EP0823626A2 - Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid - Google Patents

Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid Download PDF

Info

Publication number
EP0823626A2
EP0823626A2 EP97110905A EP97110905A EP0823626A2 EP 0823626 A2 EP0823626 A2 EP 0823626A2 EP 97110905 A EP97110905 A EP 97110905A EP 97110905 A EP97110905 A EP 97110905A EP 0823626 A2 EP0823626 A2 EP 0823626A2
Authority
EP
European Patent Office
Prior art keywords
aperture
particle
measuring range
flow
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97110905A
Other languages
English (en)
French (fr)
Other versions
EP0823626A3 (de
EP0823626B1 (de
Inventor
Leander Mölter
Friedrich Munzinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palas GmbH Partikel und Lasermesstechnik
Original Assignee
Palas GmbH Partikel und Lasermesstechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palas GmbH Partikel und Lasermesstechnik filed Critical Palas GmbH Partikel und Lasermesstechnik
Publication of EP0823626A2 publication Critical patent/EP0823626A2/de
Publication of EP0823626A3 publication Critical patent/EP0823626A3/de
Application granted granted Critical
Publication of EP0823626B1 publication Critical patent/EP0823626B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/03Electro-optical investigation of a plurality of particles, the analyser being characterised by the optical arrangement

Definitions

  • the invention relates to a device for measuring a Particle flow in a fluid with at least one Aperture-comprising lighting arrangement and with at least a receiver arrangement having an aperture and a method for measuring a particle flow in a fluid, the particle stream illuminated and under a finite angle to the direction of illumination from Particle scattered light is detected.
  • a particle flow to be measured in a fluid it is solid or liquid particles in one Trade gas or in a liquid.
  • Such measurements are usually carried out to determine the particle size distribution and the particle concentration in the fluid determine.
  • the particle size is proportional to the von a particle of light scattered on a receiver, the concentration is determined via the counting pulses.
  • determining the particle size errors can occur when particles are partially are in the optical measurement volume, partly outside of the same for this reason only on the recipient scatter less light than theirs Size corresponds. Such errors must be excluded will. So far this has been done by spreading the Light through two detector arrays using coincidence measurements was detected, the detector arrangements Have apertures of different sizes. This requires a lot of equipment. In addition, such a measurement can lead to errors if the particles do not scatter evenly.
  • the invention is therefore based on the object Specify device and a method with which under Avoiding the errors mentioned with accurate measurements less equipment expenditure can be achieved.
  • the stated task is at a Device of the type mentioned above solved that at least one aperture has an aperture with a to the inside of the aperture convex edge having.
  • a method according to the invention provides Solution to the problem that the particle flow through a Aperture with a convex shape towards its interior Edge is illuminated and / or considered that the Maximum intensity of the through a first optical measuring range flying particle measured and the particle only is taken into account if the intensity when flying through through a second measuring range a certain one Minimum percentage of measured for this particle Maximum intensity exceeds.
  • the one with a convex edge towards the inside Aperture is the aperture in two or more Areas divided by which in the illustration of the Aperture in the particle stream different measuring ranges To be defined.
  • a near the edge of the wider aperture area or wider measuring range Particle becomes outside of the narrower aperture range or the resulting measuring range remain and therefore can no longer be recorded in this area.
  • Of the Scattered light pulse of such a particle becomes less As long as one in the middle through the Aperture of flying particles. The former particle can therefore be excluded from the measurement, what in the manner characterized by the said method happens.
  • the edge is stepped, the aperture opening Is T-shaped or the aperture Is H-shaped.
  • the length of the T-leg is equal to the strength of the T-crossbar and that the T-leg aligned in the direction of flow of the particle stream is.
  • the length of the H-crossbar connecting the H-legs is equal to the thickness of the H longitudinal leg or that the length of the H-crossbar connecting the H-legs equal to twice the thickness of the H longitudinal leg , with the H crossbar in the flow direction of the particle stream is aligned.
  • the device provides that both the aperture of the Imaging arrangement as well as the aperture of the Receiver arrangement is formed with convex edges and that an aperture two apertures different Has dimensions.
  • the aperture openings should be sharp-edged and free of burrs.
  • the method according to the invention is a further development before that the second measured value after the particle intensity a period of approximately the mean flow time of the particle through the first optical measuring range determining the maximum intensity is determined, in particular only particles that are detected when flowing through the second optical measuring range a relative signal intensity of at least 20% of the measured maximum intensity.
  • the Particle flow through a lighting arrangement 2 with a light source 3, which is preferably a white source Is light, a condenser system 4, an aperture 6 in an aperture 6a and imaging optics 7.
  • a light source 3 which is preferably a white source Is light
  • a condenser system 4 an aperture 6 in an aperture 6a and imaging optics 7.
  • the particle flow is considered using a Receiver arrangement 8 with an imaging optics 9 a another aperture 11 in another aperture 11a, a further condenser system 12 and an optoelectric Receiver 13.
  • a deflection mirror 10 is provided, but not necessary is.
  • the signal provided by the receiver 13 is processed in a subsequent electronics.
  • the imaging optics 9 of the receiver arrangement 8 is such that that it maps the aperture 11 to where the imaging optics 7 the aperture 6 in the particle stream depicts. It is optically a measuring volume 16 in the crossing area of the illumination beam path 17 and the receiver beam path 18 within the particle stream educated.
  • the particle stream usually flows perpendicularly through the through the illumination and receiver beam paths 17, 18 level formed, that is to say in the representation of FIG. 1 perpendicular to the leaf plane.
  • the orifices 6, 11 are also directed towards the interior of the apertures 6, 11 convex edges.
  • the convexity is in all the illustrated embodiments Steps or shoulders around the border of the aperture reached.
  • the Apertures 6, 11 each have a T, as shown in the Fig. 2 shows where the diaphragm openings for clarification 6, 11, however, into the radiation plane 17, 18 folded or projected.
  • the direction of illumination here, as in FIG. 3, with B, is the received light beam direction with E and the particle flow with A designated.
  • the T-shaped aperture openings 6, 11 have a T longitudinal leg 21 and a T-crossbar 22.
  • the length 1 of the T-longitudinal leg is correct in the illustrated embodiment with the thickness s of the T-cross piece 22.
  • the absolute overall dimensions of the apertures 6, 11 through the mapping arrangement, the desired Measuring volume and the accuracy of the processing option of the diaphragms and aperture openings is determined as this as sharp as possible and with sharp corners as well should be produced without burrs.
  • the overall linear dimensions are, for example, of the order of magnitude of 0.5 mm.
  • the length of the T crossbar L 0.650 mm.
  • the thickness of the The aperture material is approx. 50 ⁇ m.
  • Measuring volume 16 formed optically, the shape of a square mushroom and two in the direction of flow A of the particle stream 1 successive measuring ranges 16a, 16b, which has different cross-sectional areas perpendicular to the flow direction A of the particle stream 1 have (i.e. with surface normals parallel to A), but in the illustrated embodiment in the direction of flow same heights h according to the matching ones Values l and s of the apertures 6, 11.
  • a particle P1 flies on a path, so that it passes through both measuring ranges 16a, 16b (FIG. 2), so it scatters light intensity depending on its size both during the time t, during which it is through the Measuring range 16a flies, as well as during the time which flies it through the measuring range 16b, and thus delivers in the receiver 13 that designated P1 in FIG. 4 Signal that over the entire flight time 2t of the particle P1 is approximately the same through the entire measuring volume 16 is great.
  • a particle P2 that is in an edge section of the measuring range 16a passes through it delivers only during the time t during which it is in the measuring range 16a, a signal corresponding to its size while it after leaving the measuring range 16a the smaller measuring range 16b, but past this flies and therefore onto this particle at the flight altitude of the Measuring range 16b no light falls, so there is no light Scatter light in the receiver 13 so that it is only a scattered light signal P2 'during the time t (FIG. 4) delivers.
  • Maximum signal during the throughput time t is the signal intensity when passing through the measuring range 16b only approx. 20%, as can be seen in FIG. 4.
  • a particle P 4 with most of it both through the measuring range 16a as well as through the measuring range 16b flies, but on the edge of the latter such that a small proportion of the surface of the particle outside the Measuring range 16b is also when flying through the Measuring range 16b still a relatively large signal in relation to the maximum signal determined by its size cause.
  • a signal of such a particle is shown in Fig. 4 labeled P4 '.
  • the minimum threshold S depends on the particle size relative to the measuring volume. In the illustrated embodiment the threshold S could also be lower than 50% of the respective maximum intensity.
  • the particles but can have cross-sectional dimensions that differ of the representation of FIG. 2 in the order of magnitude the dimensions of the measuring volume and for example only a fifth to a tenth of the dimensions of the Measurement volume. In this case, definitely to exclude from the count those particles in which even a small section over the edge of the measuring range 16a protrudes.
  • 5a shows a cross-shaped aperture.
  • 5b shows an H-shaped aperture, the H-leg 31, 32 connecting H-web 33 in the direction of extension A the particle flow is aligned.
  • the strength S 'of H-leg 31, 32 corresponds to the length 1 'of the H-web 33.
  • Figure 5c also shows an H-shaped aperture. Here, however, corresponds to the length 1 'of the web 33 twice the thickness S 'of the H-legs 31, 32.
  • Fig. 6 shows two in a diaphragm 6a in the flow direction A T-shaped apertures arranged one above the other 6 ', 6' '.
  • the material web 34 can be between the two aperture openings 6 ', 6' 'can also be omitted, whereby then an aperture 6c corresponding to FIG. 7a is formed while different areas also on the one hand to remove unwanted particles from the Counting and secondly to increase the dynamic range can be used.
  • the aperture can the embodiment of Fig. 7a also in the manner of Fig. 7b take place, so the aperture 6d with an H. form legs 31, 32 of different lengths.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Zur Vereinfachung der optischen Messung eines Teilchenstromes in einem Fluid und insbesondere zur Ausschaltung von Fehlern sieht die Erfindung bei einer Vorrichtung zur Messung eines Teilchenstroms in einem Fluid mit mindestens einer eine Blende aufweisenden Beleuchtungsanordnung und mit mindestens einer eine Blende aufweisenden Empfängeranordnung vor, daß mindestens eine Blende (6a, 11a) eine Blendenöffnung (6, 11) mit einem zum Inneren der Blendenöffnung (6, 11) konvex ausgebildeten Rand (6b, 11b) aufweist. Bei einem Verfahren ist vorgesehen, daß der Teilchenstrom durch eine Blendenöffnung mit zu ihrem Inneren hin konvex ausgebildetem Rand beleuchtet und/oder betrachtet wird, daß die Maximalintensität des durch einen ersten optischen Meßbereich fliegenden Teilchens gemessen und das Teilchen nur berücksichtigt wird, wenn die Intensität beim Durchfliegen durch einen zweiten Meßbereich einen bestimmten Mindestprozentsatz der für dieses Teilchen gemessenen Maximalintensität überschreitet. <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zur Messung eines Teilchenstroms in einem Fluid mit mindestens einer eine Blende aufweisenden Beleuchtungsanordnung und mit mindestens einer eine Blende aufweisenden Empfängeranordnung und ein Verfahren zum Messen eines Teilchenstroms in einem Fluid, wobei der Teilchenstrom beleuchtet und unter einem endlichen Winkel zur Beleuchtungsrichtung von Teilchen gestreutes Licht detektiert wird.
Bei einem zu messenden Teilchenstrom in einem Fluid kann es sich um Feststoff oder Flüssigkeitsteilchen in einem Gas oder in einer Flüssigkeit handeln. Derartige Messungen werden durchgeführt, um in der Regel die Teilchengrößenverteilung und die Teilchenkonzentration im Fluid zu bestimmen. Die Teilchengröße ist proportional zur von einem Teilchen auf einen Empfänger gestreuten Lichtintensität, die Konzentration wird über die Zählimpulse bestimmt. Insbesondere bei der Bestimmung der Teilchengröße kann es zu Fehlern kommen, wenn Teilchen, die teilweise sich im optischen Meßvolumen befinden, teilweise außerhalb desselben aus diesem Grunde auf den Empfänger nur eine geringere Lichtintensität streuen, als es ihrer Größe entspricht. Derartige Fehler müssen ausgeschlossen werden. Dies wurde bisher dadurch getan, daß das gestreute Licht durch zwei Detektoranordnungen mittels Koinzidenzmessungen erfaßt wurde, wobei die Detektoranordnungen Blendenöffnungen unterschiedlicher Größe aufwiesen. Hierdurch ist ein hoher apparativer Aufwand notwendig. Darüber hinaus kann eine solche Messung zu Fehlern führen, wenn die Teilchen nicht gleichmäßig streuen.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren anzugeben, mit denen unter Vermeidung der genannten Fehler genaue Messungen mit geringerem apparativem Aufwand erzielbar sind.
Erfindungsgemäß wird die genannte Aufgabe bei einer Vorrichtung der eingangs genannten Art dadurch gelöst, daß mindestens eine Blende eine Blendenöffnung mit einem zum Inneren der Blendenöffnung konvex ausgebildeten Rand aufweist. Ein erfindungsgemäßes Verfahren sieht zur Lösung der Aufgabe vor, daß der Teilchenstrom durch eine Blendenöffnung mit zu ihrem Inneren hin konvex ausgebildetem Rand beleuchtet und/oder betrachtet wird, daß die Maximalintensität des durch einen ersten optischen Meßbereich fliegenden Teilchens gemessen und das Teilchen nur berücksichtigt wird, wenn die Intensität beim Durchfliegen durch einen zweiten Meßbereich einen bestimmten Mindestprozentsatz der für dieses Teilchen gemessenen Maximalintensität überschreitet.
Durch die mit einem zum Inneren hin konvexen Rand versehene Blendenöffnung wird die Blende in zwei oder mehr Bereiche unterteilt, durch die bei der Abbildung der Blende in den Teilchenstrom unterschiedliche Meßbereiche definiert werden. Ein nahe dem Rand des breiteren Blendenbereichs bzw. breiteren Meßbereichs hindurchfliegendes Teilchen wird außerhalb des schmäleren Blendenbereichs bzw. des hierdurch bedingten Meßbereichs bleiben und daher in diesem Bereich nicht mehr erfaßt werden. Der Streulichtimpuls eines solchen Teilchens wird eine geringere Zeitdauer haben als der eines mittig durch die Blende fliegenden Teilchens. Das erstgenannte Teilchen kann daher bei der Messung ausgeschlossen werden, was in der durch das genannte Verfahren gekennzeichneten Weise geschieht.
Hierdurch können mit einer Empfängeranordnung (und einer Beleuchtungsanordnung) Randfehler ausgeschlossen werden und damit der apparative Aufwand zur fehlerfreien Messung eines Teilchenstroms in einem Fluid reduziert werden.
In einer bevorzugten Ausgestaltung ist vorgesehen, daß der Rand stufenförmig ausgebildet ist, wobei die Blendenöffnung T-förmig ausgebildet ist oder aber die Blendenöffnung H-förmig ausgebildet ist. Im erstgenannten Falle sehen Weiterbildungen vor, daß die Länge des T-Schenkels gleich der Stärke des T-Querstegs ist und daß der T-Schenkel in Strömungsrichtung des Teilchenstroms ausgerichtet ist. Im zweitgenannten Falle kann vorgesehen sein, daß die Länge des die H-Schenkel verbindenden H-Querstegs gleich der Stärke der H-Längsschenkel ist oder daß die Länge des die H-Schenkel verbindenden H-Querstegs gleich dem Doppelten der Stärke der H-Längsschenkel ist, wobei jeweils der H-Quersteg in Strömungsrichtung des Teilchenstromes ausgerichtet ist.
Weitere bevorzugte Ausbildungen der erfindungsgemäßen Vorrichtung sehen vor, daß sowohl die Blendenöffnung der Abbildungsanordnung als auch die Blendenöffnung der Empfängeranordnung mit konvexen Rändern ausgebildet ist und daß eine Blende zwei Blendenöffnungen unterschiedlicher Abmessungen aufweist. Die Blendenöffnungen sollen scharfkantig und gratfrei ausgebildet sein.
Das erfindungsgemäße Verfahren sieht in Weiterbildung vor, daß als zweiter Meßwert die Teilchenintensität nach einem Zeitraum von etwa der mittleren Durchströmungszeit des Teilchens durch den ersten optischen Meßbereich nach der Feststellung der Maximalintensität bestimmt wird, wobei insbesondere lediglich Teilchen erfaßt werden, die bei Durchströmen durch den zweiten optischen Meßbereich eine relative Signalintensität von mindestens 20 % der gemessenen Maximalintensität ergeben.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den Ansprüchen und aus der nachfolgenden Beschreibung, in der Ausführungsbeispiele unter Bezugnahme auf die Figuren im einzelnen erläutert sind. Dabei zeigt:
Fig. 1
eine schematische Darstellung einer erfindungsgemäßen Vorrichtung;
Fig. 2
die erfindungsgemäß eingesetzten Blenden und das durch diese optisch gebildete Meßvolumen in Projektion;
Fig. 3
das erfindungsgemäß gebildete Meßvolumen in perspektivischer Darstellung;
Fig. 4
Signalverläufe von mittels der erfindungsgemäßen Vorrichtung detektierten Teilchen;
Fig. 5a-5c
andere Ausgestaltungen erfindungsgemäßer Blendenöffnungen;
Fig. 6
die Ausgestaltung einer erfindungsgemäßen Doppelblende; und
Fig. 7a-7c
weitere Ausgestaltungen erfindungsgemäßer Blendenöffnungen.
Zur Messung eines Teilchenstroms in einem Fluid, wie zur Messung eines Aerosols, erfolgt eine Beleuchtung des Teilchenstroms durch eine Beleuchtungsanordnung 2 mit einer Lichtquelle 3, die vorzugsweise eine Quelle weißen Lichtes ist, einem Kondensorsystem 4, einer Blendenöffnung 6 in einer Blende 6a und einer Abbildungsoptik 7. Die Betrachtung des Teilchenstroms erfolgt über eine Empfängeranordnung 8 mit einer Abbildungsoptik 9 einer weiteren Blendenöffnung 11 in einer weiteren Blende 11a, einem weiteren Kondensorsystem 12 und einem optoelektrischen Empfänger 13. Im dargestellten Ausführungsbeispiel ist zur Parallelanordnung von Lichtquelle und Empfänger noch ein Umlenkspiegel 10 vorgesehen, der aber nicht notwendig ist. Das vom Empfänger 13 gelieferte Signal wird in einer anschließenden Elektronik verarbeitet.
Die Abbildungsoptik 9 der Empfängeranordnung 8 ist derart, daß sie die Blendenöffnung 11 dorthin abbildet, wo die Abbildungsoptik 7 die Blendenöffnung 6 in den Teilchenstrom abbildet. Es wird damit optisch ein Meßvolumen 16 im Kreuzungsbereich des Beleuchtungsstrahlenganges 17 und des Empfängerstrahlenganges 18 innerhalb des Teilchenstromes gebildet.
Der Teilchenstrom fließt in der Regel senkrecht durch die durch die Beleuchtungs- und Empfängerstrahlengänge 17, 18 gebildete Ebene, also in der Darstellung der Fig. 1 senkrecht zur Blattebene.
Erfindungsgemäß sind die Blendenöffnungen 6, 11 aber mit zum Inneren der Blendenöffnungen 6, 11 hin gerichteten konvexen Rändern bzw. Kanten ausgebildet. Die Konvexität wird in allen dargestellten Ausführungsbeispielen durch Stufen oder Schultern der Umrandung der Blendenöffnung erreicht. Im dargestellten Ausführungsbeispiel bilden die Blendenöffnungen 6, 11 jeweils ein T, wie dies aus der Fig. 2 ersichtlich ist, wo zur Verdeutlichung die Blendenöffnungen 6, 11 allerdings in die Strahlenebene 17, 18 umgeklappt bzw. projiziert sind. Die Beleuchtungsrichtung ist hier, wie auch in Fig. 3, mit B, die Empfangslichtstrahlrichtung mit E und die Teilchenströmung mit A bezeichnet.
Die T-förmigen Blendenöffnungen 6, 11 weisen einen T-Längsschenkel 21 und einen T-Quersteg 22 auf. Die Länge 1 des T-Längsschenkels stimmt im dargestellten Ausführungsbeispiel mit der Stärke s des T-Querstegs 22 überein. Die absoluten Gesamtabmessungen der Blendenöffnungen 6, 11 werden durch die Abbildungsanordnung, das gewünschte Meßvolumen sowie die Genauigkeit der Bearbeitungsmöglichkeit der Blenden und Blendenöffnungen bestimmt, da diese möglichst scharfkantig und mit scharfen Ecken sowie gratfrei hergestellt werden sollten. Die linearen Gesamtabmessungen liegen beispielsweise etwa in der Größenordnung von 0,5 mm. In einem konkreten Ausführungsbeispiel beträgt die Länge des T-Längsschenkels 1 = 0,250 mm, die Stärke des T-Querstegs ebenfalls s = 0,250 mm, die Gesamthöhe der Blendenöffnungen 6, 11 damit H = 0,5 mm, die Breite des T-Längsschenkels ebenfalls b = 0,500 mm und die Länge des T-Querstegs L = 0,650 mm. Die Dicke des Blendenmaterials beträgt ca. 50 µm.
Durch die beiden in der Fig. 2 dargestellten T-förmigen Blendenöffnungen 6, 11 wird das in der Fig. 3 dargestellte Meßvolumen 16 optisch gebildet, das die Form eines quadratischen Pilzes hat und zwei in Strömungsrichtung A des Teilchenstroms 1 aufeinanderfolgende Meßbereiche 16a, 16b aufweist, die unterschiedliche Querschnittsflächen senkrecht zur Strömungsrichtung A des Teilchenstroms 1 haben (also mit parallel zu A gegebener Flächennormalen), im dargestellten Ausführungsbeispiel aber in Strömungsrichtung gleiche Höhen h entsprechend den übereinstimmenden Werten l und s der Blendenöffnungen 6, 11.
Fliegt nun ein Teilchen P1 auf einer Bahn, so daß es durch beide Meßbereiche 16a, 16b hindurchtritt (Fig. 2), so streut es von seiner Größe abhängige Lichtintensität sowohl während der Zeit t, während der es durch den Meßbereich 16a fliegt, als auch während der Zeit, während der es durch den Meßbereich 16b fliegt, und liefert damit im Empfänger 13 das in der Fig. 4 mit P1 bezeichnete Signal, das über die gesamte Durchflugszeit 2t des Teilchens P1 durch das gesamte Meßvolumen 16 in etwa gleich groß ist.
Ein Teilchen P2, das in einem Randabschnitt des Meßbereiches 16a durch diesen hindurchtritt, liefert nur während der Zeit t, während der es sich im Meßbereich 16a befindet, ein seiner Größe entsprechendes Signal, während es nach Austreten aus dem Meßbereich 16a nicht mehr durch den kleineren Meßbereich 16b, sondern an diesem vorbei fliegt und daher auf dieses Teilchen in der Flughöhe des Meßbereichs 16b kein Licht fällt, es damit auch kein Licht in den Empfänger 13 streuen kann, so daß es lediglich während der Zeit t ein Streulichtsignal P2' (Fig. 4) liefert.
Ein Teilchen P3, das bei seinem Weg durch das Meßvolumen 16 den Meßbereich 16b nur mit einem geringen Bereich seines Volumens tangiert bzw. in diesen Bereich eintritt, während der Schwerpunkt des Teilchens P3 außerhalb des Meßbereichs 16b liegt, wird damit auch nur auf seinem kleinen, in den Meßbereich 16b ragenden Oberflächenanteil beleuchtet und kann nur mit diesem geringen Anteil Licht in den Empfänger 13 streuen, so daß der Empfänger das gesamte, der Teilchengröße entsprechende Signal nur beim Durchgang durch den ersten Meßbereich 16a über die Zeit t, nachfolgend aber ein wesentlich geringeres Signal enthält, wie es insgesamt mit P3' in der Fig. 4 dargestellt ist. Gegenüber dem durch die Teilchengröße bestimmten Maximalsignal während der Durchlaufzeit t (entsprechend dem Meßbereich 16a) beträgt die Signalintensität beim Durchflug durch den Meßbereich 16b nur noch ca. 20 %, wie der Fig. 4 zu entnehmen ist.
Ein Teilchen P 4, das mit seinem größten Teil sowohl durch den Meßbereich 16a als auch durch den Meßbereich 16b fliegt, aber am Rande des letzteren derart, daß ein geringer Oberflächenanteil des Teilchens außerhalb des Meßbereichs 16b liegt, wird auch beim Durchfliegen des Meßbereichs 16b noch ein relativ großes Signal im Verhältnis zu dem durch seine Größe bestimmten Maximalsignal bewirken. Ein Signal eines solchen Teilchens ist in Fig. 4 mit P4' bezeichnet.
Um nun die Verfälschung der Meßergebnisse, insbesondere der Partikelgrößenverteilung durch Teilchen, die aufgrund des Umstands, daß ein Teil ihrer Oberfläche außerhalb des Meßvolumens liegt, zu vermeiden, werden nur die Teilchen mit ihrer während der Zeit t (Durchflug durch den Meßbereich 16a) empfangenen Maximalintensität (100 %) gezählt, die beim Hindurchfliegen durch den Meßbereich 16b eine Signalintensität oberhalb einer vorzugebenden Schwelle, die im dargestellten Ausführungsbeispiel der Fig. 4 mit 50 % der Maximallichtintensität angegeben ist, detektiert, während Teilchen, die während des Durchströmens durch den Meßbereich 16b eine geringere relative Signalintensität liefern, für die Messung verworfen werden. Im dargestellten Ausführungsbeispiel werden zur Messung lediglich die Teilchen P1 und P4 herangezogen, während die Teilchen P2 und P3 verworfen werden.
Die Minimalschwelle S ist abhängig von der Teilchengröße relativ zum Meßvolumen. Im dargestellten Ausführungsbeispiel könnte die Schwelle S auch tiefer als 50 % der jeweiligen Maximalintensität gelegt werden. Die Teilchen können aber Querschnittsabmessungen aufweisen, die abweichend von der Darstellung der Fig. 2 in der Größenordnung der Abmessungen des Meßvolumens liegen und beispielsweise nur ein Fünftel bis ein Zehntel der Abmessungen des Meßvolumens betragen. In diesem Falle sind auf jeden Fall von der Zählung solche Teilchen auszuschließen, bei denen auch nur ein geringer Abschnitt über den Rand des Meßbereichs 16a herausragt.
Weitere bevorzugte Ausgestaltungen von erfindungsgemäßen Blenden sind in den Fig. 5 bis 7 dargestellt. Die Fig. 5a zeigt eine kreuzförmige Blendenöffnung. Die Fig. 5b zeigt eine H-förmige Blendenöffnung, wobei der die H-Schenkel 31, 32 verbindende H-Steg 33 in Erstreckungsrichtung A der Teilchenströmung ausgerichtet ist. Die Stärke S' der H-Schenkel 31, 32 entspricht der Länge 1' des H-Stegs 33. Auch die Abbildung 5c zeigt eine H-förmige Blendenöffnung. Hier entspricht allerdings die Länge 1' des Stegs 33 dem Doppelten der Stärke S' der H-Schenkel 31, 32.
Die Fig. 6 zeigt in einer Blende 6a zwei in Strömungsrichtung A übereinander angeordnete T-förmige Blendenöffnungen 6', 6''. Hierdurch werden bei gleicher Abbildungsoptik (mit der beide Blendenöffnungen 6', 6'' in die Partikelströmung zur Bildung des Meßvolumens abgebildet werden) unterschiedlich große Meßvolumen gebildet, wodurch der Dynamikbereich, d.h. der Bereich der Konzentrationen, die mit einer entsprechenden erfindungsgemäß ausgebildeten Vorrichtung gemessen werden können, vergrößert werden kann.
Grundsätzlich kann der Materialsteg 34 zwischen den beiden Blendenöffnungen 6', 6'' auch fortgelassen werden, wodurch dann eine Blendenöffnung 6c entsprechend der Fig. 7a gebildet wird, während verschiedene Bereiche ebenfalls einerseits zum Ausscheiden unerwünschter Teilchen aus der Zählung und zum anderen zur Erhöhung des Dynamikbereiches genutzt werden können. Grundsätzlich kann die Blendenöffnung der Ausgestaltung der Fig. 7a auch in der Weise der Fig. 7b erfolgen, also die Blendenöffnung 6d ein H mit unterschiedlich langen Schenkeln 31, 32 bilden.
Ggf. kann die Vereinfachung der Blendenöffnung 6c auch zu der Blendenöffnung 6e geschehen, wie sie in Fig. 7c dargestellt ist. Hier werden bei geringen Teilchenkonzentrationen zur Messung die Blendenöffnungsbereiche 6e' und 6e'', bei hohen Teilchenkonzentrationen die Blendenöffnungsbereiche 6e'' und 6e''' zur Entscheidung darüber herangezogen, ob ein Teilchen zu zählen oder auszuscheiden ist.

Claims (15)

  1. Vorrichtung zur Messung eines Teilchenstroms in einem Fluid mit mindestens einer eine Blende aufweisenden Beleuchtungsanordnung und mit mindestens einer eine Blende aufweisenden Empfängeranordnung, dadurch gekennzeichnet, daß mindestens eine Blende (6a, 11a) eine Blendenöffnung (6, 11) mit einem zum Inneren der Blendenöffnung (6, 11) konvex ausgebildeten Rand (6b, 11b) aufweist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Rand (6b, 6c) stufenförmig ausgebildet ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Blendenöffnung (6, 11) T-förmig ausgebildet ist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Länge (l) des T-Schenkels (21) gleich der Stärke (s) des T-Querstegs (22) ist.
  5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der T-Schenkel (21) in Strömungsrichtung (A) des Teilchenstroms ausgerichtet ist.
  6. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Blendenöffnung (6, 11) H-förmig ausgebildet ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Länge des die H-Schenkel verbindenden H-Querstegs gleich der Stärke der H-Längsschenkel ist.
  8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Länge des die H-Schenkel verbindenden H-Querstegs gleich dem Doppelten der Stärke der H-Längsschenkel ist.
  9. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sowohl die Blendenöffnung der Abbildungsanordnung (2) als auch die Blendenöffnung (11) der Empfängeranordnung (8) mit konvexen Rändern (6b, 11b) ausgebildet ist.
  10. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß eine Blende (6) zwei Blendenöffnungen (6', 6'') unterschiedlicher Abmessungen aufweist.
  11. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ränder (6b, 11b) der Blendenöffnungen scharfkantig sind.
  12. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ränder (6b, 11b) der Blendenöffnungen (6, 11) gratfrei sind.
  13. Verfahren zum Messen eines Teilchenstroms in einem Fluid, wobei der Teilchenstrom beleuchtet und unter einem endlichen Winkel zur Beleuchtungsrichtung von Teilchen gestreutes Licht detektiert wird, dadurch gekennzeichnet, daß der Teilchenstrom durch eine Blendenöffnung mit zu ihrem Inneren hin konvex ausgebildetem Rand beleuchtet und/oder betrachtet wird, daß die Maximalintensität des durch einen ersten optischen Meßbereich fliegenden Teilchens gemessen und das Teilchen nur berücksichtigt wird, wenn die Intensität beim Durchfliegen durch einen zweiten Meßbereich einen bestimmten Mindestprozentsatz der für dieses Teilchen gemessenen Maximalintensität überschreitet.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß als zweiter Meßwert die Teilchenintensität nach einem Zeitraum von etwa der mittleren Durchströmungszeit des Teilchens durch den ersten optischen Meßbereich nach der Feststellung der Maximalintensität bestimmt wird.
  15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß lediglich Teilchen erfaßt werden, die bei Durchströmen durch den zweiten optischen Meßbereich eine relative Signalintensität von mindestens 20 % der gemessenen Maximalintensität ergeben.
EP97110905A 1996-07-12 1997-07-02 Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid Expired - Lifetime EP0823626B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19628156 1996-07-12
DE19628156A DE19628156A1 (de) 1996-07-12 1996-07-12 Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid

Publications (3)

Publication Number Publication Date
EP0823626A2 true EP0823626A2 (de) 1998-02-11
EP0823626A3 EP0823626A3 (de) 1998-05-20
EP0823626B1 EP0823626B1 (de) 2004-10-13

Family

ID=7799668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97110905A Expired - Lifetime EP0823626B1 (de) 1996-07-12 1997-07-02 Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid

Country Status (3)

Country Link
US (1) US5815265A (de)
EP (1) EP0823626B1 (de)
DE (2) DE19628156A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19903001A1 (de) 1999-01-26 2000-08-24 Evotec Biosystems Ag Verfahren und Vorrichtung zur Detektion mikroskopisch kleiner Objekte
US6326608B1 (en) * 1999-07-09 2001-12-04 Chung-Shan Institute Of Science And Technology Polarization-type laser detection system
ATE354791T1 (de) * 2001-10-10 2007-03-15 Borealis Tech Oy Teilchendatenanalyse
DE10202999B4 (de) * 2002-01-26 2004-04-15 Palas Gmbh Partikel- Und Lasermesstechnik Verfahren und Vorrichtung zum Messen der Größenverteilung und Konzentration von Partikeln in einem Fluid
US7352461B2 (en) * 2004-11-30 2008-04-01 Tokyo Electron Limited Particle detecting method and storage medium storing program for implementing the method
JP4544459B2 (ja) * 2004-11-30 2010-09-15 東京エレクトロン株式会社 パーティクル検出方法及びパーティクル検出プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1802269A1 (de) * 1968-10-10 1970-05-14 Kernforschung Gmbh Ges Fuer Verfahren zum Messen der Konzentration und/oder Groesse von Schwebstoffteilchen
DE3315456A1 (de) * 1983-04-28 1984-12-13 Khaled Dipl.-Ing. 7500 Karlsruhe Sakbani Vorrichtung zur bestimmung von partikelgroessen
DE3925148A1 (de) * 1988-07-30 1990-02-01 Horiba Ltd Teilchenzaehler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1802269A1 (de) * 1968-10-10 1970-05-14 Kernforschung Gmbh Ges Fuer Verfahren zum Messen der Konzentration und/oder Groesse von Schwebstoffteilchen
DE3315456A1 (de) * 1983-04-28 1984-12-13 Khaled Dipl.-Ing. 7500 Karlsruhe Sakbani Vorrichtung zur bestimmung von partikelgroessen
DE3925148A1 (de) * 1988-07-30 1990-02-01 Horiba Ltd Teilchenzaehler

Also Published As

Publication number Publication date
DE59712005D1 (de) 2004-11-18
US5815265A (en) 1998-09-29
DE19628156A1 (de) 1998-01-15
EP0823626A3 (de) 1998-05-20
EP0823626B1 (de) 2004-10-13

Similar Documents

Publication Publication Date Title
DE60218074T2 (de) Durchflusszytometer
DE69422883T4 (de) Teilchenanalysator
DE68908094T2 (de) Teilchenmessvorrichtung.
DE69029723T2 (de) Verfahren zur bestimmung von grösse und geschwindigkeit kugelförmiger teilchen unter benutzung der phase und intensität gestreuten lichtes
DE69023107T2 (de) Verfahren und Vorrichtung zur Teilchenanalyse.
DE69327371T2 (de) Teilchenmessapparatur
CH693468A5 (de) Verfahren und Vorrichtung für die Detektion oder Lagebestimmung von Kanten.
WO2001063253A1 (de) Optisches messsystem
DE69825456T2 (de) Verfahren und vorrichtung zum feststellen von unregelmässigkeiten in einem produkt
DE3117337C2 (de)
DE4228388A1 (de) Vorrichtung zur Bestimmung von Partikelgrößen und/oder Partikelgrößenverteilungen
EP0823626B1 (de) Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid
DE19911654C1 (de) Einrichtung zur Bestimmung der Geschwindigkeit und der Größe von Partikeln
DE69108682T2 (de) Vorrichtung zur Messung des Durchmessers und der Geschwindigkeit eines Teilchens.
DE69421649T2 (de) Optische Prüfvorrichtung für die Füllung von Zigaretten
DE3732149C2 (de) Verfahren und Vorrichtung zum Charakterisieren einer Genauigkeitseigenschaft einer optischen Linse
DE3203788C2 (de)
DE3641716A1 (de) Verfahren und vorrichtung zum untersuchen einer partikel enthaltenden stroemung
DE102007052795A1 (de) Verfahren zur Bestimmung der Geschwindigkeit und der Größe von Teilchen mittels einer für die Laser-Doppler-Velocimetrie geeigneten Anordnung
DE3621567A1 (de) Mit reflektiertem licht arbeitender oberflaechenrauheitsanalysator
DE2528912A1 (de) Vorrichtung zum messen der konzentration einer trueben loesung
DE19736172B4 (de) Verfahren und Vorrichtung zur Analyse von Teilchen
EP1087221A1 (de) Optoelektronische Sensoreinrichtung
DE19636922C2 (de) Verfahren zum Justieren eines Laser-Doppler-Anemometers
WO2005116610A1 (de) Vorrichtung und verfahren zur ermittlung von partikelgroessen und partikelgeschwindigkeiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19980730

AKX Designation fees paid

Free format text: CH DE FR GB LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59712005

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080719

Year of fee payment: 12

Ref country code: CH

Payment date: 20080724

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080729

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080604

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202