VORRICHTUNG UND VERFAHREN ZUR ERMITTLUNG VON PARTIKELGRÖSSEN UND PARTIKELGESCHWINDIGKEITEN
Beschreibung
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Ermittlung von Partikelgröße und/oder Partikelgeschwindigkeit bestehend aus einer Licht- 5 quelle und einem Detektor, wobei die Lichtquelle und der Detektor derart angeordnet sind, dass das von der Lichtquelle ausgesandte Licht auf den Detektor abgebildet wird und das Licht zwischen Lichtquelle und Detektor einen ersten Messbereich mit einem definierten durchstrahlten Volumen durchstrahlt, wobei der Messbereich von den zu vermessenden Partikeln 10 durchquert wird.
Bei der Vermessung von Partikeln ist die simultane Bestimmung von Partikeldurchmesser und -geschwindigkeit eine wesentliche Aufgabe. Insbesondere bei der Messung von Niederschlägen ist die Messung der beiden 15 oben genannten Größen für Anwendungen in der Meteorologie essenziell. Aus der Kenntnis der Größe und Geschwindigkeit der einzelnen Partikel des Niederschlags können in der Meteorologie gängige Größen wie zum Beispiel die Regenrate, der Niederschlagscode oder die Z/R-Beziehung zur Bestimmung der Radarreflektivität ermittelt werden. 20 Vorrichtungen, die eine simultane Messung von Partikeldurchmesser und -geschwindigkeit ermöglichen, sind bereits bekannt:
So offenbart z. B die DE 19724364 eine Vorrichtung zur Ermittlung von 25 Partikelgrößen und Partikelgeschwindigkeiten, bei der ein Lichtband als Messraum mit rechteckigem Querschnitt erzeugt wird, wobei der Messräum so dimensioniert ist, dass sich im Mittel immer nur ein Partikel im Messraum befindet. Die Schwächung der Lichtintensität, die von einem den Messraum durchquerenden Partikel verursacht wird, wird mit einem Detektor erfasst. 30 Durch Auswerten des zeitlichen Verlaufs des Detektorausgangssignals kann sowohl die Teilchengröße aus der Höhe der Änderung des Detektoraus-
gangssignals, sowie die Teilchengeschwindigkeit aus der Dauer der Änderung des Detektorausgangssignals ermittelt werden.
Bei dieser Vorrichtung führen jedoch Partikel, welche den Messbereich nur streifen, d. h. deren Bewegungsbahn derart am Rand des Messbereichs liegt, dass nur ein Teil des Partikelvolumens innerhalb des Messbereichs liegt, zu fehlerhaften Messpunkten. Bei frei fallenden Partikeln wie etwa Regentropfen gilt in erster Näherung, dass mit sinkender Partikelgröße auch die Fallgeschwindigkeit sinkt. Regentropfen, die wie oben beschrieben den Messbereich nur am Rand streifen, werden jedoch fälschlicherweise als kleine Partikel identifiziert, die Geschwindigkeit wird jedoch korrekt bestimmt. Dies führt zu Datenpunkten von Partikeln mit kleinem Durchmesser und hoher Geschwindigkeit, welche keine Entsprechung in der Realität besitzen.
Der Erfindung liegt daher die Aufgabe zugrunde, die Ermittlung von Partikelgrößen und -geschwindigkeiten dahingehend zu verbessern, dass Partikel, welche den Messbereich nur mit einem Teil ihres Volumens durchqueren, identifiziert werden können, so dass die bisherige Verfälschung des Mess- ergebnisses beseitigt wird. Außerdem soll sich die eriϊndungsgemäße Vorrichtung durch zuverlässigen und kostengünstigen Aufbau auszeichnen.
Gelöst ist diese Aufgabe erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1 und ein Verfahren gemäß Anspruch 15.
Die erfindungsgemäße Vorrichtung umfasst also zusätzlich mindestens einen zweiten Detektor, der derart angeordnet ist, dass das Licht zwischen Lichtquelle und zweitem Detektor einen zweiten Messbereich durchstrahlt, zur Erfassung solcher Partikel, die den ersten Messbereich nur mit einem Teil ihres Volumens durchqueren.
Durch Auswertung der Signale des ersten und zweiten Detektors, dessen Messbereiche aneinander liegen oder sich überlappen, können Daten-
punkte, welche zu einem solchen Rand-Partikel gehören, identifiziert und gesondert behandelt werden.
Vorteilhafte Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Vorrichtung sind in den Patentansprüchen 2 bis 13 niedergelegt.
Die Erfindung wird im Folgenden anhand der beigefügten Zeichnungen näher beschrieben und erläutert. Es zeigen:
Figur 1 eine Ausführungsform der Erfindung mit drei Detektoren, wobei die Zeichenebene senkrecht zur Bewegungsrichtung der Partikel verläuft;
Figur 2 die räumliche Anordnung der drei Messbereiche der bevorzugten Ausführungsform gemäß einem Querschnitt entlang der Linie A in Figur 1 und
Figur 3 die räumliche Anordnung von zwei Messbereichen einer weiteren Ausführungsform der Erfindung.
In der in Figur 1 gezeigten Ausführungsform umfasst die Vorrichtung eine Lichtquelle 1 , wobei das von der Lichtquelle ausgesandte Licht durch eine Linse 2 parallelisiert, sowie durch eine Blende 3 eingegrenzt wird. Das parallelisierte Licht wird mittels einer weiteren Blende 4 und Linse 5 auf einen zentralen ersten Detektor 6, einen zweiten Detektor 7 und einen dritten Detektor 8 abgebildet, wobei die Detektoren 7 und 8 auf gleicher Höhe wie Detektor 6, aber an entgegengesetzter Seite angeordnet sind.
Die optischen Bauelemente sind derart positioniert, dass das Licht horizon- tale Messbereiche durchstrahlt, nämlich einen ersten, zentralen Messbereich 9, einen zweiten Messbereich 10 und einen dritten Messbereich 11, wobei die Messbereiche entsprechend auf den ersten Detektor 6, den zweiten Detektor 7 bzw. den dritten Detektor 8 abgebildet werden.
Der erste Messbereich 9 ist der eigentliche Messbereich. Das Signal des ersten Detektors 6 wird einer (nicht dargestellten) Auswerteeinheit zugeführt und in an sich bekannter Weise ausgewertet, d. h. es werden zum Beispiel Partikelgröße und Partikelgeschwindigkeit bestimmt. Durchquert nun ein Partikel den ersten Messbereich 9 derart, dass an dessen seitlichem Rand nur ein Teil seines Volumens im ersten Messbereich liegt, wie mit Partikel 12 in Figur 1 dargestellt, so tritt ebenfalls eine Intensitätsschwächung bei dem zweiten Detektor 7 auf, da das Partikel 12 mit einem Teil seines Volumens den zweiten Messbereich 10 durchquert. Das Signal des zweiten Detektors 7 wird ebenfalls der Auswerteeinheit zugeführt, so dass durch eine gemeinsame Auswertung der Signale des ersten Detektors 6 und zweiten Detektors 7 das Partikel 12 als Randpartikel identifiziert werden kann. Es ist somit eine Klassifizierung der Daten nach Randpartikeln, und Partikeln, welche mit ihrem gesamten Volumen den ersten Messbereich 9 durchqueren, möglich.
Die Daten der Randpartikel können somit einer gesonderten Behandlung unterzogen werden. Beispielsweise können diese Daten aus der Datenliste gelöscht werden oder es kann über ein geeignetes Korrekturverfahren eine Korrektur beispielsweise der Partikelgröße durchgeführt werden. Für Regen- tropfen kann ein solches Korrekturverfahren auf dem bekannten Zusammenhang zwischen Partikelgröße und Fallgeschwindigkeit beruhen.
Für die in Figur 1 dargestellte vorzugsweise Ausführungsform ist es vorteilhaft, wenn der zweite Detektor 7 und der dritte Detektor 8 derart ausgeführt sind, dass sie ein logisches Signal erzeugen, wenn eine Intensitätsschwächung am zweiten bzw. dritten Detektor stattgefunden hat. Geht man davon aus, dass die randständigen Detektoren 7 und 8 im Normalfall jeweils ein gewisses Grundsignal abgeben, welches beim Durchtritt eines Partikels durch den zweiten bzw. dritten Messbereich geschwächt wird, so soll diese Schwächung als logisches Signal ausgegeben werden. Beispielsweise kann ein Signal "0" den Zustand, dass kein Partikel den zweiten bzw. dritten Messbereich durchquert hat, zugeordnet werden und entsprechend ein
Signal "1" die Passage eines Partikels durch den entsprechenden Messbereich anzeigen.
In Figur 2 ist ein Querschnitt durch die drei Messbereiche entlang der Linie A in Figur 1 dargestellt. In der vorzugsweisen Ausführungsform sind die optischen Bauteile derart angeordnet, dass zumindest der erste Messbereich 9 quaderförmig ist. Der zweite Messbereich 10 und der dritte Messbereich 11 befinden sich an gegenüberliegenden Rändern des ersten Messbereichs 9, wobei sich die Messbereiche im Wesentlichen nicht über- schneiden. Ein Partikel 12, das den ersten Messbereich nur mit einem Teil seines Volumens durchquert, durchquert somit mit dem restlichen Teil seines Volumens den zweiten Messbereich 10 und kann identifiziert werden.
In der bevorzugten Ausführungsform sind die Lichtquelle 1 durch einen Laser und die Detektoren 6, 7 und 8 durch je eine Fotodiode realisiert.
Neben der oben beschriebenen bevorzugten Ausführungsform sind auch andere erfindungsgemäße Ausführungsformen denkbar:
So können der zweite Detektor 7 und der dritte Detektor 8 beispielsweise vor der Linse 5 angeordnet sein und dadurch die Blende 4 ersetzen.
Darüber hinaus können die Messbereiche durch andere optische Bauteile erzeugt werden, beispielsweise ist ein Leuchtdioden-Array als Lichtquelle denkbar.
Ebenso gibt es eine Vielzahl von räumlichen Anordnungen der Messbereiche, mit denen sich die Erfindung realisieren lässt. Als Beispiel ist in Figur 3 ein Querschnitt dargestellt, bei dem ein erster Messbereich 13 von einem zweiten (gestrichelt dargestellten) Messbereich 14 über den ganzen Querschnitt umhüllt wird. Die Bewegungsrichtung der Partikel ist durch den Pfeil B dargestellt. Bei dieser Anordnung erzeugt ein Randpartikel 15 eine durchgängige einmalige Intensitätsschwächung im zweiten Messbereich 14,
wohingegen ein Partikel 16, welches mit seinem gesamten Volumen den ersten Messbereich 13 durchquert, zwei aufeinander folgende Intensitätsschwächungen im zweiten Messbereich 14 erzeugt, wodurch eine Identifizierung der Randpartikel möglich wird.
Darüber hinaus ist die Verwendung zusätzlicher Messbereiche, beispielsweise bei einem nicht quaderförmigen ersten Messbereich denkbar, um eine Klassifizierung der Randpartikel zu ermöglichen.
Es liegt ebenso im Rahmen der Erfindung, statt des zweiten und dritten Detektors lediglich einen zweiten Detektor zu verwenden, wobei das Licht, welches den zweiten Messbereich durchstrahlt hat und das Licht, welches den dritten Messbereich durchstrahlt hat, beispielsweise über Lichtleiter oder Spiegel auf den zweiten Detektor abgebildet wird.
In der Praxis hat man sich die Vorrichtung so vorzustellen, dass die Lichtquelle 1, die Linse 2 und die Blende 3 in einem Gehäuse und die Detektoren 6, 7 und 8, sowie die Linse 5 und die Blende 4 in einem anderen Gehäuse angeordnet sind, wobei die beiden Gehäuse über Tragarme an einem ge- meinsamen Ständer befestigt sind. Der Zwischenraum zwischen beiden Gehäusen wird von den zu messenden Partikeln, beispielsweise Regentropfen, durchquert und enthält die drei Messbereiche 9, 10 und 11.