heating zone by one to the Filament-directed radiant heater is made. This reduces the mechanical Strain on the filaments when heated also has a thermal effect gentle heating and is structurally easy to implement.

Nach dem Anspruch 9 wird die Anordnung der Heizstrahler vorteilhaft auf beide Seitenwände des Kühlschachtes ausgedehnt.According to claim 9, the arrangement of the radiant heater is advantageous on both Side walls of the cooling shaft extended.

Mit der Weiterbildung gemäß Anspruch 10 wird die Möglichkeit aufgezeigt, die Filamente in vorteilhafter Weise zumindest teilweise durch den Heizstrahler einzuhüllen. With the training according to claim 10, the possibility is shown that Filaments advantageously at least partially enveloped by the radiant heater.

Mit der Anordnung nach Anspruch 11 wird darüber hinaus noch der Vorteil erreicht, daß der Heizstrahler eine Erwärmung der rückströmenden Kühlluft bewirkt.With the arrangement according to claim 11, the advantage is also achieved that the radiant heater heats the returning cooling air.

Macht man gemäß Anspruch 12 auch die oberen Seitenwände des Kühlschachtes, also die Seitenwände der ersten Kühlzone, luftdurchlässig, so kann man die Umgebungsluft zur Kühlung in der ersten Kühlzone heranziehen. Durch eine bestimmte Anordnung von Heizstrahlern gemäß Anspruch 13 läßt sich zudem eine Luftströmung in gewünschter Weise erzeugen. If, according to claim 12, the upper side walls of the cooling shaft are also made, So the side walls of the first cooling zone, permeable to air, so you can the ambient air use for cooling in the first cooling zone. By a certain Arrangement of radiant heaters according to claim 13 can also be a Generate air flow in the desired manner.

Die vorteilhafte Weiterbildung, bei der das Filamentbündel eingehüllt wird vom Heizstrahler, führt zu einer besonders gleichmäßigen Erwärmung der Filamente.The advantageous development in which the filament bundle is wrapped from the radiant heater leads to a particularly uniform heating of the Filaments.

Bei einem bevorzugten Ausführungsbeispiel sind die Heizstrahler als beheizte Reflektorbleche im Blasschacht angeordnet. Hierbei ist es vorteilhaft, wenn durch die Querstromanblasung ein bereits erwärmter Luftstrom zugeführt wird. Durch die Reflektorbleche wird der durch das Filamentbündel abgekühlte Luftstrom wieder erwärmt und dem Filamentbündel zurückgeführt. Dadurch wird eine hohe Gleichmäßigkeit der Wärmebehandlung der Filamente bewirkt.In a preferred embodiment, the radiant heaters are heated Reflector plates arranged in the blow duct. It is advantageous here if an already warmed air flow is supplied by the cross-flow blowing becomes. Through the reflector plates, the through the filament bundle cooled air flow heated again and returned to the filament bundle. This ensures high uniformity of the heat treatment of the filaments causes.

Weitere vorteilhafte Verfahrensvarianten sowie Weiterbildungen der Vorrichtungen sind in den Unteransprüchen definiert.Further advantageous process variants and further developments of the Devices are defined in the subclaims.

Im Nachfolgenden werden unter Hinweis auf die beigefügten Zeichnungen einige Ausführungsbeispiele erläutert.The following will refer to the attached drawings some embodiments explained.

Es zeigen:

Fig. 1
das Schema einer Spinnanlage mit Spinnzone I, Streckzone II und Aufwickelzone III zur Herstellung eines glatten Fadens;
Fig. 2
schematisch eine erfindungsgemäße Vorrichtung zum Kühlen der Filamente in der Spinnzone;
Fig. 3
einen Querschnitt durch einen Blasschacht mit Reflektorblech;
Fig. 4
ein Schema einer Vorrichtung zur Kühlung der Filamente in der Spinnzone.
Show it:
Fig. 1
the diagram of a spinning plant with spinning zone I, stretching zone II and winding zone III for the production of a smooth thread;
Fig. 2
schematically an inventive device for cooling the filaments in the spinning zone;
Fig. 3
a cross section through a blow duct with reflector sheet;
Fig. 4
a diagram of a device for cooling the filaments in the spinning zone.

In Fig. 1 ist schematisch eine Spinnanlage gezeigt, die aus einer Spinnzone I, einer Verstreckzone II und einer Aufwickelzone III besteht. Hierbei wird das thermoplastische Material durch eine Fülleinrichtung dem Extruder 3 aufgegeben. Der Extruder 3 ist durch einen Motor 4 angetrieben. Der Motor 4 wird durch eine Motorsteuerung 8 gesteuert. In dem Extruder wird das thermoplastische Material aufgeschmolzen. Hierzu dient zum einen die Verformungsarbeit, die durch den Extruder in das Material eingebracht wird. Zusätzlich ist eine Heizeinrichtung 5 in Form einer Widerstandsheizung vorgesehen, die durch eine Heizsteuerung 43 angesteuert wird. Durch die Schmelzeleitung gelangt die Schmelze zu der Zahnradpumpe 9, die durch den Pumpenmotor 44 angetrieben wird. Der Schmelzedruck vor der Pumpe wird durch den Druckfühler 7 erfaßt und durch Rückführung des Drucksignals auf die Motorsteuerung 8 konstant gehalten.In Fig. 1, a spinning system is shown schematically, which consists of a spinning zone I, a stretching zone II and a winding zone III. Here will the thermoplastic material through a filling device to the extruder 3 given up. The extruder 3 is driven by a motor 4. The motor 4 is controlled by a motor controller 8. In the extruder it will melted thermoplastic material. On the one hand, the Deformation work that is introduced into the material by the extruder. In addition, there is a heating device 5 in the form of a resistance heater provided, which is controlled by a heating controller 43. Through the Melt line passes the melt to the gear pump 9 through the Pump motor 44 is driven. The melt pressure before the pump will detected by the pressure sensor 7 and by feedback of the pressure signal the engine control 8 kept constant.

Der Pumpenmotor wird durch die Pumpensteuerung 45 derart angesteuert, daß die Pumpendrehzahl feinfühlig einstellbar ist. Die Pumpe 9 fördert den Schmelzestrom zu dem beheizten Spinnkasten 10, an dessen Unterseite sich die Spinndüse 11 in einem Düsentopf 53 befindet. Aus der Spinndüse 11 tritt die Schmelze in Form von feinen Filamentsträngen 12 aus. Die Filamentstränge 12 durchlaufen einen Kühlschacht 14 einer Einrichtung zur Abkühlung der Filamente. Die Einrichtung ist senkrecht unterhalb der Düsenplatte 11 angeordnet. Zunächst treten die Filamente 12 in eine durch luftundurchlässige Wände begrenzte erste Kühlzone 46 ein. Daran anschließend ist eine Heizzone 47 vorgesehen, in der die Filamentstränge 12 mittels einem Strahler 52 aufgeheizt werden. Daran anschließend ist in der Vorrichtung eine zweite Kühlzone 48 angeordnet, in der ein quer zur Filamentschar gerichteter Luftstrom durch eine luftdurchlässige Blaswand strömt. Hierzu ist die Einrichtung mit einer Luftzuführung 15 verbunden.The pump motor is controlled by the pump controller 45 in such a way that that the pump speed can be adjusted sensitively. The pump 9 promotes the Melt flow to the heated spin box 10, on the underside of which the spinneret 11 is located in a nozzle pot 53. Exits from the spinneret 11 the melt in the form of fine filament strands 12. The Filament strands 12 pass through a cooling shaft 14 of a device for Cooling of the filaments. The device is vertically below the Nozzle plate 11 arranged. First, the filaments 12 pass through air-impermeable walls limited first cooling zone 46. That a heating zone 47 is then provided, in which the filament strands 12 can be heated by means of a radiator 52. After that is in the Device arranged a second cooling zone 48 in which a transverse to A stream of filaments directed through an air-permeable blower wall flows. For this purpose, the device is connected to an air supply 15.

Am Ende des Kühlschachtes 14 wird die Filamentschar durch eine Präparationswalze 13 zu einem Faden 1 zusammengefaßt und mit einer Präparationsflüssigkeit versehen. Der Faden 1 tritt sodann in die Verstreckzone II ein. Hierbei wird der Faden 1 aus dem Kühlschacht 14 und von der Spinndüse durch eine Abzugsgalette 16 abgezogen. Der Faden umschlingt die Abzugsgalette mehrfach. Dazu dient eine verschränkt zu der Galette 16 angeordnete Überlaufrolle 17. Die Überlaufrolle 17 ist frei drehbar. Die Galette 16 wird durch den Galettenmotor 18 und den Frequenzgeber 22 angetrieben mit einer voreinstellbaren Geschwindigkeit. Diese Abzugsgeschwindigkeit ist um ein Vielfaches höher als die natürliche Austrittsgeschwindigkeit der Filamente aus der Spinndüse 11. Durch Verstellung der Eingangsfrequenz des Frequenzumsetzers 22 kann die Drehzahl der Abzugsgalette 16 eingestellt werden. Hierdurch wird die Abzugsgeschwindigkeit des Fadens 1 von der Düsenplatte 11 bestimmt. Der Abzugsgalette 16 folgt eine Streckgalette 19 mit einer weiteren Überlaufrolle 20. Beide entsprechen in ihrem Aufbau der Abzugsgalette 16 mit Überlaufrolle 17. Zum Antrieb der Streckgalette 19 dient der Streckmotor 21 mit dem Frequenzgeber 23. Die Eingangsfrequenz der Frequenzumsetzern 22 und 23 wird durch den steuerbaren Frequenzgeber 24 gleichmäßig vorgegeben. Auf diese Art und Weise kann an den Frequenzumsetzer 22 und 23 individuell die Drehzahl der Abzugsgalette 16 bzw. der Streckgalette 19 eingestellt werden. Das Geschwindigkeitsniveau der Abzugsgalette 16 und Steckgalette 19 wird dagegen kollektiv von dem Frequenzumsetzer 24 eingestellt. At the end of the cooling shaft 14, the filament sheet is through a Preparation roller 13 combined into a thread 1 and with a Provide the preparation liquid. The thread 1 then enters the Stretching zone II. Here, the thread 1 from the cooling shaft 14 and withdrawn from the spinneret by a take-off godet 16. The string wraps around the trigger godet several times. For this purpose, one interlocks with the Galette 16 arranged overflow roller 17. The overflow roller 17 is free rotatable. The godet 16 is by the godet motor 18 and the Frequency generator 22 driven at a preset speed. This withdrawal speed is many times higher than the natural one Exit speed of the filaments from the spinneret 11. By Adjustment of the input frequency of the frequency converter 22 can The speed of the take-off godet 16 can be set. This will make the Pull-off speed of the thread 1 from the nozzle plate 11 is determined. The Discharge godet 16 is followed by a stretch godet 19 with a further overflow roller 20. Both correspond in their structure to the deduction godet 16 Overflow roller 17. The stretching motor 21 is used to drive the stretching godet 19 with the frequency transmitter 23. The input frequency of the frequency converters 22 and 23 is controlled by the controllable frequency generator 24 given. In this way, the frequency converter 22 and 23 individually the speed of the take-off godet 16 or the extending godet 19 can be set. The speed level of the trigger godet 16 and Plug-in godet 19, on the other hand, is collected collectively by the frequency converter 24 set.

Von der Streckgalette 19 läuft der Faden 1 in die Aufwickelzone III und dort zu dem Kopffadenführer 25 und von dort in das Changierdreieck 26. Der Faden läuft sodann in eine Changiereinrichtung (hier nicht gezeigt), wobei der Faden mittels Führungselementen entlang einem Changierhub hin und her geführt wird. Die Changiereinrichtung ist dabei als Kehrgewindewalze mit einem daran geführten Changierfadenführer oder als Flügelchangiereinrichtung ausführbar. Von der Changiereinrichtung läuft der Faden über eine Kontaktwalze 28 zu der zu wickelnden Spule 33. Die Kontaktwalze 28 liegt auf der Oberfläche der Spule 33 an. Sie dient zur Messung der Oberflächengeschwindigkeit der Spule 33. Die Spule 33 wird auf einer Hülse 35 gebildet. Die Hülse 35 ist auf einer Spulspindel 34 aufgespannt. Die Spindel 34 wird durch den Spindelmotor 36 und die Spindelsteuerung 37 derart angetrieben, daß die Oberflächengeschwindigkeit der Spule 33 konstant bleibt. Hierzu wird als Regelgröße die Drehzahl der frei drehbaren Kontaktwalze 28 an der Kontaktwalzenwelle 29 mittels einer ferromagnetischen Einlage 30 und einem magnetischen Impulsgeber 31 abgetastet und ausgeregelt.From the stretch godet 19, the thread 1 runs into the winding zone III and there to the head thread guide 25 and from there into the traversing triangle 26. The thread then runs into a traversing device (not shown here), the thread by means of guide elements along a traverse stroke and brought here. The traversing device is as Reverse thread roller with a traversing thread guide or as Wing traversing device executable. The runs from the traversing device Thread over a contact roller 28 to the bobbin 33 to be wound Contact roller 28 lies on the surface of the coil 33. It is used for Measurement of the surface speed of the coil 33. The coil 33 is formed on a sleeve 35. The sleeve 35 is on a winding spindle 34 spanned. The spindle 34 is driven by the spindle motor 36 and Spindle control 37 driven such that the surface speed the coil 33 remains constant. For this purpose, the speed of the freely rotatable contact roller 28 on the contact roller shaft 29 by means of a ferromagnetic insert 30 and a magnetic pulse generator 31st sensed and corrected.

Das erfindungsgemäße Verfahren zum Spinnen eines multifilen Fadens beschränkt sich nicht auf die in Fig. 1 gezeigte Anordnung. Grundsätzlich ist das Verfahren auch in einer derartigen Anordnung durchführbar, in der die Streckzone II nur eine Abzugsgalette aufweist. Ebenso ist es möglich, die Spinnzone I direkt mit der Aufwickelzone III, also galettenlos, zu betreiben.The method according to the invention for spinning a multifilament thread is not limited to the arrangement shown in FIG. 1. Basically is the method can also be carried out in such an arrangement in which the Stretch zone II has only one take-off godet. It is also possible that Spinning zone I can be operated directly with winding zone III, i.e. without godets.

In Fig. 2 ist ein weiteres Ausführungsbeispiel einer Einrichtung zur Abkühlung der Filamente in der Spinnzone gezeigt. Direkt unterhalb der Düsenplatte 11 ist ein die Filamente 12 aufnehmender Kühlschacht 14 durch zu beiden Seiten angeordnete Blaskästen 54 und 64 gebildet. Unmittelbar unterhalb der Düsenplatte 11 weisen die Blaskästen 54 und 64 die luftundurchlässigen Seitenwände 51 und 61 auf. Die Seitenwände 51 und 61 bilden die erste Kühlzone. Die erste Kühlzone weist in Abhängigkeit vom Polymertyp und Fadentyp eine Länge von ca. 250 mm bis 500 mm auf.2 shows a further exemplary embodiment of a device for Cooling of the filaments shown in the spinning zone. Just below the Nozzle plate 11 is a cooling shaft 14 receiving the filaments 12 Blow boxes 54 and 64 arranged on both sides are formed. Right away below the nozzle plate 11, the blow boxes 54 and 64 have the air-impermeable side walls 51 and 61. Sidewalls 51 and 61 form the first cooling zone. The first cooling zone depends on Polymer type and thread type have a length of approx. 250 mm to 500 mm.

Unterhalb der Seitenwände 51 und 61 sind mehrere Heizstrahler 52.1, 52.2, 52.3 und 62.1 bis 62.3 gegenüberliegend auf die Filamente gerichtet angeordnet. Hierbei sind die Heizstrahler 52.1 - 52.3 bzw. 62.1 - 62.3 mit Abstand zueinander untereinander in dem Kühlschacht 14 parallel zum Filamentbündel 12 angeordnet, so daß ein Lufteintritt zwischen den Heizstrahlern in den Kühlschacht 14 möglich wird. Die Heizstrahler weisen eine Oberflächentemperatur auf, die oberhalb 400°C liegt. Unterhalb der Heizstrahler wird der Kühlschacht 14 durch luftdurchlässige Seitenwände 53 und 50 gebildet. Der Blaskasten 54 und der Blaskasten 64 sind jeweils an einer Luftzuführung 15 angeschlossen. Die eingeblasene Luft gelangt nun über die Zwischenräume zwischen den Heizstrahlern 52.1 - 52.3 bzw. 62.1 - 62.3 und durch die luftdurchlässige Blaswand 53 und 50 in den Kühlschacht 14 hinein. Unterhalb des Kühlschachtes 14 ist die Präparationswalze 13 angeordnet, wo das Filamentbündel 12 zu einem Faden 1 zusammengeführt wird.Below the side walls 51 and 61 there are a plurality of radiant heaters 52.1, 52.2, 52.3 and 62.1 to 62.3 directed opposite to the filaments arranged. The radiant heaters 52.1 - 52.3 and 62.1 - 62.3 are included Distance to each other in the cooling shaft 14 parallel to Filament bundle 12 arranged so that an air inlet between the Radiant heaters in the cooling shaft 14 is possible. The radiant heaters point a surface temperature that is above 400 ° C. Below the The cooling shaft 14 becomes a radiant heater through air-permeable side walls 53 and 50 formed. The blow box 54 and the blow box 64 are each on an air supply 15 connected. The blown air now passes over the gaps between the radiant heaters 52.1 - 52.3 and 62.1 - 62.3 and through the air-permeable blowing wall 53 and 50 into the cooling shaft 14 inside. The preparation roller 13 is below the cooling shaft 14 arranged where the filament bundle 12 merged into a thread 1 becomes.

In Fig. 3 ist ein Querschnitt der Heizzone einer Blaskammer 54 gezeigt. Hierbei durchläuft das Filamentbündel 12 den Kühlschacht 14. Der Kühlschacht 14 wird hierbei durch die Seitenwände 57 und 58 begrenzt. Quer zum Filamentbündel ist die Blaskammer 54 mit der Blaswand 53 derart angeordnet, daß die einströmende Luft in der Blaskammer 54 durch die Blaswand quer zu den Filamenten entlang der Seitenwände 57 und 58 strömt. Gegenüber der Blaswand 53 auf der gegenüberliegenden Seite des Filamentbündels ist ein Reflektorblech 55 angeordnet. Das Reflektorblech wird mittels eines Widerstandsheizdrahtes 56 aufgeheizt. Damit wird eine direkte Beheizung der Filamente sowie eine Erwärmung der rückströmenden Kühlluft erzeugt.A cross section of the heating zone of a blow chamber 54 is shown in FIG. 3. Here, the filament bundle 12 passes through the cooling shaft 14 Cooling shaft 14 is limited by the side walls 57 and 58. The blowing chamber 54 with the blowing wall 53 is of such a type transverse to the filament bundle arranged that the inflowing air in the blow chamber 54 through the Blower wall flows across the filaments along side walls 57 and 58. Opposite the blower wall 53 on the opposite side of the A reflector plate 55 is arranged in the filament bundle. The reflector plate is heated by a resistance heating wire 56. This will be a direct one Heating of the filaments and heating of the cooling air flowing back generated.

In Fig. 4 ist ein weiteres Ausführungsbeispiel einer Einrichtung zur Abkühlung der Filamente in der Spinnzone gezeigt. Gegenüber der in Fig. 2 gezeigten Anordnung sind die Seitenwände 51 und 61 des Kühlschachtes 14 direkt unterhalb der Spinndüse 11 luftdurchlässig ausgeführt. Ebenso sind die zu beiden Seiten des Filamentbündels angeordneten Heizstrahler 52.1 - 52.3 und 62.1 - 62.3 wiederum auf Abstand angeordnet. Dadurch wird ermöglicht, daß die Umgebungsluft in den Blasschacht einströmen kann und somit insbesondere in der ersten Kühlzone zu einer besseren Kühlwirkung führt. Hierbei ist unterhalb der ersten Kühlzone 46 und der Heizzone 47 der Blaskasten 59 angeordnet. Der Blaskasten 59 ist mit der Luftzuführung 15 verbunden. Die Blaswände 53 und 50 sind luftdurchlässig, so daß ein Luftstrom aus den Blaskammern 59 und 60 quer zum Filamentbündel 12 in den Kühlschacht 14 einströmt. Unterhalb des Kühlschachtes 14 ist wiederum eine Präparationseinrichtung 13 angeordnet, um den Faden 1 zu bilden.4 is a further embodiment of a device for Cooling of the filaments shown in the spinning zone. Compared to that in FIG. 2 The arrangement shown is the side walls 51 and 61 of the cooling shaft 14 air permeable directly below the spinneret 11. Likewise, they are Radiant heaters 52.1 - 52.3 arranged on both sides of the filament bundle and 62.1 - 62.3 again arranged at a distance. This enables that the ambient air can flow into the blow duct and thus leads in particular to a better cooling effect in the first cooling zone. Here is below the first cooling zone 46 and the heating zone 47 Blow box 59 arranged. The blow box 59 is connected to the air supply 15 connected. The blow walls 53 and 50 are permeable to air, so that a Airflow from the blow chambers 59 and 60 across the filament bundle 12 in flows into the cooling shaft 14. Below the cooling shaft 14 is again a preparation device 13 is arranged to form the thread 1.

Die zweite Kühlzone 48 ist bei den Verfahren mit hohen Abzugsgeschwindigkeiten auch vorteilhaft derart gestaltet, daß ein selbstansaugender Luftstrom in den Blasschacht 14 gezogen wird. Hierbei würde eine aktive Anblasung entfallen.The second cooling zone 48 is high in the processes Withdrawal speeds are also advantageously designed such that a self-priming air flow is drawn into the blow duct 14. Here active blowing would be omitted.

Eine weitere vorteilhafte Weiterbildung des Verfahrens stellt die Variante dar, in der der Luftstrom von unten in den Kühlschacht 14 eingeblasen wird und somit gegen die Fadenlaufrichtung strömt. Another advantageous development of the method is the variant in which the air flow is blown into the cooling shaft 14 from below and thus flows against the thread running direction.

Bei diesem Verfahren hat sich gezeigt, daß die Reißdehnung der Fäden um > 5 % erhöht wird. Die Zunahme der Verstreckbarkeit erhöht sich dementsprechend auch um > 5 %. With this method it has been shown that the elongation at break of the threads around > 5% is increased. The increase in stretchability increases accordingly also by> 5%.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
Fadenthread
22nd
FülleinrichtungFilling device
33rd
ExtruderExtruder
44th
Motorengine
55
HeizeinrichtungHeating device
66
SchmelzeleitungMelting line
77
DruckfühlerPressure sensor
88th
MotorsteuerungEngine control
99
Pumpepump
1010th
SpinnkopfSpinning head
1111
Düse / DüsenplatteNozzle / nozzle plate
1212th
Filamente / FilamentbündelFilaments / bundles of filaments
1313
PräparationswalzePreparation roller
1414
KühlvorrichtungCooler
1515
LuftzuführungAir supply
1616
AbzugsgaletteDeduction godet
1717th
ÜberlaufrolleOverflow roller
1818th
AntriebsmotorDrive motor
1919th
SteckgaletteSteckgalette
2020th
ÜberlaufrolleOverflow roller
2121
AntriebsmotorDrive motor
2222
FrequenzgeberFrequency transmitter
2323
Frquenzgeber, StreckverhältnissteuerungFrequency transmitter, stretch ratio control
2424th
AbzugssteuerungTrigger control
2525th
KopffadenführerHead thread guide
2626
Changierdreieck Traverse triangle
2828
KontaktwalzeContact roller
2929
KontaktwalzenwelleContact roller shaft
3030th
ferromagnetische Einlageferromagnetic insert
3838
KopffadenführerHead thread guide
3939
EingangslieferwerkIncoming delivery plant
4343
HeizungssteuerungHeating control
4444
PumpenmotorPump motor
4545
PumpensteuerungPump control
4646
erste Kühlzonefirst cooling zone
4747
HeizzoneHeating zone
4848
zweite Kühlzonesecond cooling zone
5050
Blaswand / SeitenwandBlow wall / side wall
5151
SeitenwandSide wall
5252
HeizstrahlerRadiant heater
5353
SeitenwandSide wall
5454
BlaskastenBlow box
5555
ReflektorblechReflector plate
5656
WiderstandsheizdrahtResistance heating wire
5757
SeitenwandSide wall
5858
SeitenwandSide wall
5959
BlaskastenBlow box
6060
SeitenwandSide wall
6161
SeitenwandSide wall
6262
HeizstrahlerRadiant heater
6464
BlaskammerBlowing chamber

Claims (13)

  1. Process for spinning a multifilament yarn (1) made of a thermoplastic material, in which the molten thermoplastic material is extruded through a plurality of nozzle holes of a nozzle plate (11) into filaments (12), in which the filaments (12) are cooled into a yarn (1) before being combined, wherein the filaments (12) are guided, on discharge from the nozzle holes through a first cooling zone (46), a heating zone (47) and then through a second cooling zone (48), characterised in that the filaments (12) in the first cooling zone (46) are initially cooled by a weak cooling air stream in such a way that the filament skin initially solidifies, are then heated by irradiation between the first cooling zone (46) and the second cooling zone (48) in the heating zone (47) and are then cooled again in the second cooling zone (48).
  2. Process according to claim 1, characterised in that the filaments (12) are heated in the heating zone (47) by irradiation and blowing.
  3. Process according to claim 1 or 2, characterised in that the irradiation is carried out by a radiant heater (52) adjusted to a temperature of at least 400°C.
  4. Process according to any one of claims 1 to 3, characterised in that the filaments (12) are cooled until the filament skin sets in the first cooling zone (46) by a weak cooling air stream entering from the outside in.
  5. Process according to claim 4, characterised in that the cooling air stream is produced by automatic suction or blowing.
  6. Process according to any one of claims 1 to 5, characterised in that the filaments (12) are cooled in the second cooling zone (48) by a cooling air stream of blowing from the outside in or from the inside out.
  7. Process according to any one of claims 1 to 5, characterised in that the filaments (12) are cooled in the second cooling zone (48) by a cooling air stream produced by automatic suction.
  8. Device for cooling freshly spun filaments (12) made of a thermoplastic material, which is arranged perpendicular below a nozzle plate (11) and which has a cooling shaft (14) with a first cooling zone (46), a heating zone (47) and a second cooling zone (48), wherein at least a side wall of the cooling shaft (14) is divided into an upper side wall (51) in the region of the first cooling zone (46) and a lower side wall (53) in the region of the second cooling zone (48) and wherein the lower side wall (53) is air-permeable in design, characterised in that a radiant heater (52) directed to the filaments for irradiating the filaments is arranged between the upper side wall (51) and the lower side wall (53).
  9. Device according to claim 8, characterised in that on both sides of the filaments (12) the side walls of the cooling shaft (14) are divided into upper side walls (51, 61) and lower side walls (50, 53) and in that at least one radiant heater (52, 63) is arranged in each case between the upper and lower side walls.
  10. Device according to claim 8, characterised in that the radiant heater (52) is annular in design in such a way that the filaments are at least partially enveloped.
  11. Device according to any one of the preceding claims, characterised in that the upper side wall (51) and the lower side wall (53) are connected to a blow chamber (54) in such a way that a cooling air stream can be blown from the outside in into the cooling shaft (14) and in that the radiant heater is designed as a heated sheet metal reflector (55).
  12. Cooling device according to any one of claims 9 to 11, characterised in that at least one of the upper side walls (51, 61) is air-permeable.
  13. Device according to any one of the preceding claims, characterised in that a plurality of radiant heaters (52.1, 52.2) are arranged together, in such a way that between the radiant heaters (52.1, 52.2) an air flow can be created into or out of the cooling shaft (14).
EP97113582A 1996-08-28 1997-08-06 Process and device for spinning multifilament yarns Expired - Lifetime EP0826802B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19634724 1996-08-28
DE19634724 1996-08-28

Publications (2)

Publication Number Publication Date
EP0826802A1 EP0826802A1 (en) 1998-03-04
EP0826802B1 true EP0826802B1 (en) 2001-11-28

Family

ID=7803896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97113582A Expired - Lifetime EP0826802B1 (en) 1996-08-28 1997-08-06 Process and device for spinning multifilament yarns

Country Status (3)

Country Link
US (1) US5928587A (en)
EP (1) EP0826802B1 (en)
DE (1) DE59705511D1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1366221A4 (en) 2000-09-15 2006-01-18 First Quality Fibers Llc Apparatus for manufacturing optical fiber made of semi-crystalline polymer
JP2002302862A (en) * 2001-04-06 2002-10-18 Mitsui Chemicals Inc Method of producing nonwoven fabric and apparatus therefor
US7384583B2 (en) * 2001-04-06 2008-06-10 Mitsui Chemicals, Inc. Production method for making nonwoven fabric
UA77098C2 (en) * 2002-07-05 2006-10-16 Diolen Ind Fibers Bv Method for formation of multi-filament thread
WO2005095683A1 (en) * 2004-03-16 2005-10-13 Saurer Gmbh & Co. Kg Device for melt spinning and cooling
ITMI20041137A1 (en) * 2004-06-04 2004-09-04 Fare Spa APPARATUS FOR THE TREATMENT OF SYNTHETIC YARNS
KR20100040731A (en) * 2007-07-21 2010-04-20 디올렌 인두스트리알 피베르스 베.파우. Spinning method
US8282384B1 (en) 2011-04-15 2012-10-09 Thomas Michael R Continuous curing and post curing apparatus
CN102912464B (en) * 2012-11-13 2016-08-24 广州市新辉联无纺布有限公司 A kind of thermoplastic spinning equipment
EP3049562A4 (en) * 2013-09-26 2017-05-03 Reliance Industries Limited System, method and device for quenching synthetic multifilament fibers
CN117552119B (en) * 2024-01-08 2024-04-30 江苏恒力化纤股份有限公司 Preparation method of high-dimensional-stability high-modulus low-shrinkage polyester industrial yarn

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732346A (en) * 1970-08-10 1973-05-08 Allied Chem Method to produce spun-drawn polycaprolactam yarn having improved resistance to ozone fading
US4529368A (en) * 1983-12-27 1985-07-16 E. I. Du Pont De Nemours & Company Apparatus for quenching melt-spun filaments
US5173310A (en) * 1988-03-24 1992-12-22 Mitsui Petrochemical Industries, Ltd. Device for cooling molten filaments in spinning apparatus
JP2674656B2 (en) * 1988-03-24 1997-11-12 三井石油化学工業株式会社 Method and apparatus for cooling molten filament in spinning device
US4909976A (en) * 1988-05-09 1990-03-20 North Carolina State University Process for high speed melt spinning
JP3370750B2 (en) * 1993-10-20 2003-01-27 昭和電工株式会社 Multifilament manufacturing method
TW288052B (en) * 1994-06-30 1996-10-11 Du Pont
DE59608283D1 (en) * 1995-02-10 2002-01-10 Barmag Barmer Maschf Process for producing a multifilament thread

Also Published As

Publication number Publication date
EP0826802A1 (en) 1998-03-04
DE59705511D1 (en) 2002-01-10
US5928587A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
EP1527217B1 (en) Device for spinning and winding
EP2283174B1 (en) Method for melt-spinning, drawing, and winding up a multifilament, and apparatus for carrying out said method
DE19535143B4 (en) Apparatus and method for the thermal treatment of fibers
EP2007935B1 (en) Method and apparatus for pulling off and drawing a multifilament thread
EP1102878B1 (en) Spinning device and method for spinning a synthetic thread
EP2456913A1 (en) Method for melt-spinning, drawing, and winding a multifilament thread and a device for performing the method
EP0726338B1 (en) Method for producing a multifilament yarn
EP2591153B1 (en) Method and device for producing a composite yarn
WO2011009497A1 (en) Method for removing and drawing a synthetic thread and a device for performing the method
EP0937791A2 (en) Process and apparatus for the spinning of a multifilament yarn
EP0826802B1 (en) Process and device for spinning multifilament yarns
EP0754790B1 (en) Method and apparatus for heating a synthetic yarn
EP1045930B1 (en) Method and device for producing a high oriented yarn
EP0682720B1 (en) Melt spinning process to produce filaments
EP0940485A2 (en) Process and apparatus for spinning, drawing and winding up of a yarn
DE19653451C2 (en) Process for the production of a polyester multifilament yarn
DE102009021118A1 (en) Synthetic threads melt spinning, drawing and winding-up device, has twisting nozzle and/or thread guides movably held at perpendicular unit such that threads are guided into twisting nozzle for stopping twist with deflectors
WO2015049312A1 (en) Method and apparatus for producing synthetic fully drawn yarns
DE19506369A1 (en) Heated synthetic yarn draw frame stops detrimental internal reactions
DE102009037125A1 (en) Method for melt-spinning, drawing and winding multifilament thread during manufacture of synthetic fiber for textile applications, involves guiding bundle at specific drawing speed, and winding yarn into spool
EP0731196B1 (en) Method for the spinning, drawing and winding up of a synthetic yarn
DE102005045496A1 (en) Apparatus for melt spinning and taking off synthetic thread, includes easily controlled drive for take-off and stretching reels based on electric motor and electric brake coordinated with respective reels
WO2016058873A1 (en) Method and device for producing a multifilament thread from a polyamide melt
DE102015016800A1 (en) A method of melt spinning, stripping, stretching, relaxing and winding a synthetic thread for technical applications and associated apparatus
WO1992001093A1 (en) Process and device for making synthetic threads or fibres from polymers, especially polyamide, polyester or polypropylene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19980817

17Q First examination report despatched

Effective date: 19980922

AKX Designation fees paid

Free format text: CH DE ES FR GB IT LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS AND DEVICE FOR SPINNING MULTIFILAMENT YARNS

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59705511

Country of ref document: DE

Date of ref document: 20020110

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BARMAG GMBH ENGINEERING & MANUFACTURING

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020530

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040726

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040820

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050819

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050902

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070806