EP0803609A2 - Verfahren zum lagegenauen Hinsetzen einer Einlage in Beton, Einrichtung zur Durchführung dieses Verfahrens, und durch das Verfahren erhaltenes Gleis - Google Patents
Verfahren zum lagegenauen Hinsetzen einer Einlage in Beton, Einrichtung zur Durchführung dieses Verfahrens, und durch das Verfahren erhaltenes Gleis Download PDFInfo
- Publication number
- EP0803609A2 EP0803609A2 EP97400910A EP97400910A EP0803609A2 EP 0803609 A2 EP0803609 A2 EP 0803609A2 EP 97400910 A EP97400910 A EP 97400910A EP 97400910 A EP97400910 A EP 97400910A EP 0803609 A2 EP0803609 A2 EP 0803609A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- concrete
- saddle
- insert
- given
- une
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B3/00—Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
- E01B3/28—Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from concrete or from natural or artificial stone
- E01B3/38—Longitudinal sleepers; Longitudinal sleepers integral or combined with tie-rods; Combined longitudinal and transverse sleepers; Layers of concrete supporting both rails
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/005—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects with anchoring or fastening elements for the shaped articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/0062—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects forcing the elements into the cast material, e.g. hooks into cast concrete
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B29/00—Laying, rebuilding, or taking-up tracks; Tools or machines therefor
- E01B29/32—Installing or removing track components, not covered by the preceding groups, e.g. sole-plates, rail anchors
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B31/00—Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
- E01B31/20—Working or treating non-metal sleepers in or on the line, e.g. marking, creosoting
- E01B31/26—Inserting or removing inserts or fillings for holes in sleepers, e.g. plugs, sleeves
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B9/00—Fastening rails on sleepers, or the like
- E01B9/02—Fastening rails, tie-plates, or chairs directly on sleepers or foundations; Means therefor
- E01B9/04—Fastening on wooden or concrete sleepers or on masonry without clamp members
- E01B9/14—Plugs, sleeves, thread linings, or other inserts for holes in sleepers
- E01B9/18—Plugs, sleeves, thread linings, or other inserts for holes in sleepers for concrete sleepers
Definitions
- the invention relates to civil engineering, in particular the construction of railway tracks.
- this method is particularly advantageous for inserting, in a concrete slab, saddles supporting railway rails. It is also applicable in all cases where one inserts in concrete, at a given position, with an accuracy of the order of a millimeter, an insert which comprises at least one cavity which must be filled with concrete for the 'insert withstands significant efforts.
- the object of the invention is to provide a method for making a railway track, without sleepers, at a lower cost than this known method.
- the method thus characterized makes it possible to use inserts comprising relatively deep cavities without there being a risk of improper filling. Therefore, it guarantees an anchorage very resistant to constraints. This property is particularly advantageous for inserts supporting railway rails.
- the method thus characterized makes it possible to significantly reduce the cost of making a railway track, since there is no longer a step consisting in fixing spacer gauges, and in verifying its position before pouring concrete.
- the precision obtained on the position of each saddle is sufficient to obtain the desired precision for the spacing between the two rails of a track, and for the position of the running surface.
- the fact of depositing a concrete slab before laying the rails, and not after, makes it possible to use a conventional machine with sliding formwork which makes it possible to pour a concrete slab with very little labor.
- the method according to the invention is characterized in that, for driving a saddle into a concrete slab, by vibrating this saddle, until it reaches a given position, with a given tolerance, it consists in slaving the position of the saddle to a predetermined position setpoint, along three axes orthogonal to each other, or another equivalent reference.
- the process thus characterized makes it possible to automate the sinking of the saddle, while providing excellent position accuracy.
- the invention also relates to a device for implementing the method according to the invention.
- the invention relates to a railway track obtained by the method according to the invention.
- the plate 3 has a generally rectangular, flat and horizontal shape, comprising: a vertical border 11 over its entire periphery, four reinforcing ribs, and two bosses 5 and 10 having vertical walls slightly inclined. These bosses 5 and 10 are provided in particular to collaborate with parts, not shown, which will be used for the subsequent fixing of a rail. In the use made of it here, the bosses 5 and 10 also have the function of providing a free space allowing the ascent of a volume of concrete equal to the volume of the concrete displaced by the sealing rods 6 and 9 when the saddle is embedded in concrete. On the other hand, the saddles 1 and 1 ′ have a plurality of orifices 7, 12 allowing the air to escape when the concrete fills the bowl formed by the plate 3, its edge 11, and the bosses 5 and 10.
- Each stud is fixed to the sole by force fitting, or by welding.
- the threaded part of the stud can be protected during all the saddle insertion operations, by means of a plastic sleeve screwed onto this threaded part.
- the method according to the invention is applicable not only to this type of insert but also to any other type of insert that can be sealed in concrete.
- FIG. 2 shows in section an example of a railway track produced using this type of saddle and applying the method according to the invention.
- This figure 2 shows two rails, 12 and 14, fixed respectively on two saddles 13 and 15, by nuts and parts inserted in a conventional manner between each nut and the rail.
- the altitude of each of the rails 12 and 14 is determined on the one hand by the altitude of the surface of the slab 16 which is manufactured with a given precision, of the order of a few millimeters, and on the other hand is a function of the depression of the saddle in the concrete of the slab 16, this depression being adjusted so that the running surface has a given position, with an accuracy of the order of a millimeter.
- the spacing between the rails 12 and 14 is determined by the distance separating the two saddles when they are sealed. There are no spacer gauges between these rails, nor a priori an adjustment shim.
- Figures 3 and 4 respectively represent a top view and a sectional view of the main part of an example of an insertion device specially adapted for the insertion of the type of saddle shown in Figure 1.
- This example includes a base consisting of a sheet 30 intended to be placed directly on the surface 25 of a concrete slab 31 in which must be inserted a saddle.
- This concrete is fresh, smooth, and has a firm consistency.
- This sheet 30 has a circular opening on which is welded a vertical tube 21 allowing the passage of a movable part.
- FIG. 3 does not represent the vibration device 35, neither the parts 33a and 33b, nor the stirrup 39.
- FIG. 4 does not represent the hydraulic pipes supplying the clamps and the vibration device.
- the vibration device 35 comprises one or more vibrators, each vibrator consisting for example of a hydraulic motor having an unbalance.
- the whole of the vibration device 35 vibrates while driving in its movement the plate 32 which has a certain freedom thanks to the elastic blocks 24a to 24d.
- the clamps 23a and 23b transmit the vibrations to the anchor rods 9 and 6. Under the action of these vibrations, the concrete is much more fluid in the vicinity of the anchor rods, which makes it possible to drive them in with less force and to obtain a much more precise positioning.
- FIG. 6 illustrates a first step during which the saddle 1 is placed manually or automatically, inside the receptacle 28, by inserting the threaded rods of the studs in the hydraulic clamps 23a and 23b (The latter is not shown).
- the cylinders 44 and 41 are retracted, which leaves space between the tube 21 and the receptacle 28 to access the interior of the latter.
- FIG. 7 illustrates a second step during which the saddle 1 is quickly depressed.
- the vibration device 35 is activated with an amplitude and a frequency adapted to facilitate penetration of the saddle 1 in the concrete slab 31, making the concrete more fluid in the vicinity of the anchor rods.
- the rubber blocks 24a, etc ... allow the plate 32 to move slightly in all directions, relative to the plate 22.
- the jack 44 is actuated to push the saddle 1 to a position close to the position final planned, to within a few millimeters.
- the jack 44 moves: the sliding part 42, the arms 40a and 40b (not shown), the support plate 22, and the receptacle 28 which are associated with it.
- the saddle 1 is therefore pushed into the liquefied concrete by vibrations.
- the receptacle 28 is lowered until it is in the vicinity of the surface 25 of the concrete slab. It should be noted that the guide fingers 26a, etc., are still in the raised position and are not in contact with the saddle 1.
- FIG. 8 illustrates a third step of inserting the saddle 1, consisting of completing the insertion at a lower speed, adapted to precise positioning, up to the final depth provided for the saddle.
- the jack 44 is activated again, but with a lower speed.
- the vibration device 35 is activated, but the amplitude and frequency of the vibrations are adapted for precise positioning of the saddle 1.
- the receptacle 28 and the plate 30, which are almost contiguous, confine the concrete and force it to rise in the bosses 5 and 10.
- the vibration device 35 and the jack 44 are stopped.
- FIG. 9 illustrates a fourth step during which the vibration device 35 is stopped.
- the cylinder 41 is activated in turn. He lowers the stirrup 39 which is integral with the part 33a (partially shown) and with the part 33b (not shown), these parts 33a and 33b supporting the fingers 26a, etc.
- the stirrup 39 lowers until to abut on the plate 32.
- the ends of the fingers 26a, etc ... then come into contact with the flat part of the saddle 1. If the saddle 1 is not perfectly positioned in the horizontal plane, the fingers rub on the vertical walls of the bosses 5 and 10 of the saddle 1 and cause a slight displacement of the saddle 1, in the horizontal plane, to reposition the saddle 1 in a position well defined by the eight fingers.
- the clamps 23a, etc ... are kept tight, and the fingers 26a, etc ... are kept in this position until the increase in the viscosity of the concrete is sufficient to prevent any displacement of the saddle during the raising of the fingers.
- the hydraulic clamps 23a and 23b are then controlled to release the saddle studs 1. Then the jack 41 is activated in the opposite direction to raise the fingers 26a, etc ... Then the jack 44 is activated in the opposite direction to reassemble the entire mobile part of the insertion device.
- Figures 10 and 11 respectively represent two front views of a mobile machine allowing the insertion of two saddles simultaneously.
- the machine is in a state to move it and prepare the insertion of a saddle.
- the machine is inserting a saddle into a fresh concrete slab 62.
- Figure 12 shows a top view. In these figures, the machine has already inserted saddles 70 to 76 in a concrete slab 62.
- This exemplary embodiment comprises a mobile platform 52 supporting two insertion devices 51a and 51b, identical to each other and which can be similar to the insertion device shown in FIGS. 3 to 5, and which has been described previously. They notably include position sensors 64a, respectively 64b, analogous to the sensor CP; and control units UC1, respectively UC2, analogous to the control unit UC.
- the devices 51a and 51b are mounted on a carriage 63 which is integral with the platform 52 and movable relative to the latter along two horizontal axes, orthogonal to one another.
- a set of jacks not shown, makes it possible to lower the devices 51a and 51b until their bases (sheet 30) rest on the surface of the concrete slab 62.
- the devices 51a and 51b pass through the carriage 63 through openings 61a and 61b respectively, and pass through the platform 52 through an opening 62.
- the platform 52 is mounted on four tracks 53a, 53b, 53c, 53d, by means of four horizontal articulated arms 55a, 55b, 55c, 55d, making it possible to adjust the spacing between the tracks, and via four vertical legs 57a, 57b, 57c, 57d, allowing the height of each arm 55a, 55b, 55c, 55d to be adjusted independently, respectively with respect to the tracks 53a, 53b, 53c, 53d, resting on the ground.
- the position of the platform 52 is controlled according to three orthogonal axes, by means of a control unit UC3, so that it follows the profile provided for the raceway, consequently it follows the surface of the slab 62.
- the legs 54a and 54b respectively support sensors 58a and 58b which follow a guide 57 parallel to the profile along the rails to be installed.
- This guide 57 is marked, in order to control the position of the platform 52 along two horizontal axes with reference to this guide 57.
- the platform 52 spans the concrete slab 62 and moves along this slab 62 by means of motors actuating the tracks 53a, ..., 53d.
- the legs 54a and 54b respectively carry sensors 60a and 60b making it possible to determine the respective altitudes of the arms 55a and 55b relative to a laser plane, taking into account the height adjustment of these arms relative to the legs 54a and 54b. Knowing these altitudes makes it possible to control these altitudes at predetermined set values so that the platform 52 follows the profile of the track.
- the concrete used has a firm consistency.
- the slab 62 was freshly poured, vibrated in place, rectified, and smoothed, by a conventional machine with sliding forms, such as those used for making concrete pavements, for motorways. It gives the surface of the slab a position deducted from the position provided for the running surface of the track, with an accuracy of the order of 2 millimeters, thanks to conventional position controls.
- the saddle inserts, 51a and 51b are spaced apart by an interval corresponding to the interval provided for the rails.
- the mobile carriage 63 moves them together and makes it possible to refine the insertion position, with an accuracy of the order of a millimeter along two horizontal axes, even better than that provided by the platform 52.
- the mobile carriage 63 carries a position sensor 59 which makes it possible to control the position of the carriage 63 along two horizontal axes, by referring to the position of the same guide 57, but with a finer tolerance than the tolerance on the position of the platform 52.
- the carriage is moved by two motors, not shown, controlled by a control unit UC4, according to the measurements made by the sensor 59 and according to the position provided for the two saddles to be inserted.
- the slaving of the insertion devices 51a and 51b along a vertical axis, by the control units UC1 and UC2, makes it possible to insert each saddle with an altitude precision of the order of a millimeter, even better than the precision obtained on the altitude of the surface of the concrete layer 62.
- Position control devices referring to the position of a guide and the position of a laser plane, are conventional devices. However, other known types of position control device could also be used to obtain a precise position of each saddle.
- the insertion devices 51a and 51b could be mounted directly on the machine used to pour in place the slab of concrete 62, instead of the platform 52.
- the production of this machine will not be described since it is analogous to the production of a machine conventionally used for making concrete highways.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
- Machines For Laying And Maintaining Railways (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9605099A FR2747698B1 (fr) | 1996-04-23 | 1996-04-23 | Procede pour mette en place avec precision un insert dans du beton, dispositif pour la mise en oeuvre de ce procede, et voie de chemin de fer obtenue par ce procede |
FR9605099 | 1996-04-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0803609A2 true EP0803609A2 (de) | 1997-10-29 |
EP0803609A3 EP0803609A3 (de) | 1998-08-05 |
EP0803609B1 EP0803609B1 (de) | 2003-01-15 |
Family
ID=9491496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97400910A Expired - Lifetime EP0803609B1 (de) | 1996-04-23 | 1997-04-22 | Verfahren zum lagegenauen Hinsetzen einer Einlage in Beton, Einrichtung zur Durchführung dieses Verfahrens, und durch das Verfahren erhaltenes Gleis |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0803609B1 (de) |
AT (1) | ATE231203T1 (de) |
DE (1) | DE69718371T2 (de) |
FR (1) | FR2747698B1 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812671A1 (fr) | 2000-08-01 | 2002-02-08 | Alstom | Procede de guidage d'un dispositif destine a inserer des elements dans le sol pour la realisation d'un ouvrage et dispositif d'insertion d'au moins un element dans le sol utilisant un tel procede de guidage |
FR2833023A1 (fr) | 2001-12-05 | 2003-06-06 | Alstom | Procede de construction d'une voie ferree dans lequel on realise une dalle de voie en beton et on insere dans la dalle de voie des elements d'ancrage de la voie ferree |
US7325316B2 (en) | 2006-02-09 | 2008-02-05 | Alstom Transport Sa | Device and method for inserting elements into the ground, mechanism for this device and system using this device |
US7428778B2 (en) | 2006-02-23 | 2008-09-30 | Alstom Transport Sa | Method and a system for inserting elements in the ground, a data recording medium for the method |
FR2941973A1 (fr) * | 2009-02-12 | 2010-08-13 | Alstom Transport Sa | Procede et systeme de guidage par laser pour l'insertion d'elements dans le sol |
FR3003276A1 (fr) * | 2013-03-12 | 2014-09-19 | Alstom Transport Sa | Procede de construction d'une voie ferree comprenant un lit anti-vibratile |
EP3031983A1 (de) | 2014-11-10 | 2016-06-15 | ALSTOM Transport Technologies | Verbessertes lenkverfahren einer einbringvorrichtung von elementen in den boden für die erstellung eines bauwerks, entsprechende einbringvorrichtung und entsprechendes fahrzeug |
EP3409836A1 (de) * | 2017-06-01 | 2018-12-05 | ALSTOM Transport Technologies | Herstellungsverfahren einer halterung einer eisenbahnschiene, entsprechende halterung einer eisenbahnschiene und entsprechende schienenanlage |
CN110952391A (zh) * | 2019-12-17 | 2020-04-03 | 广东石油化工学院 | 一种火车轨道轨枕用螺钉的浇注与插螺钉一体机 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114622449B (zh) * | 2022-03-10 | 2023-07-07 | 中国空气动力研究与发展中心高速空气动力研究所 | 一种用于轨道梁预留洞口的高精度定位方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2948303A1 (de) * | 1978-12-05 | 1980-06-26 | A Betong Ab | Verfahren zur herstellung von betoneisenbahnschwellenbloecken und eine matrizenanordnung zur durchfuehrung dieses verfahrens |
EP0117323A1 (de) * | 1983-02-10 | 1984-09-05 | Guntert And Zimmermann Const. Div. Inc. | Vorrichtung und Verfahren zum Einbringen von Dübeln in die Fugen von Betondecken |
DE3714581A1 (de) * | 1987-04-30 | 1988-11-17 | Hugo Bittlmayer | Verfahren und vorrichtung zum lagerichtigen anordnen einer vorgefertigten bewehrung in einer stahlbetonelementdeckenplatte oder dergleichen |
-
1996
- 1996-04-23 FR FR9605099A patent/FR2747698B1/fr not_active Expired - Fee Related
-
1997
- 1997-04-22 EP EP97400910A patent/EP0803609B1/de not_active Expired - Lifetime
- 1997-04-22 DE DE69718371T patent/DE69718371T2/de not_active Expired - Lifetime
- 1997-04-22 AT AT97400910T patent/ATE231203T1/de not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2948303A1 (de) * | 1978-12-05 | 1980-06-26 | A Betong Ab | Verfahren zur herstellung von betoneisenbahnschwellenbloecken und eine matrizenanordnung zur durchfuehrung dieses verfahrens |
EP0117323A1 (de) * | 1983-02-10 | 1984-09-05 | Guntert And Zimmermann Const. Div. Inc. | Vorrichtung und Verfahren zum Einbringen von Dübeln in die Fugen von Betondecken |
DE3714581A1 (de) * | 1987-04-30 | 1988-11-17 | Hugo Bittlmayer | Verfahren und vorrichtung zum lagerichtigen anordnen einer vorgefertigten bewehrung in einer stahlbetonelementdeckenplatte oder dergleichen |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812671A1 (fr) | 2000-08-01 | 2002-02-08 | Alstom | Procede de guidage d'un dispositif destine a inserer des elements dans le sol pour la realisation d'un ouvrage et dispositif d'insertion d'au moins un element dans le sol utilisant un tel procede de guidage |
FR2833023A1 (fr) | 2001-12-05 | 2003-06-06 | Alstom | Procede de construction d'une voie ferree dans lequel on realise une dalle de voie en beton et on insere dans la dalle de voie des elements d'ancrage de la voie ferree |
US6913717B2 (en) * | 2001-12-05 | 2005-07-05 | Alstom | Method of constructing a rail track in which a concrete track slab is produced and rail track anchor members are inserted into the track slab |
KR100918504B1 (ko) * | 2001-12-05 | 2009-09-24 | 알스톰 | 콘크리트 포장부를 형성하고, 콘크리트 포장부에 선로 고정요소를 삽입하는 철로 건설 방법 |
US7325316B2 (en) | 2006-02-09 | 2008-02-05 | Alstom Transport Sa | Device and method for inserting elements into the ground, mechanism for this device and system using this device |
CN101024931B (zh) * | 2006-02-23 | 2012-02-15 | 阿尔斯通运输公司 | 将元件插入地面的方法和系统及该方法所用数据记录介质 |
US7428778B2 (en) | 2006-02-23 | 2008-09-30 | Alstom Transport Sa | Method and a system for inserting elements in the ground, a data recording medium for the method |
FR2941973A1 (fr) * | 2009-02-12 | 2010-08-13 | Alstom Transport Sa | Procede et systeme de guidage par laser pour l'insertion d'elements dans le sol |
FR3003276A1 (fr) * | 2013-03-12 | 2014-09-19 | Alstom Transport Sa | Procede de construction d'une voie ferree comprenant un lit anti-vibratile |
EP3031983A1 (de) | 2014-11-10 | 2016-06-15 | ALSTOM Transport Technologies | Verbessertes lenkverfahren einer einbringvorrichtung von elementen in den boden für die erstellung eines bauwerks, entsprechende einbringvorrichtung und entsprechendes fahrzeug |
EP3409836A1 (de) * | 2017-06-01 | 2018-12-05 | ALSTOM Transport Technologies | Herstellungsverfahren einer halterung einer eisenbahnschiene, entsprechende halterung einer eisenbahnschiene und entsprechende schienenanlage |
FR3067045A1 (fr) * | 2017-06-01 | 2018-12-07 | Alstom Transport Technologies | Procede de fabrication d'un support de voie ferree, support de voie ferree et installation ferroviaire associes |
US11085153B2 (en) | 2017-06-01 | 2021-08-10 | Alstom Transport Technologies | Method for manufacturing a railway track support, associated railway track support and railway installation |
CN110952391A (zh) * | 2019-12-17 | 2020-04-03 | 广东石油化工学院 | 一种火车轨道轨枕用螺钉的浇注与插螺钉一体机 |
CN110952391B (zh) * | 2019-12-17 | 2021-06-25 | 广东石油化工学院 | 一种火车轨道轨枕用螺钉的浇注与插螺钉一体机 |
Also Published As
Publication number | Publication date |
---|---|
FR2747698B1 (fr) | 2003-11-14 |
ATE231203T1 (de) | 2003-02-15 |
FR2747698A1 (fr) | 1997-10-24 |
DE69718371T2 (de) | 2003-11-20 |
EP0803609B1 (de) | 2003-01-15 |
EP0803609A3 (de) | 1998-08-05 |
DE69718371D1 (de) | 2003-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0803609B1 (de) | Verfahren zum lagegenauen Hinsetzen einer Einlage in Beton, Einrichtung zur Durchführung dieses Verfahrens, und durch das Verfahren erhaltenes Gleis | |
EP1318239B1 (de) | Verfahren zum Herstellen eines schotterlosen Gleisoberbaus | |
EP0939164B1 (de) | Verfahren zum Herstellen eines Gleisoberbaus | |
FR3036711A1 (fr) | Section de voie de transport guide pour voie sans ballast et voie sans ballast formee d'une pluralite de telles sections | |
EP0102340A2 (de) | Verfahren zur Herstellung von Stahlbetonbauten wie unterirdischen Strecken, Strassentunnels usw; vorgefertigte Betonelemente für die Herstellung solcher Bauten | |
EP0089861B1 (de) | Verfahren zum Verstärken von Gewölben oder ähnlichen Konstruktionen | |
CA2416284A1 (fr) | Procede de construction d`une voie ferree sur une dalle de voie en beton | |
FR2669259A1 (fr) | Procede de fabrication de voussoirs prefabriques. | |
FR2671119A1 (fr) | Elements de construction en beton, precontraint, du type predalles, installation et procede pour leur fabrication. | |
EP3486369B1 (de) | Anordnung mit fertigplatte für schienenanlage und schwelle, entsprechendes montageverfahren | |
FR2825728A1 (fr) | Procede pour assurer la continuite de la protection procuree par un muret dans lequel des interruptions sont pratiquees, et ouvrage obtenu | |
EP2369058A2 (de) | Verfahren zur Bodenverdichtung, Anwendung von diesem Verfahren, und Vorrichtung zur Durchführung eines solchen Verfahrens | |
FR2683838A1 (fr) | Procede et dispositif pour constituer une dalle de beton arme ayant une epaisseur definie a l'avance. | |
EP3409836B1 (de) | Herstellungsverfahren einer halterung eines schienenwegs | |
FR2698114A1 (fr) | Procédé pour la réalisation d'une assise de camarteaux destinés à l'appui d'un tablier auxiliaire de grande longueur pour le support d'une voie ferrée. | |
EP1457599B1 (de) | Verfahren zur Herstellung eines schienengleichen Bahnübergangs | |
EP1258565A1 (de) | Vorgefertigtes Brückenlager | |
FR2731238A1 (fr) | Procede de pose d'une voie ferree et dalle prefabriquee pour la mise en oeuvre de ce procede | |
EP3617409A1 (de) | Vorrichtung und verfahren zum mechanischen füllen von gräben | |
EP3336249B1 (de) | Herstellungsverfahren eines tragelements einer eisenbahnschiene, durch die umsetzung dieses verfahrens erhaltenes tragelement und eisenbahnschiene, die ein solches element umfasst | |
EP1316646B1 (de) | Betonbaumethode und deren Anwendung für Bahn-, U-Bahn- bzw. Strassenbahngleise | |
FR2852614A1 (fr) | Procede de pose d'une plate-forme de circulations ferroviaire et routiere, et plate-forme obtenue par ce procede | |
FR2839990A1 (fr) | Ouvrage d'art prefabrique et procede de mise en place de l'ouvrage d'art | |
FR2791712A1 (fr) | Procede de pose d'un troncon de voie ferree sur un support rigide avec reglage de position notamment dans le sens de la hauteur; palonnier et traverse de chemin de fer destines a la mise en oeuvre de ce procede | |
FR2670813A1 (fr) | Procede pour la mise en place de goujons dans la zone de joint entre deux dalles de beton. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE GB LI NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE GB LI NL |
|
17P | Request for examination filed |
Effective date: 19990205 |
|
17Q | First examination report despatched |
Effective date: 20011105 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE GB LI NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69718371 Country of ref document: DE Date of ref document: 20030220 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030408 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031016 |
|
BECA | Be: change of holder's address |
Owner name: Z.I. DE LA SAULE, F-71230 SAINT-VALLIER (FR) Effective date: 20050928 Owner name: *METALLIANCEIMMEUBLE "LE SEXTANT" 2 QUAI MICHELET Effective date: 20050928 Owner name: *CEGELEC Effective date: 20050928 |
|
BECH | Be: change of holder |
Owner name: Z.I. DE LA SAULE, F-71230 SAINT-VALLIER (FR) Effective date: 20050928 Owner name: *METALLIANCEIMMEUBLE "LE SEXTANT" 2 QUAI MICHELET Effective date: 20050928 Owner name: *CEGELEC Effective date: 20050928 |
|
BECN | Be: change of holder's name |
Owner name: *METALLIANCE Effective date: 20050928 Owner name: *CEGELEC Effective date: 20050928 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: CEGELEC Free format text: CEGELEC#IMMEUBLE "LE SEXTANT", 2 QUAI MICHELET#92300 LEVALLOIS PERRET (FR) $ SOCIETE NOUVELLE FRANEX#42, RUE NATIONALE#F-71420 GENELARD (FR) -TRANSFER TO- CEGELEC#IMMEUBLE "LE SEXTANT", 2 QUAI MICHELET#92300 LEVALLOIS PERRET (FR) $ SOCIETE ADVENS#ZI SAINTE ELISABETH#71300 MONTCEAU-LES-MINES (FR) Ref country code: CH Ref legal event code: PUE Owner name: CEGELEC Free format text: CEGELEC#IMMEUBLE "LE SEXTANT", 2 QUAI MICHELET#92300 LEVALLOIS PERRET (FR) $ SOCIETE ADVENS#ZI SAINTE ELISABETH#71300 MONTCEAU-LES-MINES (FR) -TRANSFER TO- CEGELEC#IMMEUBLE "LE SEXTANT", 2 QUAI MICHELET#92300 LEVALLOIS PERRET (FR) $ SOCIETE METALLIANCE#ZI DE LA SAULE#71230 SAINT-VALLIER (FR) |
|
NLS | Nl: assignments of ep-patents |
Owner name: METALLIANCE Effective date: 20050927 Owner name: CEGELEC Effective date: 20050927 Owner name: AILLOT-MPI Effective date: 20050927 |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: CEGELEC Owner name: ADVENS |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
BECA | Be: change of holder's address |
Owner name: Z.I. DE LA SAULE, F-71230 SAINT-VALLIER (FR) Effective date: 20050928 Owner name: *METALLIANCEIMMEUBLE "LE SEXTANT" 2 QUAI MICHELET Effective date: 20050928 Owner name: *CEGELEC Effective date: 20050928 |
|
BECH | Be: change of holder |
Owner name: Z.I. DE LA SAULE, F-71230 SAINT-VALLIER (FR) Effective date: 20050928 Owner name: *METALLIANCEIMMEUBLE "LE SEXTANT" 2 QUAI MICHELET Effective date: 20050928 Owner name: *CEGELEC Effective date: 20050928 |
|
BECN | Be: change of holder's name |
Owner name: *METALLIANCE Effective date: 20050928 Owner name: *CEGELEC Effective date: 20050928 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100413 Year of fee payment: 14 Ref country code: DE Payment date: 20100423 Year of fee payment: 14 Ref country code: AT Payment date: 20100415 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100419 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100420 Year of fee payment: 14 |
|
BERE | Be: lapsed |
Owner name: *METALLIANCE Effective date: 20110430 Owner name: *CEGELEC Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69718371 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69718371 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20111101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110422 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 231203 Country of ref document: AT Kind code of ref document: T Effective date: 20110422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20111026 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110422 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110422 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |