EP0793777B1 - Brennstoffeinspritzanordnung für eine brennkraftmaschine und verfahren zur brennstoffeinspritzung - Google Patents

Brennstoffeinspritzanordnung für eine brennkraftmaschine und verfahren zur brennstoffeinspritzung Download PDF

Info

Publication number
EP0793777B1
EP0793777B1 EP96934346A EP96934346A EP0793777B1 EP 0793777 B1 EP0793777 B1 EP 0793777B1 EP 96934346 A EP96934346 A EP 96934346A EP 96934346 A EP96934346 A EP 96934346A EP 0793777 B1 EP0793777 B1 EP 0793777B1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
fuel
internal combustion
combustion engine
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96934346A
Other languages
English (en)
French (fr)
Other versions
EP0793777A1 (de
Inventor
Peter Romann
Klaus-Henning Krohn
Jörg Lange
Christof Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0793777A1 publication Critical patent/EP0793777A1/de
Application granted granted Critical
Publication of EP0793777B1 publication Critical patent/EP0793777B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/06Injectors with heating, cooling, or thermally-insulating means with fuel-heating means, e.g. for vaporising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve

Definitions

  • the invention is based on a fuel injection arrangement for an internal combustion engine of the genus Claim 1 and a method for fuel injection according to the genus of claim 5 or Claim 6.
  • Fuel injection arrangement for an internal combustion engine known, in which several in a common housing Passages are provided, in each of which one, in total but two or more electromagnetic Fuel injection valve devices are arranged. Between every two neighboring ones Fuel injector devices is one device to form a magnetic shield.
  • the Fuel injection arrangement is designed so that with the fuel injection valve devices arranged in a housing fuel is sprayed in two directions can, in the direction of two intake valves one Cylinder of the internal combustion engine.
  • Cylinder-running intake pipe ends with two Branch channels, whose access to the cylinder through the Inlet valves is opened or closed. On Branch channel can be through an upstream of the intake valve arranged closing device can be closed.
  • only one branch channel is supplied with fuel, so that fuel is only in the intake valve Cylinder is injected. Open the inlet valves and close synchronously according to the rotary movement of the Crankshaft of the internal combustion engine.
  • the one in the common Housing arranged fuel injector devices are completely identical.
  • a multi-point injection is already known from US Pat. No. 5,146,897 with several fuel injectors for Injecting fuel into a multiple cylinder comprehensive internal combustion engine known.
  • the Fuel injection arrangement provides that with at most two fuel injectors in four Inlet channels are injected in the direction of several Cylinder run. So the number is at most an injection valve a cylinder of the internal combustion engine assigned. To different load states of the Internal combustion engine can with this fuel injector assembly not be responded to because of the excitement of the Fuel injection valves are carried out synchronously.
  • This valve is not a Fuel injection valve in the known sense, but by a Shut-off valve in the heater supply line.
  • the valve When the valve is opened there is only a refill of the Supply line and a subsequent supply of Fuel channels within the heater, but none Spraying fuel into the intake pipe or the Combustion chamber of an internal combustion engine.
  • the heater is separate from the valve. Through the There is a large volume between the supply line the valve and the heater. With one Arrangement cannot be an exact evaporation of the Fuel that is fed through the supply line will achieve, since the fuel is not metered can be. Evaporation occurs when the valve is closed not finished yet. Rather, the in the Fuel line still pending in the supply line Heating device sucked and evaporated.
  • the disadvantage of the valve is that there is no fuel at all is available for evaporation, since this is only relative must bridge large volumes of the supply line.
  • a heater attachment for a fuel injector with which evaporation or atomization of fuel is already made from DE 44 12 448 A1 known.
  • This known heater attachment can be pressure-tight put the nozzle head of a fuel injector become.
  • the heater attachment it is a so-called column heater, in which profiled Evaporator contact plates and PTC heating elements sandwiched are arranged so that a variety of Evaporator rooms (columns) results. If you populate them Fuel injectors with such heater adapters that as an open column heater with good heat transfer are built up, so are significant reductions in Emissions of unburned hydrocarbons from Cold start and in the warm-up phase of the internal combustion engine when operating the heater compared to fuel injectors achievable without heater attachment. This is especially true in the With regard to the realizable in the near future, stricter emission limits in the USA and Europe from great importance.
  • the fuel injection arrangement according to the invention with the characterizing features of claim 1 has the advantage that in a simple way Fuel injection system is created with both during a cold start and in the warm-up phase Internal combustion engine through the use of a Evaporator device / a heater a very good Fuel processing with low exhaust gas values takes place as also in the other operating states of the internal combustion engine still a very good quality of fuel processing is maintained, with no additional Loads on the internal combustion engine arise.
  • the heater attachment form a column heater in which a variety of Evaporator rooms is formed.
  • the column heater can be in advantageously profiled contact plates and Have heating elements that are arranged in a sandwich. Both PTC or NTC elements can be used as heating elements also porous material or whisker material or Serve heating layers on ceramic substrates.
  • Fuel injectors are aligned so that the dispensed fuel vapor or sprayed fuel aim directly at the at least one inlet valve and thus an undesirable wetting of the wall of the Intake pipe is avoided.
  • Another advantage is that no elaborate and vulnerable mechanics necessary to switch on a heater fuel injectors are used, which have a very long life and are sufficient are tried and tested.
  • the method for fuel injection according to the invention with the characterizing features of claim 5 and the Claim 6 has the advantage that in all operating states the internal combustion engine a very good fuel preparation is guaranteed.
  • Fuel injection valve with the evaporator device or the heater attachment is operated and that Fuel injector without heater only at full load in Operation and otherwise out of order takes place a point in time at which the exhaust gases are processed serving catalyst its conversion temperature has reached a switchover of the fuel injection valves.
  • the two fuel injectors are therefore in the Usually operated one after the other, whereby for unsteady load changes the exception can occur that the two fuel injectors by Switch off the fuel injector with heater attachment can also be operated simultaneously.
  • FIG. 1 An embodiment of the invention is in the drawing shown in simplified form and in the following Description explained in more detail.
  • the drawing shows one schematic representation of a fuel injection arrangement for an internal combustion engine in the area of intake manifold and Cylinder head of the internal combustion engine.
  • the invention relates to a fuel injection arrangement two fuel injectors 1 per combustion chamber one Internal combustion engine, in particular a mixture-compressing spark ignition internal combustion engine.
  • a corresponding fuel injection arrangement partially and shown simplified.
  • Fuel injection valves 1 are dispensed with because of them
  • the fuel injection arrangement comprises essentially two fuel injectors 1a and 1b, the on a suction pipe designed as a single suction pipe 3, the leads to a combustion chamber 4 of the internal combustion engine, immediately before at least one inlet valve 5 this Combustion chamber 4 are arranged.
  • a combustion chamber 4 of the internal combustion engine immediately before at least one inlet valve 5 this Combustion chamber 4 are arranged.
  • the intake air provided for the internal combustion engine, taking control of the amount of air over a not shown throttle upstream of the Fuel injection valves 1 takes place in the individual intake pipe 3.
  • the fuel injectors 1a and 1b are so on attached and aligned the individual suction pipe 3 that the fuel to be sprayed off essentially directly on the Inlet valve 5 aims, and not on the walls of the Single intake pipe 3 or a cylinder head 7, in which the Inlet valve 5 is arranged and with which the individual intake pipe 3 is firmly connected. It is also conceivable that instead of of one intake valve 5 two intake valves 5 in Cylinder head 7 are provided per combustion chamber 4. Then be as fuel injectors 1 so-called two-jet valves for Come into play. On the individual suction pipe 3 are for safe Inclusion of fuel injectors 1a and 1b nozzle 9 formed with through openings 10, in which the Project fuel injectors 1a and 1b. For one effective sealing between the Fuel injectors 1a and 1b and the nozzle 9 provide sealing rings 12, z. B. O-rings.
  • the two fuel injectors 1a and 1b differ mainly in one point, namely one of the two fuel injection valves 1b has one heater attachment 14 designed as an evaporator device, the z. B. at the downstream end of the Fuel injector 1b is attached.
  • the Heater attachment 14 projects at least partially into the Single intake pipe 3, so that the seal with the Sealing ring 12 on the individual intake pipe 3 above the Heater attachment 14 can be done.
  • the evaporator device 14 can also be used on another, not shown Place of the fuel injector 1b. Otherwise, the two fuel injection valves 1a and 1b be constructed identically.
  • the fuel injector 2a is without Heater adapter closer to the cylinder head 7 and thus also closer provided to the inlet valve 5; but also is one Arrangement conceivable in which the fuel injection valve 1b attached with heater attachment 14 near the inlet valve 5 while the fuel injector 1a is without Heater attachment is arranged further away. Since the Fuel injection mainly over time Fuel injection valve 1a is carried out in the Drawing shown arrangement is particularly suitable and meaningful. To the installation space for that Fuel injector 1b with heater attachment 14 are none made such high demands. By suitable The choice of material or dimensioning of the wall thicknesses should do that Fuel injector 1b with heater attachment 14 opposite the individual suction pipe 3 be heat decoupled.
  • the heater attachment 14 of the one fuel injector 1b is only shown schematically and will not be described in more detail here described, for this already known arrangements can be used as they are e.g. B. in DE-OS 44 12 448th are listed.
  • the Heater attachment 14 is a so-called.
  • Column heater with profiled evaporator contact plates and heating elements are sandwiched.
  • a A variety of evaporator rooms formed in it enables a very good heat transfer and a very good one Fuel processing through the evaporation of the Fuel.
  • the evaporator structure has, for example PTC or NTC elements, i.e. resistance heating elements with positive or negative temperature coefficients, where the evaporator structure is housed in a housing.
  • the heating elements can also be made porous by use Materials, whisker or sintered material, in the form of Wire coils or heating layers on ceramic substrates be trained.
  • the fuel injection through the fuel injection valve 1a toward the intake valve 5 therefore usually begins until immediately when turning off the e Br a nnscherinspritzventils 1b.
  • the duration of the activation of the fuel injection valve 1b and thus of the fuel evaporation in the fuel injection valve 1b when the internal combustion engine is cold started will be 60 to 90 seconds.
  • only unheated fuel is sprayed off via the fuel injection valve 1a.
  • the switching of the operation of the two fuel injection valves 1 can be carried out according to different criteria. B. could be reached when the exhaust gas treatment catalyst (not shown) has reached its conversion temperature.
  • the electronic control unit 16 is supplied with countless measured values, converted into electrical signals, of operating parameters of the internal combustion engine, for example the speed, the load in accordance with the angle of rotation of the throttle element, the oxygen concentration in the exhaust pipe, the conversion temperature of the catalytic converter and others, which are evaluated very quickly and by a corresponding control to switch the fuel injection valves 1 as desired.
  • the fuel injection valve 1 a can be equipped with additional measures, such as, for. B. in a known manner with a gas enclosure or an upstream atomizing sieve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Stand der Technik
Die Erfindung geht aus von einer Brennstoffeinspritzanordnung für eine Brennkraftmaschine nach der Gattung des Anspruchs 1 und von einem Verfahren zur Brennstoffeinspritzung nach der Gattung des Anspruchs 5 bzw. des Anspruchs 6.
Aus der EP-PS 0 337 763 ist bereits eine Brennstoffeinspritzanordnung für eine Brennkraftmaschine bekannt, bei der in einem gemeinsamen Gehäuse mehrere Durchgänge vorgesehen sind, in denen jeweils ein, insgesamt aber zwei oder mehrere elektromagnetische Brennstoffeinspritzventileinrichtungen angeordnet sind. Zwischen jeweils zwei benachbarten Brennstoffeinspritzventileinrichtungen ist eine Einrichtung zur Bildung einer magnetischen Abschirmung ausgeführt. Die Brennstoffeinspritzanordnung ist so gestaltet, dass mit den in einem Gehäuse angeordneten Brennstoffeinspritzventileinrichtungen in zwei Richtungen Brennstoff abgespritzt werden kann, und zwar in Richtung zweier Einlassventile eines Zylinders der Brennkraftmaschine. Ein jeweils zu einem Zylinder verlaufendes Ansaugrohr endet mit zwei Zweigkanälen, deren Zugang zum Zylinder durch die Einlassventile geöffnet bzw. geschlossen wird. Ein Zweigkanal kann durch eine stromaufwärts des Einlassventils angeordnete Verschließeinrichtung geschlossen werden. Entsprechend dem Lastzustand der Brennkraftmaschine wird so beispielsweise nur ein Zweigkanal mit Brennstoff versorgt, so dass auch nur über ein Einlassventil Brennstoff in den Zylinder eingespritzt wird. Die Einlassventile öffnen und schließen synchron entsprechend der Drehbewegung der Kurbelwelle der Brennkraftmaschine. Die in dem gemeinsamen Gehäuse angeordneten Brennstoffeinspritzventileinrichtungen sind völlig gleichartig ausgeführt.
Aus der US-PS 5,146,897 ist bereits eine Multi-Point-Einspritzung mit mehreren Brennstoffeinspritzventilen zum Einspritzen von Brennstoff in eine mehrere Zylinder umfassende Brennkraftmaschine bekannt. Die Brennstoffeinspritzanordnung sieht allerdings vor, dass mit höchstens zwei Einspritzventilen Brennstoff in vier Einlasskanäle gespritzt wird, die in Richtung mehrerer Zylinder verlaufen. Somit ist von der Anzahl her höchstens ein Einspritzventil einem Zylinder der Brennkraftmaschine zugeordnet. Auf verschiedene Lastzustände der Brennkraftmaschine kann mit dieser Brennstoffeinspritzventilanordnung nicht reagiert werden, da die Erregung der Brennstoffeinspritzventile synchron erfolgt.
Bekannt ist bereits aus der US-PS 5,119,794 eine Brennstoffeinspritzanordnung für eine Brennkraftmaschine, die ein an einem Ansaugrohr angeordnetes Brennstoffeinspritzventil aufweist, das in das Ansaugrohr mündet. Im Ansaugrohr ist des weiteren eine Heizeinrichtung vorgesehen, auf die Brennstoff aus dem Brennstoffeinspritzventil gespritzt wird, um dort zu verdampfen. Die Heizeinrichtung kann dabei zusätzlich noch mit Brennstoff versorgt werden, der z.B. während der Kaltstartphase der Brennkraftmaschine ebenfalls verdampft wird und der über eine Versorgungsleitung der Heizeinrichtung zugeführt wird. Das Zu- bzw. Abschalten der Brennstoffzufuhr zur Heizeinrichtung erfolgt über ein elektromagnetisches Ventil in der Versorgungsleitung.
Bei diesem Ventil handelt es sich nicht um ein Brennstoffeinspritzventil im bekannten Sinne, sondern um ein Absperrventil in der Versorgungsleitung der Heizeinrichtung. Mit dem Öffnen des Ventils erfolgt nur ein Auffüllen der Versorgungsleitung und ein nachfolgendes Versorgen von Brennstoffkanälen innerhalb der Heizeinrichtung, jedoch kein Abspritzen von Brennstoff in das Ansaugrohr oder den Brennraum einer Brennkraftmaschine. Die Heizeinrichtung liegt separat von dem Ventil vor. Durch die Versorgungsleitung befindet sich ein großes Volumen zwischen dem Ventil und der Heizeinrichtung. Mit einer solchen Anordnung lässt sich kein genaues Verdampfen des Brennstoffs, der durch die Versorgungsleitung zugeführt wird, erreichen, da der Brennstoff nicht dosiert zugemessen werden kann. Beim Schließen des Ventils wird das Verdampfen noch nicht beendet. Vielmehr wird der in der Versorgungsleitung noch anstehende Brennstoff in die Heizeinrichtung gesaugt und verdampft. Beim Öffnen des Ventils besteht der Nachteil, dass noch gar kein Brennstoff zum Verdampfen vorhanden ist, da dieser erst das relativ große Volumen der Versorgungsleitung überbrücken muss.
Bekannt ist des weiteren aus der US-PS 5,284,117 bereits eine Brennstoffeinspritzanordnung, bei der zwei Einspritzventile an einem Saugrohr angeordnet sind, die somit Brennstoff in einen Brennraum der Brennkraftmaschine abgeben. Ein erstes Brennstoffeinspritzventil spritzt dabei unmittelbar auf ein Einlassventil des Brennraums, während das zweite Brennstoffeinspritzventil auf ein an der Wandung des Saugrohrs befestigtes Heizelement spritzt. Beide Einspritzventile können unabhängig voneinander Brennstoff abgeben. Das Heizelement ist in Form einer Heizplatte ausgeführt, wobei von dem zweiten Brennstoffeinspritzventil abgegebener Brennstoff an deren Oberfläche verdampft und der Brennstoffdampf insbesondere in der Kaltstartphase dem Brennraum zusätzlich zu dem aus dem ersten Einspritzventil austretenden Brennstoff zugeführt wird.
Ein Heizervorsatz für ein Brennstoffeinspritzventil, mit dem eine Verdampfung bzw. eine Vernebelung von Brennstoff vorgenommen wird, ist bereits aus der DE 44 12 448 A1 bekannt. Dieser bekannte Heizervorsatz kann druckdicht auf den Düsenkopf eines Brennstoffeinspritzventils aufgesetzt werden. Bei der Ausführungsform des Heizervorsatzes handelt es sich um einen sog. Spaltenheizer, bei dem profilierte Verdampferkontaktbleche und PTC-Heizelemente sandwichartig angeordnet sind, so dass sich eine Vielzahl von Verdampferräumen (Spalten) ergibt. Bestückt man die Brennstoffeinspritzventile mit solchen Heizervorsätzen, die als offene Spaltenheizer mit guter Wärmeübertragung aufgebaut sind, so sind deutliche Verringerungen der Emissionen von unverbrannten Kohlenwasserstoffen beim Kaltstart und in der Warmlaufphase der Brennkraftmaschine bei Betrieb der Heizung gegenüber Brennstoffeinspritzventilen ohne Heizervorsatz erzielbar. Dies ist besonders im Hinblick auf die in naher Zukunft zu realisierenden, verschärften Abgasgrenzwerte in den USA und Europa von großer Bedeutung.
Solange der Heizervorsatz zugeschaltet ist, erfolgt eine sehr gute Brennstoffaufbereitung, in deren Resultat in vorteilhafter Weise niedrige HC-Werte erreicht werden. Wird jedoch der Heizervorsatz abgeschaltet, erfolgt nur noch eine ungenügende Brennstoffaufbereitung (schlechtes Austragsverhalten), die die Aufbereitungsqualität bekannter Brennstoffeinspritzventile nicht erreicht. Aufgrund der Geometrie des Spaltenheizers ergibt sich für den nicht mehr zu beheizenden Brennstoff ein Labyrinth, das aufgrund seines Speicherverhaltens keine gleichmäßige Zerstäubung zulässt. Besonders nachteilig stellt sich die ungleichmäßige Tröpfchengröße dar, da der Brennstoff zu relativ großen Tropfen zusammenlaufen kann. Andererseits würde bei permanentem Heizerbetrieb die Belastung des elektrischen Bordnetzes eines Fahrzeugs übertrieben groß sein. Ein Generator des Fahrzeugs müsste mit beispielsweise rund 2 kW allein für das Betreiben der Heizervorsätze eine enorme Leistung aufbringen, was für die Praxis unrealistisch erscheint, so dass ein Dauereinsatz eines solchen Heizervorsatzes weitgehend ausgeschlossen ist.
Aus der EP-OS 0 661 445 ist bereits eine Brennstoffeinspritzanordnung bekannt, die u.a. von einem Brennstoffeinspritzventil und einem Brennstoffheizelement gebildet wird. Das Einspritzventil kann dabei sowohl ohne als auch mit vorgeschaltetem Heizelement betrieben werden. Um den Brennstoffauslass des Einspritzventils zu gewünschten Zeiten mit dem Heizelement in eine entsprechende Kontaktposition zu bringen, ist eine aufwendige Mechanik bzw. eine zusätzliche mechanische Schiebeeinrichtung notwendig. Besonders wegen des ständigen Kontaktes dieser Mechanik mit der aggressiven Saugrohratmosphäre besteht eine große Gefahr von Ablagerungen (Plugging, Bleisulfat), so dass diese Schiebermechanik sehr anfällig erscheint. Diese Ablagerungen können zu Verklemmungen an der Mechanik führen, besonders dann, wenn die Mechanik über längere Zeit nicht im Einsatz war. Die bewegten Teile der Schiebermechanik unterliegen gerade auch im Hinblick auf eine gewünschte lange Lebensdauer der Brennstoffeinspritzanordnung einem gefährlich hohen Verschleiß.
Vorteile der Erfindung
Die erfindungsgemäße Brennstoffeinspritzanordnung mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass auf einfache Art und Weise ein Brennstoffeinspritzsystem geschaffen ist, mit dem sowohl beim Kaltstart und in der Warmlaufphase einer Brennkraftmaschine durch den Einsatz einer Verdampfereinrichtung/eines Heizers eine sehr gute Brennstoffaufbereitung mit geringen Abgaswerten erfolgt als auch in den anderen Betriebszuständen der Brennkraftmaschine weiterhin eine sehr gute Qualität der Brennstoffaufbereitung aufrechterhalten bleibt, wobei keine zusätzlichen Belastungen der Brennkraftmaschine entstehen.
Dies wird erfindungsgemäß dadurch erreicht, dass zwei Brennstoffeinspritzventile an einem zu einem Brennraum führenden Ansaugrohr angeordnet sind, wobei eines der beiden Brennstoffeinspritzventile eine Verdampfereinrichtung, insbesondere einen Spaltenheizer als Heizervorsatz, beinhaltet. In vorteilhafter Weise ist der jeweilige Betrieb der beiden Brennstoffeinspritzventile in Abhängigkeit von Betriebsparametern der Brennkraftmaschine durch ein elektronisches Steuergerät steuerbar. Ein Umschalten der Brennstoffeinspritzventile erfolgt dabei genau zu dem Zeitpunkt, an dem ein der Aufbereitung der Abgase dienender Katalysator seine Konvertierungstemperatur erreicht hat. Zu diesem Zeitpunkt hat der Katalysator also seine Betriebstemperatur erreicht, um die katalytische Reaktion in Gang zu setzen. In idealer Weise wird genau zu diesem Zeitpunkt das Brennstoffeinspritzventil mit Verdampfereinrichtung abgeschaltet, um die sich aus einem längeren Betreiben des Heizervorsatzes ergebenden Nachteile, wie z.B. die hohe Belastung des elektrischen Bordnetzes, sofort zu unterdrücken.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Brennstoffeinspritzanordnung möglich.
Besonders vorteilhaft ist es, den Heizervorsatz in der Form eines Spaltenheizers auszubilden, in dem eine Vielzahl von Verdampferräumen gebildet ist. Der Spaltenheizer kann in vorteilhafter Weise profilierte Kontaktbleche und Heizelemente, die sandwichartig angeordnet sind, aufweisen. Als Heizelemente können sowohl PTC- oder NTC-Elemente als auch poröses Material bzw. Whiskermaterial oder Heizschichten auf Keramikträgern dienen.
Von Vorteil ist es außerdem, wenn die Brennstoffeinspritzventile so ausgerichtet sind, dass der abgegebene Brennstoffdampf bzw. abgespritzte Brennstoff unmittelbar auf das wenigstens eine Einlassventil zielen und somit eine unerwünschte Benetzung der Wandung des Ansaugrohrs vermieden wird.
Ein weiterer Vorteil besteht darin, dass keine aufwendige und anfällige Mechanik zum Zuschalten eines Heizers nötig ist, sondern Brennstoffeinspritzventile zum Einsatz kommen, die eine sehr lange Lebensdauer aufweisen und hinlänglich erprobt sind.
Das erfindungsgemäße Verfahren zur Brennstoffeinspritzung mit den kennzeichnenden Merkmalen des Anspruchs 5 bzw. des Anspruchs 6 hat den Vorteil, dass in allen Betriebszuständen der Brennkraftmaschine eine sehr gute Brennstoffaufbereitung gewährleistet ist. Während beim Kaltstart und in der Warmlaufphase der Brennkraftmaschine das Brennstoffeinspritzventil mit der Verdampfereinrichtung bzw. dem Heizervorsatz betrieben wird und das Brennstoffeinspritzventil ohne Heizer nur bei Volllast in Betrieb und ansonsten aber außer Betrieb ist, erfolgt zu einem Zeitpunkt, an dem ein der Aufbereitung der Abgase dienender Katalysator seine Konvertierungstemperatur erreicht hat, ein Umschalten der Brennstoffeinspritzventile. Die beiden Brennstoffeinspritzventile werden also in der Regel zeitlich nacheinander betrieben, wobei für instationäre Laständerungen die Ausnahme eintreten kann, dass die beiden Brennstoffeinspritzventile bis zum Abschalten des Brennstoffeinspritzventils mit Heizervorsatz auch gleichzeitig betrieben werden.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Die Zeichnung zeigt eine schematische Darstellung einer Brennstoffeinspritzanordnung für eine Brennkraftmaschine im Bereich von Saugrohr und Zylinderkopf der Brennkraftmaschine.
Beschreibung des Ausführungsbeispiels
Die Erfindung betrifft eine Brennstoffeinspritzanordnung mit zwei Brennstoffeinspritzventilen 1 pro Brennraum einer Brennkraftmaschine, insbesondere einer gemischverdichtenden, fremdgezündeten Brennkraftmaschine. In der Zeichnung wird eine entsprechende Brennstoffeinspritzanordnung teilweise und vereinfacht gezeigt. Auf die genaue Darstellung der Brennstoffeinspritzventile 1 wird verzichtet, da für diese Brennstoffeinspritzanordnung die verschiedensten Bauarten bereits bekannter Einspritzventile, insbesondere sog. elektromagnetisch betätigbarer Top-Feed-Einspritzventile, zum Einsatz kommen können.
Die erfindungsgemäße Brennstoffeinspritzanordnung umfaßt im wesentlichen zwei Brennstoffeinspritzventile 1a und 1b, die an einem als Einzelsaugrohr 3 ausgebildeten Ansaugrohr, das zu einem Brennraum 4 der Brennkraftmaschine führt, unmittelbar vor wenigstens einem Einlaßventil 5 dieses Brennraums 4 angeordnet sind. Über das beispielsweise einen kreisförmigen Querschnitt aufweisende Einzelsaugrohr 3 wird die Ansaugluft für die Brennkraftmaschine bereitgestellt, wobei die Steuerung der Luftmenge über ein nicht dargestelltes Drosselorgan stromaufwärts der Brennstoffeinspritzventile 1 im Einzelsaugrohr 3 erfolgt. Die Brennstoffeinspritzventile 1a und 1b sind dabei so an dem Einzelsaugrohr 3 angebracht und ausgerichtet, daß der abzuspritzende Brennstoff im wesentlichen direkt auf das Einlaßventil 5 zielt, und nicht auf die Wandungen des Einzelsaugrohrs 3 bzw. eines Zylinderkopfes 7, in dem das Einlaßventil 5 angeordnet ist und mit dem das Einzelsaugrohr 3 fest verbunden ist. Es ist ebenso denkbar, daß anstelle des einen Einlaßventils 5 zwei Einlaßventile 5 im Zylinderkopf 7 pro Brennraum 4 vorgesehen sind. Dann werden als Brennstoffeinspritzventile 1 sog. Zweistrahlventile zum Einsatz kommen. An dem Einzelsaugrohr 3 sind zur sicheren Aufnahme der Brennstoffeinspritzventile 1a und 1b Stutzen 9 mit Durchgangsöffnungen 10 ausgeformt, in die die Brennstoffeinspritzventile 1a und 1b hineinragen. Für eine wirkungsvolle Abdichtung zwischen den Brennstoffeinspritzventilen 1a und 1b und den Stutzen 9 sorgen Dichtringe 12, z. B. O-Ringe.
Die beiden Brennstoffeinspritzventile 1a und 1b unterscheiden sich hauptsächlich in einem Punkt, und zwar besitzt eines der beiden Brennstoffeinspritzventile 1b einen als Verdampfereinrichtung ausgebildeten Heizervorsatz 14, der z. B. am stromabwärtigen Ende des Brennstoffeinspritzventils 1b befestigt ist. Der Heizervorsatz 14 ragt dabei zumindest teilweise in das Einzelsaugrohr 3 hinein, so daß die Abdichtung mit dem Dichtring 12 am Einzelsaugrohr 3 oberhalb des Heizervorsatzes 14 erfolgen kann. Die Verdampfereinrichtung 14 kann durchaus auch an einer anderen, nicht dargestellten Stelle des Brennstoffeinspritzventils 1b untergebracht sein. Ansonsten können die beiden Brennstoffeinspritzventile 1a und 1b baugleich ausgeführt sein.
In der Zeichnung ist das Brennstoffeinspritzventil 2a ohne Heizervorsatz näher am Zylinderkopf 7 und somit auch näher zum Einlaßventil 5 vorgesehen; ebenso ist aber auch eine Anordnung denkbar, bei der das Brennstoffeinspritzventil 1b mit Heizervorsatz 14 nahe des Einlaßventils 5 angebracht ist, während das Brennstoffeinspritzventil 1a ohne Heizervorsatz entfernter angeordnet ist. Da die Brennstoffeinspritzung zeitlich hauptsächlich über das Brennstoffeinspritzventil 1a erfolgt, ist die in der Zeichnung gezeigte Anordnung besonders gut geeignet und sinnvoll. An den Einbauraum für das Brennstoffeinspritzventil 1b mit Heizervorsatz 14 sind keine so hohen Anforderungen gestellt. Durch geeignete Materialwahl oder Dimensionierung der Wandstärken sollte das Brennstoffeinspritzventil 1b mit Heizervorsatz 14 gegenüber dem Einzelsaugrohr 3 wärmeentkoppelt sein.
Der Heizervorsatz 14 des einen Brennstoffeinspritzventils 1b ist nur schematisch dargestellt und wird hier nicht näher beschrieben, da hierfür bereits bekannte Anordnungen einsetzbar sind, wie sie z. B. in der DE-OS 44 12 448 aufgeführt sind. Bei dieser Ausführungsform des Heizervorsatzes 14 handelt es sich um einen sog. Spaltenheizer, bei dem profilierte Verdampferkontaktbleche und Heizelemente sandwichartig angeordnet sind. Eine Vielzahl von in ihm gebildeten Verdampferräumen ermöglicht eine sehr gute Wärmeübertragung und eine sehr gute Brennstoffaufbereitung durch die Verdampfung des Brennstoffs. Die Verdampferstruktur weist beispielsweise PTC- oder NTC-Elemente, also Widerstandsheizelemente mit positiven bzw. negativen Temperaturkoeffizienten, auf, wobei die Verdampferstruktur in einem Gehäuse untergebracht ist. Die Heizelemente können auch durch Verwendung porösen Materials, Whisker- oder Sintermaterials, in der Form von Drahtwendeln oder Heizschichten auf Keramikträgern ausgebildet sein.
Bei der beschriebenen Brennstoffeinspritzanordnung wird während des Kaltstarts und der Warmlaufphase der Brennkraftmaschine fast ausschließlich das Brennstoffeinspritzventil 1b mit Heizervorsatz 14 angesteuert, wobei die Versorgung mit flüssigem Brennstoff erfolgt, der entsprechend schnell zum Heizervorsatz 14 gelangen kann. Dort wird der flüssige Brennstoff verdampft und durch die Volumenänderung beim Übergang in die Dampfphase aus dem Verdampfungsbereich des Heizervorsatzes 14 ausgetrieben bzw. ausgeblasen und kurz vor dem Brennraum 4 in das Einzelsaugrohr 3 geführt, um von dort zusammen mit der angesaugten Luft in den Brennraum 4 zu gelangen.
Auf diese Weise lassen sich besonders während des Kaltstarts und der Warmlaufphase die Emissionen von unverbrannten Kohlenwasserstoffen so stark senken, daß sehr niedrige Abgaswerte erreicht werden können. So ist es möglich, die in naher Zukunft zu realisierenden, verschärften Abgasgrenzwerte in den USA (ULEV) bzw. in Europa (MVEG III) einzuhalten bzw. zu unterschreiten. Nach Abschluß der Warmlaufphase wird die Brennstoffeinspritzung durch das Brennstoffeinspritzventil 1b unterbrochen und auf das Brennstoffeinspritzventil 1a ohne Heizervorsatz umgeschaltet. In der Regel ist es nicht vorgesehen, beide Brennstoffeinspritzventile 1a und 1b gleichzeitig zu betreiben; vielmehr erfolgt die Ansteuerung der elektromagnetisch betätigbaren Brennstoffeinspritzventile 1 über ein elektronisches Steuergerät 16 zeitlich hintereinander. In Ausnahmefällen, wie bei instationären Laständerungen, wenn in allerkürzester Zeit die maximale Leistung der Brennkraftmaschine bereits erreicht werden soll und sehr schnelle Änderungen des Drosselorgans erfolgen, können auch beide Brennstoffeinspritzventile 1a und 1b gleichzeitig betrieben werden, wobei die entsprechende Ansteuerung wiederum durch das Steuergerät 16 erfolgt. Bei Bedarf großer Brennstoffmengen wird also sowohl über das Brennstoffeinspritzventil 1b mit einer großen Grundmenge als auch über das Brennstoffeinspritzventil 1a mit einer kleineren Restmenge eingespritzt.
Die Brennstoffeinspritzung über das Brennstoffeinspritzventil 1a in Richtung des Einlaßventils 5 setzt also gewöhnlich erst unmittelbar beim Abschalten des Brennstoffeinspritzventils 1b ein. Üblicherweise wird die Zeitdauer der Ansteuerung des Brennstoffeinspritzventils 1b und somit der Brennstoffverdampfung in dem Brennstoffeinspritzventil 1b beim Kaltstart der Brennkraftmaschine 60 bis 90 Sekunden betragen. Danach wird nur noch unbeheizter Brennstoff über das Brennstoffeinspritzventil 1a abgespritzt. Das Umschalten des Betriebs der beiden Brennstoffeinspritzventile 1 kann nach unterschiedlichen Kriterien erfolgen, wobei der Umschaltzeitpunkt z. B. dann erreicht sein könnte, wenn der der Aufbereitung der Abgase dienende Katalysator (nicht dargestellt) seine Konvertierungstemperatur erreicht hat. Dem elektronischen Steuergerät 16 werden unzählige, in elektrische Signale umgeformte Meßwerte von Betriebskenngrößen der Brennkraftmaschine zugeführt, beispielsweise die Drehzahl, die Last gemäß dem Drehwinkel des Drosselorgans, die Sauerstoffkonzentration in der Abgasleitung, die Konvertierungstemperatur des Katalysators und andere, die sehr schnell ausgewertet werden und durch eine entsprechende Ansteuerung zum gewünschten Umschalten der Brennstoffeinspritzventile 1 führen. Um auch nach dem Umschalten eine optimale Aufbereitung des über das Brennstoffeinspritzventil 1a abzuspritzenden Brennstoffs zu gewährleisten, kann das Brennstoffeinspritzventil 1a mit zusätzlichen Maßnahmen ausgerüstet sein, wie z. B. in bekannter Weise mit einer Gasumfassung oder einem vorgeschalteten Zerstäubungssieb.

Claims (7)

  1. Brennstoffeinspritzanordnung für eine Brennkraftmaschine, die wenigstens einen Brennraum (4) und wenigstens ein zu diesem Brennraum (4) führendes Ansaugrohr (3) and wenigstens ein zwischen dem Brennraum (4) und dem Ansaugrohr (3) angeordnetes Einlaßventil (5) hat, mit zwei jedem Brennraum (4) unabhängig von der Anzahl der Einlaßventile (5) zugeordneten Brennstoffeinspritzventilen (1a, 1b), dadurch gekennzeichnet, dass die Brennstoffeinspritzventile (1a, 1b) in das Ansaugrohr (3) münden, wobei eines (1b) der beiden Brennstoffeinspritzventile (1a, 1b) mit einer Verdampfereinrichtung (14) versehen ist, die als Heizervorsatz am stromabwärtigen Ende dieses einen Brennstoffeinspritzventils (1b) ausgebildet ist, so dass dieses Brennstoffeinspritzventil (1b) Brennstoffdampf abspritzt bzw. ausbläst und dass der jeweilige Betrieb der beiden Brennstoffeinspritzventile (1a, 1b) in Abhängigkeit von Betriebsparametern der Brennkraftmaschine durch ein elektronisches Steuergerät (16) steuerbar ist, wobei nach Erreichen der Konvertierungstemperatur eines der Aufbereitung der Abgase dienen den Katalysators so umgeschaltet wird, dass nachfolgend nur noch das Brennstoffeinspritzventil (1a) ohne Verdampfereinrichtung betrieben wird.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Heizervorsatz (14) die Ausführungsform eines Spaltenheizers hat, in dem eine Vielzahl von Verdampferräumen gebildet ist.
  3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass das Brennstoffeinspritzventil (1a) ohne Verdampfereinrichtung am Ansaugrohr (3) weiter stromabwärts angeordnet ist als das Brennstoffeinspritzventil (1b) mit Verdampfereinrichtung (14).
  4. Anordnung nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass die beiden Brennstoffeinspritzventile (1a, 1b) so ausgerichtet sind, daß der abgegebene Brennstoffdampf bzw. der abgespritzte Brennstoff direkt auf das wenigstens eine Einlaßventil (5) zielen und nicht auf die Wandung des Ansaugrohrs (3) .
  5. Verfahren zur Brennstoffeinspritzung mit einer Brennstoffeinspritzanordnung für eine Brennkraftmaschine, die wenigstens einen Brennraum (4) und wenigstens ein zu diesem Brennraum (4) führendes Ansaugrohr (3) aufweist, in das wenigstens ein Brennstoffeinspritzventil (1) mündet, wobei die Brennstoffeinspritzung zu jedem einzelnen Brennraum (4) über zwei Brennstoffeinspritzventile (1a, 1b) erfolgt, und wobei eines der beiden Brennstoffeinspritzventile (1b) derart mit einer Verdampfereinrichtung (14) ausgebildet ist, dass es Brennstoffdampf abspritzt bzw. ausbläst, insbesondere mit einer Brennstoffeinspritzanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das mit einem Heizervorsatz (14) ausgestattete, Brennstoffdampf erzeugende Brennstoffeinspritzventil (1b) bei Kaltstart der Brennkraftmaschine 60 bis 90 Sekunden betrieben wird, danach ein Umschalten der beiden Brennstoffeinspritzventile (1a, 1b) erfolgt, wobei die Ansteuerung der beiden Brennstoffeinspritzventile (1a, 1b) mit Hilfe eines elektronischen Steuergeräts (16), in dem verschiedene Betriebsparameter der Brennkraftmaschine verarbeitet werden, erfolgt, und nachfolgend nur noch das Brennstoffeinspritzventil (1a) ohne Verdampfereinrichtung betrieben wird.
  6. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Umschalten vom Betrieb des einen zum anderen Brennstoffeinspritzventil (1a, 1b) dann erfolgt, wenn ein der Aufbereitung der Abgase dienender Katalysator seine Konvertierungstemperatur erreicht hat.
  7. Verfahren zur Brennstoffeinspritzung mit einer Brennstoffeinspritzanordnung für eine Brennkraftmaschine, die wenigstens einen Brennraum (4) und wenigstens ein zu diesem Brennraum (4) führendes Ansaugrohr (3) aufweist, in das wenigstens ein Brennstoffeinspritzventil (1) mündet, wobei die Brennstoffeinspritzung zu jedem einzelnen Brennraum (4) über zwei Brennstoffeinspritzventile (1a, 1b) erfolgt, und wobei eines der beiden Brennstoffeinspritzventile (1b) derart mit einer Verdampfereinrichtung (14) ausgebildet ist, dass es Brennstoffdampf abspritzt bzw. ausbläst, insbesondere mit einer Brennstoffeinspritzanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das mit einem Heizervorsatz (14) ausgestattete, Brennstoffdampf erzeugende Brennstoffeinspritzventil (1b) bei Kaltstart der Brennkraftmaschine 60 bis 90 Sekunden betrieben wird, und bei erforderlichem Brennstoffmehrbedarf das andere Brennstoffeinspritzventil (1a) gleichzeitig auch betrieben wird, wobei über das Brennstoffdampf erzeugende Brennstoffeinspritzventil (1b) eine größere Brennstoffmenge eingespritzt wird als über das andere Brennstoffeinspritzventil (1a) und die Ansteuerung der beiden Brennstoffeinspritzventile (1a, 1b) mit Hilfe eines elektronischen Steuergeräts (16), in dem verschiedene Betriebsparameter der Brennkraftmaschine verarbeitet werden, erfolgt, und nachfolgend nur noch das Brennstoffeinspritzventil (1a) ohne Verdampfereinrichtung betrieben wird.
EP96934346A 1995-09-26 1996-08-08 Brennstoffeinspritzanordnung für eine brennkraftmaschine und verfahren zur brennstoffeinspritzung Expired - Lifetime EP0793777B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19535744A DE19535744A1 (de) 1995-09-26 1995-09-26 Brennstoffeinspritzanordnung für eine Brennkraftmaschine und Verfahren zur Brennstoffeinspritzung
DE19535744 1995-09-26
PCT/DE1996/001487 WO1997012146A1 (de) 1995-09-26 1996-08-08 Brennstoffeinspritzanordnung für eine brennkraftmaschine und verfahren zur brennstoffeinspritzung

Publications (2)

Publication Number Publication Date
EP0793777A1 EP0793777A1 (de) 1997-09-10
EP0793777B1 true EP0793777B1 (de) 2002-03-20

Family

ID=7773199

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96934346A Expired - Lifetime EP0793777B1 (de) 1995-09-26 1996-08-08 Brennstoffeinspritzanordnung für eine brennkraftmaschine und verfahren zur brennstoffeinspritzung

Country Status (5)

Country Link
US (1) US5850822A (de)
EP (1) EP0793777B1 (de)
JP (1) JPH10510029A (de)
DE (2) DE19535744A1 (de)
WO (1) WO1997012146A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1003941C2 (nl) * 1996-09-02 1998-03-11 Vialle Bv Brandstofinspuitinrichting voor een inwendige verbrandingsmotor.
JP3886217B2 (ja) * 1997-03-27 2007-02-28 ヤマハ発動機株式会社 4サイクルエンジンの吸気装置
US6298834B1 (en) * 1998-04-22 2001-10-09 Safe Energy Systems, Inc. Fuel vaporizing attachment for liquid fueled internal combustion engines
GB2358437B (en) * 1998-07-17 2002-11-13 Timothy Wyse A fuel vaporisation system
US6237575B1 (en) 1999-04-08 2001-05-29 Engelhard Corporation Dynamic infrared sensor for automotive pre-vaporized fueling control
JP2002206445A (ja) * 2001-01-10 2002-07-26 Hitachi Ltd 内燃機関の燃料供給装置
EP1430213A4 (de) * 2001-09-27 2009-01-21 Sexton Barrington Vorrichtung und verfahren zur steuerung der temperatur von flüssiggas-brennstoff
JP4016675B2 (ja) * 2002-03-07 2007-12-05 日産自動車株式会社 内燃機関
US6843238B2 (en) 2002-03-08 2005-01-18 Hitachi, Ltd. Cold start fuel control system
US6913004B2 (en) * 2002-03-22 2005-07-05 Chrysalis Technologies Incorporated Fuel system for an internal combustion engine and method for controlling same
US6913005B2 (en) * 2002-03-22 2005-07-05 Chrysalis Technologies Incorporated System and methodology for purging fuel from a fuel injector during start-up
US7249596B2 (en) * 2002-03-22 2007-07-31 Philip Morris Usa Inc. Fuel system for an internal combustion engine and method for controlling same
US7032576B2 (en) * 2002-05-10 2006-04-25 Philip Morris Usa Inc. Capillary heating control and fault detection system and methodology for fuel system in an internal combustion engine
US6874467B2 (en) * 2002-08-07 2005-04-05 Hitachi, Ltd. Fuel delivery system for an internal combustion engine
US20090241905A1 (en) * 2006-03-29 2009-10-01 Denso Corporation Mount structure of fuel injection valve and fuel injection system
US20080060619A1 (en) * 2006-09-13 2008-03-13 Allston Brian K Fuel vapor generator for enhanced cold starting of an internal combustion engine
EP1953379B1 (de) * 2007-02-01 2012-12-19 Yamaha Hatsudoki Kabushiki Kaisha Fahrzeug
JP2010138828A (ja) * 2008-12-12 2010-06-24 Nikki Co Ltd Lpgインジェクタ及びlpg噴射装置
DE102010064159A1 (de) * 2010-12-27 2012-06-28 Robert Bosch Gmbh Einspritzvorrichtung, Brennkraftmaschine und Verfahren zum Betrieb einer Einspritzvorrichtung
JP2014001691A (ja) * 2012-06-19 2014-01-09 Nippon Soken Inc 内燃機関の制御装置
KR101405224B1 (ko) * 2012-12-17 2014-06-10 현대자동차 주식회사 유체가열장치 및 이를 이용한 차량의 연료 시스템
CN103953473A (zh) * 2014-05-20 2014-07-30 赵永胜 一种汽油发动机低温预热装置
WO2022048770A1 (en) * 2020-09-04 2022-03-10 Toyota Motor Europe System and method for enhanced air/fuel homogenization
DE102022125529A1 (de) 2022-10-04 2024-04-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Einspritzsystem zur Reduktion von Rohabgasemissionen bei einem Kaltstart eines Verbrennungsmotors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056908B2 (ja) * 1978-11-06 1985-12-12 株式会社日立製作所 燃料噴射装置のための燃料制御装置
JPS582462A (ja) * 1981-06-25 1983-01-08 Nippon Denso Co Ltd 内燃機関燃料供給装置
US5050571A (en) * 1990-02-26 1991-09-24 Constantin Daniels Diesel fuel conversion means for spark-ignition engines
JPH0458063A (ja) * 1990-06-26 1992-02-25 Tonen Corp 内燃機関の燃料供給方法
JPH04101056A (ja) * 1990-08-17 1992-04-02 Texas Instr Japan Ltd 内燃機関用燃料加熱装置
US5284117A (en) * 1992-04-27 1994-02-08 Mitsubishi Denki Kabushiki Kaisha Fuel supply apparatus for an internal combustion engine
DE4412448C2 (de) * 1993-07-09 1998-02-12 Herbert Gladigow Einrichtung zur Vernebelung von Kraftstoff
EP0677653B1 (de) * 1994-04-12 1997-04-23 ULEV GmbH Einrichtung zur Vernebelung von Kraftstoff
US5529035A (en) * 1994-11-08 1996-06-25 Hitachi America, Ltd. Cold start fuel injector with heater
US5482023A (en) * 1994-12-27 1996-01-09 Hitachi America, Ltd., Research And Development Division Cold start fuel control system

Also Published As

Publication number Publication date
JPH10510029A (ja) 1998-09-29
WO1997012146A1 (de) 1997-04-03
EP0793777A1 (de) 1997-09-10
DE19535744A1 (de) 1997-03-27
US5850822A (en) 1998-12-22
DE59608922D1 (de) 2002-04-25

Similar Documents

Publication Publication Date Title
EP0793777B1 (de) Brennstoffeinspritzanordnung für eine brennkraftmaschine und verfahren zur brennstoffeinspritzung
DE69817273T2 (de) Brennstoffeinspritzvorrichtung für eine Brennkraftmaschine
DE60314736T2 (de) Brennstoffeinspritzventil für eine brennkraftmaschine
EP0776414B1 (de) Kraftstoffzuführvorrichtung bei einem verbrennungsmotor
EP0770175B1 (de) Kraftstoffeinspritzvorrichtung für einen verbrennungsmotor
EP1161620A1 (de) Direkteinspritzende otto-brennkraftmaschine
DE19625447A1 (de) Rohrverdampfer für Zusatzkraftstoff ins Abgas
EP1039112A2 (de) Brennstoffzuführungsystem für eine fremdgezündete Brennkraftmaschine
EP2370687A1 (de) Brennkraftmaschine
DE112021002882T5 (de) Brennkraftmaschine mit mehreren kraftstoffeinspritzungen ausserhalb einer vorkammer
DE60314737T2 (de) Kraftstoffeinspritzventil für eine brennkraftmaschine
EP0406546B1 (de) Ansaugsystem für eine gemischverdichtende Brennkraftmaschine
DE19945544A1 (de) Brennstoffzuführsystem für eine fremdgezündete Brennkraftmaschine und Verfahren zum Betrieb einer solchen Brennkraftmaschine
AT411484B (de) Kaltstarteinrichtung
DE2807345A1 (de) Wirbel-einspritzventil
EP0713966B1 (de) Brennstoffeinspritzvorrichtung für eine Brennkraftmaschine
DE3614115C2 (de)
DE102016122892A1 (de) Kraftstoffeinspritzeinheit für einen Verbrennungsmotor
WO2012089390A1 (de) Verfahren zur steuerung von katalysatorheizmassnahmen in einer brennkraftmaschine mit zwei injektoren per zylinder
DE60120604T2 (de) Verfahren zur Steuerung einer Brennkraftmaschine zur Durchführung einer homogenen Verbrennung
WO2012139836A1 (de) Ansaug- und einspritzvorrichtung, system und brennkraftmaschine
DE10153629B4 (de) Verfahren zum Einspritzen von Brennstoff
EP0947689B1 (de) Verfahren zur Erzeugung eines Flüssigbrennstoff-/Luftgemischs zum Betrieb einer Wärmekraftmaschine
DE10012588A1 (de) Brennkraftmaschine mit Abgasrückführung
WO2001090542A1 (de) Brennstoffeinspritzsystem und verfahren zur brennstoffeinspritzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971006

17Q First examination report despatched

Effective date: 19991004

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59608922

Country of ref document: DE

Date of ref document: 20020425

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020723

Year of fee payment: 7

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020823

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020925

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050808