EP0793897B1 - Hörhilfsgerät - Google Patents

Hörhilfsgerät Download PDF

Info

Publication number
EP0793897B1
EP0793897B1 EP95921771A EP95921771A EP0793897B1 EP 0793897 B1 EP0793897 B1 EP 0793897B1 EP 95921771 A EP95921771 A EP 95921771A EP 95921771 A EP95921771 A EP 95921771A EP 0793897 B1 EP0793897 B1 EP 0793897B1
Authority
EP
European Patent Office
Prior art keywords
signal
hearing aid
low
clock
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95921771A
Other languages
English (en)
French (fr)
Other versions
EP0793897A1 (de
Inventor
Henning Haugaard Andersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topholm and Westermann ApS
Original Assignee
Topholm and Westermann ApS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topholm and Westermann ApS filed Critical Topholm and Westermann ApS
Publication of EP0793897A1 publication Critical patent/EP0793897A1/de
Application granted granted Critical
Publication of EP0793897B1 publication Critical patent/EP0793897B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the invention relates to a hearing aid with a microphone, a transmission part for signal processing and an output amplifier with connected Listener.
  • Output amplifiers for hearing aids should have low distortion have a low energy requirement, even with high output power.
  • Class B amplifiers are more efficient than A amplifiers.
  • Amplifiers of this type have also hitherto been customary in hearing aids.
  • D-amplifiers are e.g. in the European patent application o 590 903 Al from Exar Corporation and in US-A 5,247,581 from Exar Corporation and US-A 4,689,819 and US-A 4,592,087 to Industrial Research Products Inc. discloses and describes in detail.
  • the rectangular pulse sequence of an oscillator lying in the ultrasound range is an integrator supplied, which also the output voltage of a low frequency signal is supplied by a microphone via an amplifier train arrives and serves as a preload.
  • the output signal of the integrator is then a triangular pulse train, the zero crossings through the Bias voltage supplied to the integrator varies in the hearing frequency range will. That is, this low-frequency bias makes the zero crossings of the triangular signal from one symmetrical to the axis of symmetry Course without bias signal variable to asymmetrical conditions shifted, the asymmetry in terms of sign and size a continuously changing function of the amplitude of the low frequency Input signal is.
  • Such D-amplifiers working with pulse width modulation have a very good efficiency and have almost no cross modulation.
  • a disadvantage of the D-amplifier with pulse width modulation is that the pulse width changes either continuously or in very small steps should be achieved when a high signal to noise ratio is reached shall be.
  • the known class D output amplifiers use a continuous one Modulation, i.e. a continuous variation in pulse width and need hence a continuous microphone output signal as an input signal. If the signal processing preceding the output amplifier is time-discrete and / or amplitude discretely, then this digital signal must first e.g. converted into a holding network or a digital / analog converter will. This represents an additional effort that can hardly be sold.
  • EP-A 0495328 e.g. known as a sigma-delta converter particularly suitable as an A / D converter with discrete components.
  • circuits are for use in hearing aids with highly integrated ones digital circuits less suitable.
  • EP-A0597523 discloses a fast D / A converter which is made of a sigma-delta converter and a downstream asynchronous Sigma-delta modulator consists of the output signal of the sigma-delta converter generates an ambivalent, asynchronously modulated signal, which is then fed to a low pass filter.
  • the effort for the output amplifier is a fully digitized one Hearing aid too high. In addition, it does not allow a high signal / noise ratio achieve.
  • a hearing aid which consists of an ear part to be carried and a part connected by a cable to the body supporting signal processing part, in which over an A / D converter a digital signal processing and a subsequent D / A converter Adaptation of the transfer function of the hearing aid to the auditory deficit Carrier should be reached.
  • EP-A 0578021 discloses a hearing aid, but not one Signa-Delta converter contains a normal A / D converter, one Signal processing and a D / A converter.
  • the invention therefore goes a completely different way, the use of D / A converters of the usual type in the output amplifier of a fully digital Avoids hearing aid.
  • the invention is therefore intended to provide a hearing aid device with a novel, essential simpler output amplifiers are proposed, in which a relative high signal / noise ratio can be achieved with extremely low power requirements and high output power with minimal distortion and anything Lack of cross-modulation and control of the output amplifier with a digital input signal.
  • the output amplifier can completely be constructed as a digital highly integrated CMOS circuit.
  • FIG. 1 shows, for example, a hearing aid with a novel output amplifier, however, its use is not limited to use in hearing aids is limited, but is generally applicable to digital amplifiers where it comes down to a high ratio of useful signal to interference signal.
  • the acoustic Signal recorded by a microphone 1 and in a low-pass filter Antialiasing filter is limited to a frequency range that is common in hearing aids.
  • This low-frequency signal is now in a signal processor 3rd subjected to signal processing. Among them is e.g. to understand that the analog input signal is either further processed analogously in the manner that the amplifier characteristic of the signal processor to that for the respective Hearing damage or hearing loss of its wearer regarding all necessary variables is adjusted.
  • Such variable which are dependent on the frequency, are e.g. the Amplification of the individual stages, the limit level, the compression threshold, the automatic gain control with its response and Fall times, a combination of compression and expansion, or whatever a non-linear course of the amplification of individual stages or overall all levels, as well as the output sound pressure level.
  • the signal processor would have to have a digital-to-analog converter on the input side included, for which a separate clock generator for the clock would be required.
  • a separate clock generator for the clock would be required.
  • a new output amplifier then follows the signal processor 3.
  • This consists essentially of a signal converter 4, which is essentially a ⁇ - ⁇ converter.
  • This signal converter first contains a subtraction stage 5 with two inputs, namely a positive input and a negative Input, with the positive input at the output of the signal processor 3 connected.
  • a low-pass filter 6 follows this subtraction stage 5
  • the low-pass filter 6 could be an integrator.
  • On a comparator 7 with holding network is connected to this integrator 6.
  • the output of this comparison stage is via a feedback connection connected to the negative input of subtracting stage 5.
  • a High-frequency clock generator 8 is provided, which is a high-frequency clock pulse signal with a frequency in the range of about 1 MHz to the comparison stage 7 issues.
  • the output of the signal converter 4 is via a low-pass function connected to the handset 10.
  • a clock generator required for the signal processor 3 is essential lower frequency is preferably by the high frequency clock generator 8 synchronized. This can be done simply by frequency division, for example can be achieved with a factor M.
  • a typical clock frequency for the signal processor 3 could be about 32 kHz.
  • the mode of operation of the signal converter 4 should be based on FIGS. 2 and 3 are explained.
  • the high-frequency clock signal 11 of the clock pulse generator 8 is, as already mentioned, forwarded to comparison level 7.
  • the digital input signal 12 in FIG. 3 (an extremely simplified representation) is the subtracting level at their positive input fed.
  • the output signal 14 of the signal converter 4 reaches the negative input of the via a feedback connection Subtracting stage and is subtracted there from the input signal 12.
  • the resulting output signal is the integrator 6 (which here Represents low-pass filter) and integrated there to the output signal 13.
  • This signal 13 is synchronized in the comparison stage 7 with holding network with the edges of the high-frequency clock signal into the output signal 14 converted, which has only two possible values, here the simplicity are shown as +1 and -1 for the sake of convenience.
  • the input signal 12 should initially have the value -0.5.
  • the integrated Signal 13 then rises from -1.5 to zero, resulting in a first output pulse transition from -1 to +1.
  • the integrated signal then drops again to -1.5, after which the output signal 14 again assumes the value -1.
  • the output signal 14 of the signal converter 4 in addition the desired increased low-frequency component a strong high-frequency component Contains signal portion, which of course is an unwanted interference signal represents e.g. must be removed by a passive low-pass filter.
  • This new output amplifier especially suitable for hearing aids has a number of advantages. All pulse edges are with a known one Clock frequency synchronized, which can also be used to the essential for the upstream signal processor, at essential synchronize lower clock frequency working clock pulse generator.
  • the input signal of the output amplifier can be a digital signal be, and the output amplifier can be designed as a pure digital circuit will. I.e. but that the entire circuit is constructed as a digital circuit can be, only at the input of the signal processor 3 Analog / digital Vandler would have to be provided. This results in the further one Possibility of using the entire circuit in C-MOS technology as a highly integrated Build circuit.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Adornments (AREA)
  • Finger-Pressure Massage (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

Die Erfindung betrifft ein Hörhilfsgerät mit einem Mikrofon, einem Übertragungsteil zur Signalverarbeitung und einem Ausgangsverstärker mit daran angeschlossenem Hörer.
Ausgangsverstärker für Hörhilfsgeräte sollten neben geringen Verzerrungen einen geringen Energiebedarf, selbst bei hoher Ausgangsleistung, aufweisen.
Klasse-B-Verstärker haben einen besseren Wirkungsgrad als A-Verstärker. Verstärker dieser Art sind bei Hörgeräten auch bisher üblich gewesen.
Ausgangsverstärker in Form von Schaltverstärkern haben einen noch besseren Wirkungsgrad, da die Verluste in den Schaltern theoretisch Null sein können.
Bekannte Schaltverstärker verwenden die Pulsbreitenmodulation.
Beispiele solcher D-Verstärker sind z.B. in der Europäischen Patentanmeldung o 590 903 Al der Exar-Corporation und in der US-A 5,247,581 der Exar-Corporation sowie den US-A 4,689,819 und US-A 4,592,087 der Industrial Research Products Inc. offenbart und ausführlich beschrieben.
Solche D-Verstärker arbeiten im Prinzip wie folgt:
Die im Ultraschallbereich liegende Rechteckimpulsfolge eines Oszillators wird einem Integrator zugeführt, dem außerdem die Ausgangsspannung eines Niederfrequenzsignals zugeführt wird, das von einem Mikrofon über einen Verstärkerzug ankommt und als Vorspannung dient. Das Ausgangssignal des Integrators ist dann eine Dreiecks-Impulsfolge, deren Nulldurchgänge durch die dem Integrator zugeführte, im Hörfrequenzbereich liegende Vorspannung variiert werden. D.h., durch diese niederfrequente Vorspannung werden die Nulldurchgänge des Dreieckssignals von einem zur Symmetrieachse symmetrischen Verlauf ohne Vorspannungssignal variabel zu unsymmetrischen Verhältnissen verschoben, wobei die Unsymmetrie bezüglich Vorzeichen und Größe eine kontinuierlich sich ändernde Funktion der Amplitude des niederfrequenten Eingangssignals ist.
Diese Nulldurchgänge werden dann zum Steuern des Zeitpunktes und der Polarität des Ausgangssignals einer polaritätsumkehrenden, symmetrischen CMOS-Schalt-Treiberstufe verwendet, die die Dauer der positiven und negativen Schaltimpulse entsprechend der zeitlichen Verschiebung zwischen den Nulldurchgängen des Integrator-Ausgangssignals variiert, und damit ein impulsmoduliertes Ausgangssignal an den Hörer mit einem Frequenzspektrum im Niederfrequenzbereich abgibt, das ein verstärktes Abbild des Ausgangssignals des Mikrofons darstellt.
Solche mit Impulsbreitenmodulation arbeitende D-Verstärker haben einen sehr guten Wirkungsgrad und weisen fast keine Kreuzmodulation auf.
Ein Nachteil der D-Verstärker mit Impulsbreitenmodulation besteht darin, daß die Impulsbreite entweder kontinuierlich oder in ganz kleinen Schritten verändert werden sollte, wenn ein hohes Signal- zu Rausch-Verhältnis erreicht werden soll.
Die bekannten Klasse D-Ausgangsverstärker verwenden eine kontinuierliche Modulation, d.h. eine kontinuierliche Variation der Impulsbreite und benötigen daher ein kontinuierliches Ausgangssignal des Mikrofons als Eingangssignal. Wenn die dem Ausgangsverstärker vorangehende Signalverarbeitung zeitdiskret und / oder amplitudendiskret erfolgt, dann muß dieses digitale Signal zunächst, z.B. in einen Haltenetzwerk oder einem Digital/Analog-Wandler umgewandelt werden. Dies stellt einen kaum vertreibaren zusätzlichen Aufwand dar.
Aus der EP-A 0495328 ist z.B. ein Sigma-Delta-Konverter bekannt, der sich insbesondere als A/D-Wandler mit diskreten Bauelementen eignet. Derartige Schaltungen sind jedoch für den Einsatz in Hörhilfsgeräten mit hochintegrierten digitalen Schaltungen weniger geeignet.
Ferner offenbart die EP-A0597523 einen schnellen D/A-Wandler, der aus einem Sigma-Delta-Konverter und einem nachgeschalteten asynchronen Sigma-Delta-Modulator besteht, der aus dem Ausgangssignal des Sigma-Delta-Konverters ein ambivalentes, asynchron moduliertes Signal erzeugt, das dann einem Tiefpaßfilter zugeleitet wird.
Auch hier ist der Aufwand für den Ausgangsverstärker eines voll digitalisierten Hörhilfsgerätes viel zu hoch. Außerdem läßt sich damit kein hohes Signal/-Rauschverhältnis erzielen.
Aus der WO 89/04583 ist ein Hörhilfsgerät bekannt, das aus einem am Ohr zu tragenden Teil und einem über ein Kabel verbundenen und am Körper zu tragenden Signalverarbeitungsteil besteht, bei dem über ienen A/D-Wandler eine digitale Signalverarbeitung und einen nachfolgenden D/A-Wandler die Anpassung der Übertragungsfunktion des Hörgerätes an den Hörschalden des Trägers erreicht werden soll.
Der hier getriebene Aufwand, insbesondere die Verwendung von einem A/D-Wandler, einem Signalprozessor und einem nachfolgenden D/A-Wandler ist viel zu hoch und für ein voll digitalisiertes Hörhilfsgerät nicht brauchbar. Zudem läßt sich mit einer solchen Schaltung ein extrem hohes Signal/Rauschverhältnis nicht erreichen.
Schließlich offenbart die EP-A 0578021 ein Hörhilfsgerät, das jedoch keinen Signa-Delta-Konverter enthält sondern einen normalen A/D- Wandler, eine Signalverarbeitung und einen D/A-Wandler.
Auf diese Schaltungsteile folgt dann ein Modulator, der ein PWM-Signal erzeugt, das noch einem Tiefpaßfilter zugeführt werden muß. Auch hier ist der Aufwand zu hoch, abgesehen davon, daß bei einem voll-digitalen Hörhilfsgerät der Einsatz von normalen Analog-Digital-Wandlern und nach Signalverarbeitung nachfolgendem Digital-Analog-Wandler alle möglichen positiven Ergebnisse der digitalen Signalverarbeitung ziemlich illusorisch werden.
Die Erfindung geht daher einen völlig anderen Weg, der den Einsatz von D/A-Wandlern der üblichen Art im Ausgangsverstärker eines voll-digitalen Hörhilfsgerätes vermeidet.
Durch die Erfindung soll daher ein Hörhilfsgerät mit einem neuartigen, wesentlich einfacheren Ausgangsverstärker vorgeschlagen werden, bei dem ein relativ hohes Signal/Rauschverhältnis erreichbar ist, bei extrem niedrigem Leistungsbedarf und hoher Ausgangsleistung mit geringsten Verzerrungen und jeglichem Fehlen von Kreuzmodulationen sowie einer Ansteuerung des Ausgangsverstärkers mit einem digitalen Eingangssignal. Der Ausgangsverstärker kann dabei vollstandig als digitale hochintegrierte CMOS-Schaltung aufgebaut werden.
Dies wird erfindungsgemäß mit den Merkmalen des Patentanspruches 1 erreicht.
Weitere Merkmale der Erfindung sind den weiteren Ansprüchen zu entnehmen.
Die Erfindung wird nunmehr anhand eines Ausführungsbeispieles in Verbindung mit den beigefügten Zeichnungen näher beschrieben.
In den Zeichnungen zeigt:
Fig. 1
ein Prinzipschaltbild eines Hörhilfsgerätes mit einem Ausgangsverstärker gemäß der Erfindung ;
Fig. 2
einen in dem Ausgangsverstärker des Hörhilfsgerätes verwendeten Signalkonverter und
Fig. 3
Impulsdiagramme zur Erläuterung der Arbeitsweise des Ausgangsverstärkers des Hörhilfsgerätes.
Fig. 1 zeigt beispielsweise ein Hörhilfsgerät mit einem neuartigen Ausgangsverstärker, dessen Einsatz allerdings nicht auf die Verwendung in Hörhilfsgeräten beschränkt ist, sondern allgemein bei digitalen Verstärkern anwendbar ist, wo es auf ein hohes Verhältnis von Nutzsignal zu Störsignal ankommt.
Bei dem in Fig. 1 rein schematisch dargestellten Hörhilfsgerät wird das akustische Signal von einem Mikrofon 1 aufgenommen und in einem Tiefpaßfilter als Antialiasingfilter auf einen bei Hörhilfsgeräten üblichen Frequenzbereich beschränkt. Dieses niederfrequente Signal wird nun in einem Signalprozessor 3 einer Signalverarbeitung unterzogen. Darunter ist z.B. zu verstehen, daß das analoge Eingangssignal entweder analog in der Weise weiterverarbeitet wird, daß die Verstärkerkennlinie des Signalprozessors an die für den jeweiligen Hörschaden oder Hörverlust seines Trägers bezüglich aller erforderlichen Variablen angepaßt wird.
Derartige, von der Frequenz abhängige beeinflußbare Variable sind z.B. die Verstärkung der einzelnen Stufen, der Begrenzungspegel, die Kompressionsschwelle, die automatische Verstärkungsregelung mit ihren Ansprech- und Abfallzeiten, eine Kombination von Kompression und Expansion oder überhaupt ein nichtlinearer Verlauf der Verstärkung einzelner Stufen oder insgesamt aller Stufen, sowie der Ausgangs-Schalldruckpegel.
Andererseits wird man wohl vorzugsweise eine digitale Signalverarbeitung Vorsehen. In diesem Fall müßte der Signalprozessor eingangsseitig einen Digital-Analog-Wandler enthalten, für den ein eigener Taktgenerator für die Taktgabe erforderlich wäre. Dies ist allgemeiner Stand der Technik. Selbstverständlich sind dann alle oben genannten variablen Funktionen in digitaler Technik darstellbar.
Auf den Signalprozessor 3 folgt dann ein neuartiger Ausgangsverstärker. Dieser besteht im wesentlichen aus einem Signalkonverter 4, der im wesentlichen ein Σ-Δ-Konverter ist. Dieser Signalkonverter enthält als erstes eine Subtrahierstufe 5 mit zwei Eingängen, nämlich einem positiven Eingang und einem negativen Eingang, wobei der positive Eingang am Ausgang des Signalprozessors 3 angeschlossen ist. Auf diese Subtrahierstufe 5 folgt ein Tiefpaßfilter 6. In der einfachsten Ausführung könnte das Tiefpaßfilter 6 ein Integrator sein. An diesem Integrator 6 ist eine Vergleichsstufe 7 mit Haltenetzwerk angeschlossen. Der Ausgang dieser Vergleichsstufe ist über eine Rückkopplungsverbindung mit dem negativen Eingang der Subtrahierstufe 5 verbunden. Außerdem ist ein Hochfrequenz-Taktgenerator 8 vorgesehen, der ein hochfrequentes Taktimpulssignal mit einer Frequenz im Bereich von etwa 1 MHz an die Vergleichsstufe 7 abgibt. Der Ausgang des Signalkonverters 4 ist über eine Tiefpaßfunktion mit dem Hörer 10 verbunden.
Ein für den Signalprozessor 3 erforderlicher Taktgenerator mit wesentlich niedrigerer Frequenz wird vorzugsweise durch den Hochfrequenz Taktgenerator 8 synchronisiert. Dies kann beispielsweise in einfacher Weise durch Frequenzteilung mit einem Faktor M erreicht werden. Eine typische Taktfrequenz für den Signalprozessor 3 könnte etwa 32 kHz sein.
Die Wirkungsweise des Signalkonverters 4 soll anhand der Figuren 2 und 3 erläutert werden.
Das hochfrequente Taktsignal 11 des Taktimpulsgenerators 8 wird, wie bereits erwähnt, der Vergleichsstufe 7 zugeleitet. Das digitale Eingangssignal 12 in Fig. 3 (eine extrem vereinfachte Darstellung) wird der Subtrahierstufe an ihrem positiven Eingang zugeführt. Das Ausgangssignal 14 des Signalkonverters 4 gelangt über eine Rückkopplungsverbindung an den negativen Eingang der Subtrahierstufe und wird dort vom Eingangssignal 12 subtrahiert.
Das dabei entstehende Ausgangssignal wird dem Integrator 6 (der hier das Tiefpoßfilter darstellt) zugeführt und dort zum Ausgangssignal 13 integriert. Dieses Signal 13 wird in der Vergleichsstufe 7 mit Haltenetzwerk synchron mit den Flanken des hochfrequenten Taktsignals in das Ausgangssignal 14 umgewandelt, das nur zwei mögliche Werte aufweist, die hier der Einfahheit halber als +1 und -1 dargestellt sind.
Das Eingangssignal 12 soll zunächst den Wert -0,5 haben. Das integrierte Signal 13 steigt dann von -1,5 auf Null an, was einen ersten Ausgangsimpulsübergang von -1 auf +1 zur Folge hat. Das integrierte Signal fällt dann wieder auf -1,5 ab, wonach das Ausgangssignal 14 wieder den Wert -1 annimmt.
Der nachfolgende Anstieg des Eingangssignals 12 auf den Wert Null bewirkt einen steileren Anstieg des integrierten Signals 13 auf den Wert 0,5. Für die Dauer des Eingangssignalpegels 0 erhält man dann über die Integration die entsprechenden Signalwerte des Ausgangssignals 14 zwischen -1 und +1, wobei jeweils die Werte -1 dem unterenWert des integrierten Signals und die Werte +1 dem oberen Wert des integrierten Signals entsprechen.
In gleicher Weise werden die weiteren Werte des Eingangssignals von 0,3, 0,6 und 1,0 über die Integration in entsprechende Impulse des Ausgangssignals 14 umgewandelt. D.h. in dem Ausgangssignal 14 ändert sich das Verhältnis von positiven Werten zu negativen Werten je Zeiteinheit in Abhängigkeit vom Eingangssignal 12.
Es ist ohne weiteres einleuchtend, daß dies eine sehr stark vereinfachte, stark gedehnte Darstellung ist. Eine Takrfrequenz von etwa 1 MHz ließe sich zeichnerisch nicht darstellen. Außerdem sind die Amplitudenänderungen extrem vereinfacht als grobe Stufen dargestellt.
Bei der Umwandlung eines niederfrequenten Analogsignals in ein digitales Signal durch zeitdieskrete und/oder amplitudendiskrete Umwandlung wird das Analogsignal quantisiert. Die in Fig. 3 gezeigten Stufen des Eingangssignals 12 stehen also stellvertretend für entsprechende Amplitudenschritte eines quantisierten Analogsignals.
Während man normalerweise bei einer Impulsbreitenmodulation üblicher Art mit Taktimpulsfrequenzen von z.B. 100 kHz auskommt, sind im vorliegenden Fall zur Erzielung eines großen Verhältnisses von Nutzsignal zu Störsignal wesentlich höhere Taktimpulsfrequenzen erforderlich, die beispielsweise im Bereich von 1 MHz liegen können.
Es ist offensichtlich, daß das Ausgangssignal 14 des Signalkonverters 4 neben dem erwünschten verstärkten niederfrequenten Anteil einen starken hochfrequenten Signalanteil enthält, der natürlich ein unerwünschtes Störsignal darstellt, das z.B. durch ein passives Tiefpaßfilter entfernt werden muß.
Verwendet man diesen Ausgangsverstärker in einem Hörhilfsgerät, dann kann die Induktivität der Schwingspule des Hörers und die Tiefpaßeigenschaften des mechanischen und akustischen Systems des Hörhilfsgerätes und des menschlichen Ohres diese Tiefpaßfunktion vollkommen übernehmen, so daß ein gesondertes Tiefpaßfilter entbehrlich erscheint.
Dieser neuartige, insbesondere für Hörhilfsgeräte geeignete Ausgangsverstärker hat eine Reihe von Vorteilen. Alle Impulsflanken sind mit einer bekannten Taktimpulsfrequenz synchronisiert, die zudem dazu verwendet werden kann, den für den vorgeschalteten Signalprozessor erforderlichen, bei wesentlich niedrigerer Taktfrequenz arbeitenden Taktimpulsgenerator zu synchronisieren.
Außerdem kann das Eingangssignal des Ausgangsverstärkers ein digitales Signal sein, und der Ausgangsverstärker kann als reine Digitalschaltung konzipiert werden. D.h. aber, daß die gesamte Schaltung als digitale Schaltung aufgebaut werden kann, wobei lediglich am Eingang des Signalprozessors 3 ein Analog/Digital-Vandler vorzusehen wäre. Daraus ergibt sich die weitere Möglichkeit, die gesamte Schaltung in C-MOS-Technik als hochintegrierte Schaltung aufzubauen.

Claims (5)

  1. Hörhilfsgerät mit einem Mikrofon (1), einem Übertragungsteil (2, 3) für die Signalverarbeitung und einem Ausgangsverstärker (4) mit daran angeschlossenem Hörer (10), welcher Verstärker im wesentlichen aus einem als Σ-Δ Konverter aufgebauten Signalkonverter mit einem daran angeschlossenen, ein hochfrequentes Taktsignal erzeugenden Taktimpulsgenerator (8) und einer nachgeschalteten Tiefpaßfunktion (15) besteht, sowie mit einer Batterie für die Spannungsversorgung, dadurch gekennzeichnet, daß das Eingangssignal des Signalkonverters eine aus mehreren Bits / Bytes bestehende digitale Darstellung des Eingangssignals des Hörhilfsgerätes ist, daß dieses Eingangssignal in dem Signalkonverter in ein Ausgangssignal (14) umwandelbar ist, das nur zwei mögliche Signalwerte aufweist, und daß dieses Ausgangssignal (14) nach Durchlaufen der Tiefpaßfunktion im wesentlichen als verstärktes Abbild des niederfrequenten Eingangssignals des Hörhilfsgerätes erscheint.
  2. Hörhilfsgerät nach Anspruch 1, dadurch gekennzeichnet, daß der eingangsseitig an den Übertragungsteil (2, 3) angeschlossene Signalkonverter (4) im wesentlichen aus einer Subtrahierstufe (5) mit einem positiven und einem negativen Eingang, einem Tiefpaßfilter (6) und einer durch den Taktimpulsgenerator (8) mit hochfrequenten Taktimpulsen (11) gesteuerten Vergleichsschaltung (7) mit Haltenetzwerk besteht, wobei der positive Eingang der Subtrahierstufe (5) mit dem Übertragungsteil (2, 3) und der negative Eingang der Subtrahierstufe mit dem Ausgang der Vergleichsstufe (7) über eine Rückkopplungsverbindung verbunden ist.
  3. Hörhilfsgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Taktfrequenz der durch den Taktimpulsgenerator (8) erzeugten Taktimpulse im Bereich von 1 MHz liegt.
  4. Hörhilfsgerät nach Anspruch 1, dadurch gekennzeichnet, daß das von einem Taktgenerator (9) zur Taktgabe an den Signalprozessor (3) abgegebene Taktsignal durch das hochfrequente Taktsignal (11) des Taktimpulsgenerators (8) synchronisierbar ist.
  5. Hörhilfsgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Tiefpaßfunktion durch die elektrischen, akustischen und mechanischen Eigenschaften des Hörers (10) und gegebenenfalls des menschlichen Ohres gebildet ist.
EP95921771A 1994-11-26 1995-05-29 Hörhilfsgerät Expired - Lifetime EP0793897B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4441996 1994-11-26
DE4441996A DE4441996A1 (de) 1994-11-26 1994-11-26 Hörhilfsgerät
PCT/EP1995/002033 WO1996017493A1 (de) 1994-11-26 1995-05-29 Hörhilfsgerät

Publications (2)

Publication Number Publication Date
EP0793897A1 EP0793897A1 (de) 1997-09-10
EP0793897B1 true EP0793897B1 (de) 1998-05-13

Family

ID=6534142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95921771A Expired - Lifetime EP0793897B1 (de) 1994-11-26 1995-05-29 Hörhilfsgerät

Country Status (9)

Country Link
US (1) US5878146A (de)
EP (1) EP0793897B1 (de)
JP (1) JP3274469B2 (de)
AT (1) ATE166199T1 (de)
AU (1) AU691001B2 (de)
CA (1) CA2204757C (de)
DE (2) DE4441996A1 (de)
DK (1) DK0793897T3 (de)
WO (1) WO1996017493A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1694095A2 (de) 2005-02-15 2006-08-23 Siemens Audiologische Technik GmbH Hörhilfegerät mit einem Ausgangsverstärker, der einen Sigma-Delta-Modulator umfasst
WO2022200436A1 (en) 2021-03-24 2022-09-29 Widex A/S An ear level audio device and a method of operating an ear level audio device

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754131A (en) * 1996-07-01 1998-05-19 General Electric Company Low power delta sigma converter
US6044162A (en) * 1996-12-20 2000-03-28 Sonic Innovations, Inc. Digital hearing aid using differential signal representations
US6144748A (en) * 1997-03-31 2000-11-07 Resound Corporation Standard-compatible, power efficient digital audio interface
DE19736406B4 (de) * 1997-08-21 2007-05-16 Siemens Ag Einrichtung zum Steuern eines automatischen Getriebes für ein Kraftfahrzeug
US5995036A (en) * 1998-03-17 1999-11-30 Sonic Innovations, Inc. Passive switched capacitor delta analog-to-digital converter with programmable gain control
WO2000044198A1 (en) * 1999-01-25 2000-07-27 Tøpholm & Westermann APS Hearing aid system and hearing aid for in-situ fitting
AU753295B2 (en) * 1999-02-05 2002-10-17 Widex A/S Hearing aid with beam forming properties
US6163287A (en) 1999-04-05 2000-12-19 Sonic Innovations, Inc. Hybrid low-pass sigma-delta modulator
US6408318B1 (en) 1999-04-05 2002-06-18 Xiaoling Fang Multiple stage decimation filter
US6445321B2 (en) 1999-04-05 2002-09-03 Sonic Innovations, Inc. Hybrid low-pass sigma-delta modulator
US6313773B1 (en) 2000-01-26 2001-11-06 Sonic Innovations, Inc. Multiplierless interpolator for a delta-sigma digital to analog converter
DE60105819T2 (de) 2000-07-05 2005-10-06 Koninklijke Philips Electronics N.V. A/d umwandler mit integrierter vorspannung für mikrofon
EP1251714B2 (de) 2001-04-12 2015-06-03 Sound Design Technologies Ltd. Digitales Hörgerätsystem
US6633202B2 (en) 2001-04-12 2003-10-14 Gennum Corporation Precision low jitter oscillator circuit
CA2382358C (en) * 2001-04-18 2007-01-09 Gennum Corporation Digital quasi-rms detector
ATE318062T1 (de) * 2001-04-18 2006-03-15 Gennum Corp Mehrkanal hörgerät mit übertragungsmöglichkeiten zwischen den kanälen
US20020191800A1 (en) * 2001-04-19 2002-12-19 Armstrong Stephen W. In-situ transducer modeling in a digital hearing instrument
EP1284587B1 (de) 2001-08-15 2011-09-28 Sound Design Technologies Ltd. Rekonfigurierbare Hörhilfevorrichtung mit niedrigem Leistungsverbrauch
US7315626B2 (en) * 2001-09-21 2008-01-01 Microsound A/S Hearing aid with performance-optimized power consumption for variable clock, supply voltage and DSP processing parameters
CN1608393B (zh) 2001-11-30 2011-08-24 桑尼昂公司 一种小型扬声器的高效率驱动器
WO2007106399A2 (en) 2006-03-10 2007-09-20 Mh Acoustics, Llc Noise-reducing directional microphone array
US8098844B2 (en) * 2002-02-05 2012-01-17 Mh Acoustics, Llc Dual-microphone spatial noise suppression
US7171008B2 (en) * 2002-02-05 2007-01-30 Mh Acoustics, Llc Reducing noise in audio systems
GB2386280B (en) * 2002-03-07 2005-09-14 Zarlink Semiconductor Inc Digital microphone
EP1429455A1 (de) * 2002-12-11 2004-06-16 Dialog Semiconductor GmbH Linearisierung eines PDM-Klasse-D Verstärkers
CA2619028A1 (en) 2005-08-23 2007-03-01 Widex A/S Hearing aid with increased acoustic bandwidth
EP2417778B1 (de) 2009-04-06 2015-06-17 Widex A/S Zweiteiliges hörgerät mit datenbusverbindung
US8553897B2 (en) 2009-06-09 2013-10-08 Dean Robert Gary Anderson Method and apparatus for directional acoustic fitting of hearing aids
US8879745B2 (en) * 2009-07-23 2014-11-04 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Method of deriving individualized gain compensation curves for hearing aid fitting
US9101299B2 (en) * 2009-07-23 2015-08-11 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Hearing aids configured for directional acoustic fitting
EP2544587B1 (de) 2010-03-09 2023-05-10 T&W Engineering A/S Zweiteiliger eeg-monitor mit datenbus und verfahren zur kommunikation zwischen den teilen
WO2011110218A1 (en) 2010-03-09 2011-09-15 Widex A/S Two part hearing aid with databus and method of communicating between the parts
US8942397B2 (en) 2011-11-16 2015-01-27 Dean Robert Gary Anderson Method and apparatus for adding audible noise with time varying volume to audio devices
US9582452B2 (en) * 2013-06-05 2017-02-28 The Boeing Company Sensor network using pulse width modulated signals
US10142742B2 (en) 2016-01-01 2018-11-27 Dean Robert Gary Anderson Audio systems, devices, and methods
DK180177B1 (en) 2018-04-30 2020-07-16 Widex As Method of operating a hearing aid system and a hearing aid system
US11696083B2 (en) 2020-10-21 2023-07-04 Mh Acoustics, Llc In-situ calibration of microphone arrays

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3205685A1 (de) * 1982-02-17 1983-08-25 Robert Bosch Gmbh, 7000 Stuttgart Hoergeraet
US4887299A (en) * 1987-11-12 1989-12-12 Nicolet Instrument Corporation Adaptive, programmable signal processing hearing aid
NO169689C (no) * 1989-11-30 1992-07-22 Nha As Programmerbart hybrid hoereapparat med digital signalbehandling samt fremgangsmaate ved deteksjon og signalbehandlingi samme.
EP0495328B1 (de) * 1991-01-15 1996-07-17 International Business Machines Corporation Sigma-Delta Wandler
US5448644A (en) * 1992-06-29 1995-09-05 Siemens Audiologische Technik Gmbh Hearing aid
EP0597523B1 (de) * 1992-11-09 1997-07-23 Koninklijke Philips Electronics N.V. Digital-/Analogwandler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1694095A2 (de) 2005-02-15 2006-08-23 Siemens Audiologische Technik GmbH Hörhilfegerät mit einem Ausgangsverstärker, der einen Sigma-Delta-Modulator umfasst
DE102005006858A1 (de) * 2005-02-15 2006-09-07 Siemens Audiologische Technik Gmbh Hörhilfegerät mit einem Ausgangsverstärker, der einen Sigma-Delta-Modulator umfasst
WO2022200436A1 (en) 2021-03-24 2022-09-29 Widex A/S An ear level audio device and a method of operating an ear level audio device

Also Published As

Publication number Publication date
AU691001B2 (en) 1998-05-07
CA2204757A1 (en) 1996-06-06
CA2204757C (en) 1999-08-03
DK0793897T3 (da) 1999-02-15
EP0793897A1 (de) 1997-09-10
ATE166199T1 (de) 1998-05-15
DE4441996A1 (de) 1996-05-30
WO1996017493A1 (de) 1996-06-06
JP3274469B2 (ja) 2002-04-15
DE59502189D1 (de) 1998-06-18
US5878146A (en) 1999-03-02
JPH10504155A (ja) 1998-04-14
AU2671495A (en) 1996-06-19

Similar Documents

Publication Publication Date Title
EP0793897B1 (de) Hörhilfsgerät
DE60131755T2 (de) Digitaler klasse-d-audioverstärker
DE69827039T2 (de) Pulsreferenziertes Steuerverfahren zur verbesserten Leistungsverstärkung eines pulsmodulierten Signals
DE69919500T2 (de) PWM Leistungsverstärker mit digitalem Eingang
DE69737235T2 (de) Digitales hörhilfegerät unter verwendung von differenzsignaldarstellungen
DE2628626A1 (de) Amplitudenkompressions- bzw. dekompressionsschaltung
DE60211208T2 (de) Sigma-delta modulation
DE60029097T2 (de) Pulscodemodulation/Pulsbreitenmodulation-Umsetzer mit Pulsbreitenmodulation-Leistungsverstärker
EP1694095A2 (de) Hörhilfegerät mit einem Ausgangsverstärker, der einen Sigma-Delta-Modulator umfasst
DE60024052T2 (de) Pulsbreitenmodulation-D/A-Wandler
DE19928420A1 (de) Verfahren zur Verarbeitung eines Audiosignals
DE102005052702B4 (de) Synchronisationsschaltung zur Synchronisation von PWM-Modulatoren
DE19619208A1 (de) Digitaler Verstärker
DE102008032489A1 (de) Leistungsverstärker
DE60035108T2 (de) Leistungsverstärkervorrichtung
EP1983800B1 (de) Hörvorrichtung mit störarmer höreransteuerung und entsprechendes verfahren
WO2004068703A1 (de) Vorrichtung und verfahren zur digitalen pulsweiten-modulation
DE2747415A1 (de) Rauschunterdrueckungsvorrichtung
DE3602000C2 (de)
EP3443663B1 (de) Modulator für einen digitalen verstärker
EP1444785B1 (de) Digital/analog-umsetzer-schaltung mit einer vorrichtung zur kompensation von nichtlinearen verzerrungen
DE102006024980A1 (de) Digital-Analog-Wandler
WO2013174476A1 (de) Geschalteter verstärker für variable versorgungsspannung
EP3595332B1 (de) Vorrichtung zur audiosignalverarbeitung für einen piezoelektrischen lautsprecher
EP2235835A1 (de) Multibit-modulator mit digital stellbarer pulsdauer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971001

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK IT LI NL

REF Corresponds to:

Ref document number: 166199

Country of ref document: AT

Date of ref document: 19980515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59502189

Country of ref document: DE

Date of ref document: 19980618

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060511

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110526

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110523

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502189

Country of ref document: DE

Representative=s name: BETTEN & RESCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502189

Country of ref document: DE

Representative=s name: BETTEN & RESCH PATENT- UND RECHTSANWAELTE PART, DE

Effective date: 20120119

Ref country code: DE

Ref legal event code: R082

Ref document number: 59502189

Country of ref document: DE

Representative=s name: PATENTANWAELTE BETTEN & RESCH, DE

Effective date: 20120119

Ref country code: DE

Ref legal event code: R081

Ref document number: 59502189

Country of ref document: DE

Owner name: WIDEX A/S, DK

Free format text: FORMER OWNER: TOPHOLM & WESTERMANN APS, VAERLOESE, DK

Effective date: 20120119

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140521

Year of fee payment: 20

Ref country code: CH

Payment date: 20140513

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140512

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59502189

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20150529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL