EP0823626A2 - Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid - Google Patents
Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid Download PDFInfo
- Publication number
- EP0823626A2 EP0823626A2 EP97110905A EP97110905A EP0823626A2 EP 0823626 A2 EP0823626 A2 EP 0823626A2 EP 97110905 A EP97110905 A EP 97110905A EP 97110905 A EP97110905 A EP 97110905A EP 0823626 A2 EP0823626 A2 EP 0823626A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- aperture
- particle
- measuring range
- flow
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 10
- 239000012530 fluid Substances 0.000 title claims description 9
- 230000004907 flux Effects 0.000 title 1
- 238000003384 imaging method Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000005286 illumination Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 abstract description 19
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 206010052128 Glare Diseases 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/03—Electro-optical investigation of a plurality of particles, the analyser being characterised by the optical arrangement
Definitions
- the invention relates to a device for measuring a Particle flow in a fluid with at least one Aperture-comprising lighting arrangement and with at least a receiver arrangement having an aperture and a method for measuring a particle flow in a fluid, the particle stream illuminated and under a finite angle to the direction of illumination from Particle scattered light is detected.
- a particle flow to be measured in a fluid it is solid or liquid particles in one Trade gas or in a liquid.
- Such measurements are usually carried out to determine the particle size distribution and the particle concentration in the fluid determine.
- the particle size is proportional to the von a particle of light scattered on a receiver, the concentration is determined via the counting pulses.
- determining the particle size errors can occur when particles are partially are in the optical measurement volume, partly outside of the same for this reason only on the recipient scatter less light than theirs Size corresponds. Such errors must be excluded will. So far this has been done by spreading the Light through two detector arrays using coincidence measurements was detected, the detector arrangements Have apertures of different sizes. This requires a lot of equipment. In addition, such a measurement can lead to errors if the particles do not scatter evenly.
- the invention is therefore based on the object Specify device and a method with which under Avoiding the errors mentioned with accurate measurements less equipment expenditure can be achieved.
- the stated task is at a Device of the type mentioned above solved that at least one aperture has an aperture with a to the inside of the aperture convex edge having.
- a method according to the invention provides Solution to the problem that the particle flow through a Aperture with a convex shape towards its interior Edge is illuminated and / or considered that the Maximum intensity of the through a first optical measuring range flying particle measured and the particle only is taken into account if the intensity when flying through through a second measuring range a certain one Minimum percentage of measured for this particle Maximum intensity exceeds.
- the one with a convex edge towards the inside Aperture is the aperture in two or more Areas divided by which in the illustration of the Aperture in the particle stream different measuring ranges To be defined.
- a near the edge of the wider aperture area or wider measuring range Particle becomes outside of the narrower aperture range or the resulting measuring range remain and therefore can no longer be recorded in this area.
- Of the Scattered light pulse of such a particle becomes less As long as one in the middle through the Aperture of flying particles. The former particle can therefore be excluded from the measurement, what in the manner characterized by the said method happens.
- the edge is stepped, the aperture opening Is T-shaped or the aperture Is H-shaped.
- the length of the T-leg is equal to the strength of the T-crossbar and that the T-leg aligned in the direction of flow of the particle stream is.
- the length of the H-crossbar connecting the H-legs is equal to the thickness of the H longitudinal leg or that the length of the H-crossbar connecting the H-legs equal to twice the thickness of the H longitudinal leg , with the H crossbar in the flow direction of the particle stream is aligned.
- the device provides that both the aperture of the Imaging arrangement as well as the aperture of the Receiver arrangement is formed with convex edges and that an aperture two apertures different Has dimensions.
- the aperture openings should be sharp-edged and free of burrs.
- the method according to the invention is a further development before that the second measured value after the particle intensity a period of approximately the mean flow time of the particle through the first optical measuring range determining the maximum intensity is determined, in particular only particles that are detected when flowing through the second optical measuring range a relative signal intensity of at least 20% of the measured maximum intensity.
- the Particle flow through a lighting arrangement 2 with a light source 3, which is preferably a white source Is light, a condenser system 4, an aperture 6 in an aperture 6a and imaging optics 7.
- a light source 3 which is preferably a white source Is light
- a condenser system 4 an aperture 6 in an aperture 6a and imaging optics 7.
- the particle flow is considered using a Receiver arrangement 8 with an imaging optics 9 a another aperture 11 in another aperture 11a, a further condenser system 12 and an optoelectric Receiver 13.
- a deflection mirror 10 is provided, but not necessary is.
- the signal provided by the receiver 13 is processed in a subsequent electronics.
- the imaging optics 9 of the receiver arrangement 8 is such that that it maps the aperture 11 to where the imaging optics 7 the aperture 6 in the particle stream depicts. It is optically a measuring volume 16 in the crossing area of the illumination beam path 17 and the receiver beam path 18 within the particle stream educated.
- the particle stream usually flows perpendicularly through the through the illumination and receiver beam paths 17, 18 level formed, that is to say in the representation of FIG. 1 perpendicular to the leaf plane.
- the orifices 6, 11 are also directed towards the interior of the apertures 6, 11 convex edges.
- the convexity is in all the illustrated embodiments Steps or shoulders around the border of the aperture reached.
- the Apertures 6, 11 each have a T, as shown in the Fig. 2 shows where the diaphragm openings for clarification 6, 11, however, into the radiation plane 17, 18 folded or projected.
- the direction of illumination here, as in FIG. 3, with B, is the received light beam direction with E and the particle flow with A designated.
- the T-shaped aperture openings 6, 11 have a T longitudinal leg 21 and a T-crossbar 22.
- the length 1 of the T-longitudinal leg is correct in the illustrated embodiment with the thickness s of the T-cross piece 22.
- the absolute overall dimensions of the apertures 6, 11 through the mapping arrangement, the desired Measuring volume and the accuracy of the processing option of the diaphragms and aperture openings is determined as this as sharp as possible and with sharp corners as well should be produced without burrs.
- the overall linear dimensions are, for example, of the order of magnitude of 0.5 mm.
- the length of the T crossbar L 0.650 mm.
- the thickness of the The aperture material is approx. 50 ⁇ m.
- Measuring volume 16 formed optically, the shape of a square mushroom and two in the direction of flow A of the particle stream 1 successive measuring ranges 16a, 16b, which has different cross-sectional areas perpendicular to the flow direction A of the particle stream 1 have (i.e. with surface normals parallel to A), but in the illustrated embodiment in the direction of flow same heights h according to the matching ones Values l and s of the apertures 6, 11.
- a particle P1 flies on a path, so that it passes through both measuring ranges 16a, 16b (FIG. 2), so it scatters light intensity depending on its size both during the time t, during which it is through the Measuring range 16a flies, as well as during the time which flies it through the measuring range 16b, and thus delivers in the receiver 13 that designated P1 in FIG. 4 Signal that over the entire flight time 2t of the particle P1 is approximately the same through the entire measuring volume 16 is great.
- a particle P2 that is in an edge section of the measuring range 16a passes through it delivers only during the time t during which it is in the measuring range 16a, a signal corresponding to its size while it after leaving the measuring range 16a the smaller measuring range 16b, but past this flies and therefore onto this particle at the flight altitude of the Measuring range 16b no light falls, so there is no light Scatter light in the receiver 13 so that it is only a scattered light signal P2 'during the time t (FIG. 4) delivers.
- Maximum signal during the throughput time t is the signal intensity when passing through the measuring range 16b only approx. 20%, as can be seen in FIG. 4.
- a particle P 4 with most of it both through the measuring range 16a as well as through the measuring range 16b flies, but on the edge of the latter such that a small proportion of the surface of the particle outside the Measuring range 16b is also when flying through the Measuring range 16b still a relatively large signal in relation to the maximum signal determined by its size cause.
- a signal of such a particle is shown in Fig. 4 labeled P4 '.
- the minimum threshold S depends on the particle size relative to the measuring volume. In the illustrated embodiment the threshold S could also be lower than 50% of the respective maximum intensity.
- the particles but can have cross-sectional dimensions that differ of the representation of FIG. 2 in the order of magnitude the dimensions of the measuring volume and for example only a fifth to a tenth of the dimensions of the Measurement volume. In this case, definitely to exclude from the count those particles in which even a small section over the edge of the measuring range 16a protrudes.
- 5a shows a cross-shaped aperture.
- 5b shows an H-shaped aperture, the H-leg 31, 32 connecting H-web 33 in the direction of extension A the particle flow is aligned.
- the strength S 'of H-leg 31, 32 corresponds to the length 1 'of the H-web 33.
- Figure 5c also shows an H-shaped aperture. Here, however, corresponds to the length 1 'of the web 33 twice the thickness S 'of the H-legs 31, 32.
- Fig. 6 shows two in a diaphragm 6a in the flow direction A T-shaped apertures arranged one above the other 6 ', 6' '.
- the material web 34 can be between the two aperture openings 6 ', 6' 'can also be omitted, whereby then an aperture 6c corresponding to FIG. 7a is formed while different areas also on the one hand to remove unwanted particles from the Counting and secondly to increase the dynamic range can be used.
- the aperture can the embodiment of Fig. 7a also in the manner of Fig. 7b take place, so the aperture 6d with an H. form legs 31, 32 of different lengths.
Landscapes
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
- Fig. 1
- eine schematische Darstellung einer erfindungsgemäßen Vorrichtung;
- Fig. 2
- die erfindungsgemäß eingesetzten Blenden und das durch diese optisch gebildete Meßvolumen in Projektion;
- Fig. 3
- das erfindungsgemäß gebildete Meßvolumen in perspektivischer Darstellung;
- Fig. 4
- Signalverläufe von mittels der erfindungsgemäßen Vorrichtung detektierten Teilchen;
- Fig. 5a-5c
- andere Ausgestaltungen erfindungsgemäßer Blendenöffnungen;
- Fig. 6
- die Ausgestaltung einer erfindungsgemäßen Doppelblende; und
- Fig. 7a-7c
- weitere Ausgestaltungen erfindungsgemäßer Blendenöffnungen.
Claims (15)
- Vorrichtung zur Messung eines Teilchenstroms in einem Fluid mit mindestens einer eine Blende aufweisenden Beleuchtungsanordnung und mit mindestens einer eine Blende aufweisenden Empfängeranordnung, dadurch gekennzeichnet, daß mindestens eine Blende (6a, 11a) eine Blendenöffnung (6, 11) mit einem zum Inneren der Blendenöffnung (6, 11) konvex ausgebildeten Rand (6b, 11b) aufweist.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Rand (6b, 6c) stufenförmig ausgebildet ist.
- Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Blendenöffnung (6, 11) T-förmig ausgebildet ist.
- Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Länge (l) des T-Schenkels (21) gleich der Stärke (s) des T-Querstegs (22) ist.
- Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der T-Schenkel (21) in Strömungsrichtung (A) des Teilchenstroms ausgerichtet ist.
- Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Blendenöffnung (6, 11) H-förmig ausgebildet ist.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Länge des die H-Schenkel verbindenden H-Querstegs gleich der Stärke der H-Längsschenkel ist.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Länge des die H-Schenkel verbindenden H-Querstegs gleich dem Doppelten der Stärke der H-Längsschenkel ist.
- Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß sowohl die Blendenöffnung der Abbildungsanordnung (2) als auch die Blendenöffnung (11) der Empfängeranordnung (8) mit konvexen Rändern (6b, 11b) ausgebildet ist.
- Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß eine Blende (6) zwei Blendenöffnungen (6', 6'') unterschiedlicher Abmessungen aufweist.
- Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ränder (6b, 11b) der Blendenöffnungen scharfkantig sind.
- Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Ränder (6b, 11b) der Blendenöffnungen (6, 11) gratfrei sind.
- Verfahren zum Messen eines Teilchenstroms in einem Fluid, wobei der Teilchenstrom beleuchtet und unter einem endlichen Winkel zur Beleuchtungsrichtung von Teilchen gestreutes Licht detektiert wird, dadurch gekennzeichnet, daß der Teilchenstrom durch eine Blendenöffnung mit zu ihrem Inneren hin konvex ausgebildetem Rand beleuchtet und/oder betrachtet wird, daß die Maximalintensität des durch einen ersten optischen Meßbereich fliegenden Teilchens gemessen und das Teilchen nur berücksichtigt wird, wenn die Intensität beim Durchfliegen durch einen zweiten Meßbereich einen bestimmten Mindestprozentsatz der für dieses Teilchen gemessenen Maximalintensität überschreitet.
- Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß als zweiter Meßwert die Teilchenintensität nach einem Zeitraum von etwa der mittleren Durchströmungszeit des Teilchens durch den ersten optischen Meßbereich nach der Feststellung der Maximalintensität bestimmt wird.
- Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß lediglich Teilchen erfaßt werden, die bei Durchströmen durch den zweiten optischen Meßbereich eine relative Signalintensität von mindestens 20 % der gemessenen Maximalintensität ergeben.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19628156 | 1996-07-12 | ||
DE19628156A DE19628156A1 (de) | 1996-07-12 | 1996-07-12 | Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0823626A2 true EP0823626A2 (de) | 1998-02-11 |
EP0823626A3 EP0823626A3 (de) | 1998-05-20 |
EP0823626B1 EP0823626B1 (de) | 2004-10-13 |
Family
ID=7799668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97110905A Expired - Lifetime EP0823626B1 (de) | 1996-07-12 | 1997-07-02 | Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid |
Country Status (3)
Country | Link |
---|---|
US (1) | US5815265A (de) |
EP (1) | EP0823626B1 (de) |
DE (2) | DE19628156A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19903001A1 (de) | 1999-01-26 | 2000-08-24 | Evotec Biosystems Ag | Verfahren und Vorrichtung zur Detektion mikroskopisch kleiner Objekte |
US6326608B1 (en) * | 1999-07-09 | 2001-12-04 | Chung-Shan Institute Of Science And Technology | Polarization-type laser detection system |
ATE354791T1 (de) * | 2001-10-10 | 2007-03-15 | Borealis Tech Oy | Teilchendatenanalyse |
DE10202999B4 (de) * | 2002-01-26 | 2004-04-15 | Palas Gmbh Partikel- Und Lasermesstechnik | Verfahren und Vorrichtung zum Messen der Größenverteilung und Konzentration von Partikeln in einem Fluid |
US7352461B2 (en) * | 2004-11-30 | 2008-04-01 | Tokyo Electron Limited | Particle detecting method and storage medium storing program for implementing the method |
JP4544459B2 (ja) * | 2004-11-30 | 2010-09-15 | 東京エレクトロン株式会社 | パーティクル検出方法及びパーティクル検出プログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1802269A1 (de) * | 1968-10-10 | 1970-05-14 | Kernforschung Gmbh Ges Fuer | Verfahren zum Messen der Konzentration und/oder Groesse von Schwebstoffteilchen |
DE3315456A1 (de) * | 1983-04-28 | 1984-12-13 | Khaled Dipl.-Ing. 7500 Karlsruhe Sakbani | Vorrichtung zur bestimmung von partikelgroessen |
DE3925148A1 (de) * | 1988-07-30 | 1990-02-01 | Horiba Ltd | Teilchenzaehler |
-
1996
- 1996-07-12 DE DE19628156A patent/DE19628156A1/de not_active Withdrawn
-
1997
- 1997-07-02 EP EP97110905A patent/EP0823626B1/de not_active Expired - Lifetime
- 1997-07-02 DE DE1997512005 patent/DE59712005D1/de not_active Expired - Fee Related
- 1997-07-10 US US08/890,999 patent/US5815265A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1802269A1 (de) * | 1968-10-10 | 1970-05-14 | Kernforschung Gmbh Ges Fuer | Verfahren zum Messen der Konzentration und/oder Groesse von Schwebstoffteilchen |
DE3315456A1 (de) * | 1983-04-28 | 1984-12-13 | Khaled Dipl.-Ing. 7500 Karlsruhe Sakbani | Vorrichtung zur bestimmung von partikelgroessen |
DE3925148A1 (de) * | 1988-07-30 | 1990-02-01 | Horiba Ltd | Teilchenzaehler |
Also Published As
Publication number | Publication date |
---|---|
DE59712005D1 (de) | 2004-11-18 |
US5815265A (en) | 1998-09-29 |
DE19628156A1 (de) | 1998-01-15 |
EP0823626A3 (de) | 1998-05-20 |
EP0823626B1 (de) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60218074T2 (de) | Durchflusszytometer | |
DE69422883T4 (de) | Teilchenanalysator | |
DE68908094T2 (de) | Teilchenmessvorrichtung. | |
DE69029723T2 (de) | Verfahren zur bestimmung von grösse und geschwindigkeit kugelförmiger teilchen unter benutzung der phase und intensität gestreuten lichtes | |
DE69023107T2 (de) | Verfahren und Vorrichtung zur Teilchenanalyse. | |
DE69327371T2 (de) | Teilchenmessapparatur | |
CH693468A5 (de) | Verfahren und Vorrichtung für die Detektion oder Lagebestimmung von Kanten. | |
WO2001063253A1 (de) | Optisches messsystem | |
DE69825456T2 (de) | Verfahren und vorrichtung zum feststellen von unregelmässigkeiten in einem produkt | |
DE3117337C2 (de) | ||
DE4228388A1 (de) | Vorrichtung zur Bestimmung von Partikelgrößen und/oder Partikelgrößenverteilungen | |
EP0823626B1 (de) | Vorrichtung und Verfahren zum Messen eines Teilchenstromes in einem Fluid | |
DE19911654C1 (de) | Einrichtung zur Bestimmung der Geschwindigkeit und der Größe von Partikeln | |
DE69108682T2 (de) | Vorrichtung zur Messung des Durchmessers und der Geschwindigkeit eines Teilchens. | |
DE69421649T2 (de) | Optische Prüfvorrichtung für die Füllung von Zigaretten | |
DE3732149C2 (de) | Verfahren und Vorrichtung zum Charakterisieren einer Genauigkeitseigenschaft einer optischen Linse | |
DE3203788C2 (de) | ||
DE3641716A1 (de) | Verfahren und vorrichtung zum untersuchen einer partikel enthaltenden stroemung | |
DE102007052795A1 (de) | Verfahren zur Bestimmung der Geschwindigkeit und der Größe von Teilchen mittels einer für die Laser-Doppler-Velocimetrie geeigneten Anordnung | |
DE3621567A1 (de) | Mit reflektiertem licht arbeitender oberflaechenrauheitsanalysator | |
DE2528912A1 (de) | Vorrichtung zum messen der konzentration einer trueben loesung | |
DE19736172B4 (de) | Verfahren und Vorrichtung zur Analyse von Teilchen | |
EP1087221A1 (de) | Optoelektronische Sensoreinrichtung | |
DE19636922C2 (de) | Verfahren zum Justieren eines Laser-Doppler-Anemometers | |
WO2005116610A1 (de) | Vorrichtung und verfahren zur ermittlung von partikelgroessen und partikelgeschwindigkeiten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB LI |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;RO;SI |
|
17P | Request for examination filed |
Effective date: 19980730 |
|
AKX | Designation fees paid |
Free format text: CH DE FR GB LI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB LI |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59712005 Country of ref document: DE Date of ref document: 20041118 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: TROESCH SCHEIDEGGER WERNER AG |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050714 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080719 Year of fee payment: 12 Ref country code: CH Payment date: 20080724 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080729 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080604 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090702 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100202 |