EP0790335A1 - Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung - Google Patents

Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung Download PDF

Info

Publication number
EP0790335A1
EP0790335A1 EP97101675A EP97101675A EP0790335A1 EP 0790335 A1 EP0790335 A1 EP 0790335A1 EP 97101675 A EP97101675 A EP 97101675A EP 97101675 A EP97101675 A EP 97101675A EP 0790335 A1 EP0790335 A1 EP 0790335A1
Authority
EP
European Patent Office
Prior art keywords
phenylene
recurring structural
mol
formula
structural units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97101675A
Other languages
English (en)
French (fr)
Other versions
EP0790335B1 (de
Inventor
Richard Dr. Neuert
Jürgen Dr. Idzko
E. O. Oakley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clemson University Research Foundation (CURF)
Original Assignee
Hoechst Trevira GmbH and Co KG
Clemson University Research Foundation (CURF)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Trevira GmbH and Co KG, Clemson University Research Foundation (CURF) filed Critical Hoechst Trevira GmbH and Co KG
Publication of EP0790335A1 publication Critical patent/EP0790335A1/de
Application granted granted Critical
Publication of EP0790335B1 publication Critical patent/EP0790335B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/442Cut or abrasion resistant yarns or threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • D01F6/805Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the present invention relates to aramid fibers which have improved cut resistance.
  • fiber-forming polymers are usually mixed with solids, such as titanium dioxide or colloidal quartz, as matting agents.
  • solids such as titanium dioxide or colloidal quartz
  • matting agents for example for generating magnetic properties. Examples of this can be found in JP-A-55-098,909 or in JP-A-3-130,413.
  • the use of such matting agents in solution-spun aramid fibers has so far not been common.
  • Aromatic polyamides are known to be raw materials with high thermal and chemical stability and low flammability.
  • fibers and foils made from such raw materials have very good mechanical properties, such as high strength and high initial modulus (modulus of elasticity) and are well suited for technical areas of application - for example for reinforcing plastics or as filter materials.
  • threads or fibers can be produced from polyaramides with high strength and high initial modulus if the amide bonds on the aromatic cores are oriented coaxially or almost parallel to one another, thereby producing rigid, rod-shaped polymer molecules.
  • a typical polyamide of this type is, for example, poly (p-phenylene terephthalamide).
  • copolyamides In addition to aromatic polyamides of this type, which are difficult to produce and process because of their insolubility in polar organic solvents, copolyamides have been developed which have good solubility in the known amide solvents, which can also be spun well and whose filaments can be stretched by high Mark strength values and initial moduli. Examples of such aromatic copolyamides can be found in DE-PS-2,556,883, in DE-A-3,007,063, and in EP-A-199,090, EP-A-364,891, EP-A-364,892, EP-A-364,893 and EP-A-424,860.
  • the polymers to be used in the fibers according to the invention are aramids which are composed to a substantial extent of para-aromatic monomers and which are soluble in polar aprotic organic solvents.
  • soluble aromatic polyamide is understood to mean an aromatic polyamide that has a solubility in N-methylpyrrolidone of at least 50 g / l at 25 ° C.
  • the polar aprotic organic solvent preferably contains at least one solvent of the amide type, such as, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, tetramethylurea, N-methyl-2-piperidone, N, N'-dimethylethylene urea, N, N, N ', N'-tetramethyl maleic acid amide, N-methylcaprolactam, N-acetylpyrrolidine, N, N-diethylacetamide, N-ethyl-2-pyrrolidone, N, N'-dimethylpropionic acid amide, N, N-dimethylisobutylamide, N-methylformamide, N, N '-Dimethylpropyleneurea.
  • the preferred organic solvents for the process according to the invention are N-methyl-2-pyrrolidone, N, N-dimethylacetamide and a mixture of these compounds.
  • aromatic polyamides to be used according to the invention are compounds which are soluble in polar aprotic organic solvents, preferably with the formation of isotropic solutions, and which have at least two, in particular three, different recurring structural units which differ in the diamine units have the above definition.
  • radicals mean divalent aromatic radicals, the valence bonds of which are in para- or in a comparable coaxial or parallel position to one another, these are mono- or polynuclear aromatic hydrocarbon radicals or heterocyclic-aromatic radicals which can be mono- or polynuclear.
  • heterocyclic-aromatic radicals these have in particular one or two oxygen, nitrogen or sulfur atoms in the aromatic nucleus.
  • Polynuclear aromatic radicals can be condensed with one another or linearly connected to one another via C-C bonds or via -CO-NH groups.
  • valence bonds which are in a coaxial or parallel position, are directed in opposite directions.
  • An example of coaxial, oppositely directed bonds are the biphenyl-4,4'-ene bonds.
  • An example of parallel, opposite bonds are the naphthalene 1,5 or 2,6 bonds, while the naphthalene 1,8 bonds are parallel aligned.
  • Examples of preferred divalent aromatic radicals are mononuclear aromatic radicals with mutually para-free valences, in particular 1,4-phenylene or dinuclear fused aromatic radicals with parallel directed bonds, in particular 1,4-, 1,5- and 2,6-naphthylene, or dinuclear aromatic residues linked via a CC bond with coaxial, oppositely directed bonds, in particular 4,4'-biphenylene.
  • radicals mean divalent aromatic radicals whose valence bonds are in a meta or in a comparable angled position to one another, these are mono- or polynuclear aromatic hydrocarbon radicals or heterocyclic-aromatic radicals which can be mono- or polynuclear.
  • heterocyclic-aromatic radicals these have in particular one or two oxygen, nitrogen or sulfur atoms in the aromatic nucleus.
  • Polynuclear aromatic radicals can be condensed with one another or connected to one another via CC bonds or via bridging groups, such as -O-, -CH 2 -, -S-, -CO- or -SO 2 -.
  • Examples of preferred divalent aromatic radicals whose valence bonds are in a meta or in a comparable angled position to one another are mononuclear aromatic radicals with free valences which are meta to one another, in particular 1,3-phenylene or dinuclear condensed aromatic radicals with bonds oriented at an angle to one another, in particular 1,6- and 2,7-naphthylene, or dinuclear aromatic residues linked via a CC bond with bonds oriented at an angle to one another, in particular 3,4'-biphenylene.
  • Smaller proportions for example up to 5 mol% of the monomer units, based on the polymer, can be aliphatic or cycloaliphatic in nature, for example alkylene or cycloalkylene units.
  • Alkylene radicals are to be understood as meaning branched and in particular straight-chain alkylene, for example alkylene with two to four carbon atoms, in particular ethylene.
  • Cycloalkylene radicals are, for example, radicals having five to eight carbon atoms, in particular cyclohexylene.
  • substituents are alkyl, alkoxy or halogen.
  • Alkyl radicals are to be understood as meaning branched and in particular straight-chain alkyl, for example alkyl having one to six carbon atoms, in particular methyl.
  • Alkoxy radicals are to be understood as meaning branched and in particular straight-chain alkoxy, for example alkoxy with one to six carbon atoms, in particular methoxy.
  • radicals are halogen, it is, for example, fluorine, bromine or, in particular, chlorine.
  • Aromatic polyamides based on unsubstituted radicals are preferably used.
  • Terephthalic acid units are preferably used as the dicarboxylic acid unit in the aromatic polyamides containing the recurring structural units of the formulas I, II and optionally III.
  • Examples of preferred diamine combinations on which these preferred recurring structural units of the formulas III and IV or the formulas III and VI or the formulas III, IV and V or the formulas III, IV and VI are based are 1,4-phenylenediamine and 3,4 ' -Diaminodiphenyl ether; 1,4-phenylenediamine, 4,4'-diaminodiphenylmethane and 3,3'-dichloro-, 3,3'-dimethyl or 3,3'-dimethoxybenzidine; as well as 1,4-phenylenediamine, 1,4-bis (aminophenoxy) benzene and 3,3'-dichloro-, 3,3'-dimethyl or 3,3'-dimethoxybenzidine; as well as 1,4-phenylenediamine, 3,4'-diaminodiphenyl ether and 3,3'-dichloro, 3,3'-dimethyl or 3,3'-dimethoxybenzidine; as well as 1,4-phen
  • Aramides which are derived from such diamine combinations and which can preferably be used according to the present invention are described in part in EP-A-199,090, EP-A-364,891, EP-A-364,892, EP-A-364,893 and EP- A-424,860.
  • aromatic polyamides to be used according to the invention are known per se.
  • the polycondensation and the production of fibers from the coaramides to be used according to the invention is carried out according to methods known per se, such as these e.g. have been described in the documents listed above.
  • the mixing in of the filler and the production of filler-containing fibers can be carried out, for example, by the process described in EP-A-662,534.
  • the aromatic copolyaramides to be used according to the invention must have a molecular weight which is sufficient for fiber production.
  • a sufficient molecular chain length of the copolyaramides to be used according to the invention is present, for example, if the viscosity of the polymer solution obtained in the polycondensation corresponds to an inherent viscosity of the polymer of more than 2.5 dl / g, preferably 2.5 to 7.0 dl / g .
  • ⁇ rel means the relative viscosity, c the concentration used in g / 100 ml.
  • the filler used in the fibers according to the invention very generally has a Mohs hardness of greater than or equal to 3, preferably greater than or equal to 5.
  • any materials can be used as fillers, ie semimetals or preferably metals or non-metals as well as alloys of these materials, provided that they have the hardness defined above.
  • Metals which are preferably used are, for example, aluminum, iron, nickel, stainless steel, copper, zinc, tantalum, titanium, tungsten or mixtures thereof.
  • Metal alloys with tungsten as an alloy component are particularly preferred which have a Mohs hardness of 6.5 to 7.5.
  • Non-metals which are preferably used are, for example, metal oxides, such as aluminum oxide; Metal carbides such as tungsten carbide; Metal nitrides, metal silicates, metal sulfates, metal phosphates, metal borides or mixtures thereof. Ceramic materials can also be used.
  • the proportion of the filler in the fiber according to the invention should in any case be selected so that the cut resistance is increased in comparison with the unmodified fiber, for example by at least more than 8% (measured according to the CPP test).
  • the remaining mechanical properties of the fibers such as tensile strength or modulus, are only insignificantly impaired by the use of the filler.
  • the tensile strength of a filled fiber with increased cut resistance drops to approximately 205 cN / tex, compared to the tensile strength of approximately 215 cN / tex of the unfilled fiber.
  • Typical amounts of filler are in the range of less than 25% by weight, based on the weight of the fiber, preferably in the range of 0.05 to 20 % By weight.
  • the particle shape of the filler used can be any; for example spherical or elliptical or irregular.
  • the filler is mixed in, for example, in the form of a powder.
  • the filler preferably has an average particle diameter of less than or equal to 20 ⁇ m, in particular from 0.05 to 5 ⁇ m.
  • fibers is to be understood in its broadest meaning within the scope of this invention; this includes, for example, staple fibers or, in particular, filaments of any titer, including monofilaments.
  • the fibers according to the invention are distinguished by excellent mechanical properties, such as high tear strengths and initial moduli and low elongation at break, and by the above-mentioned increased cut resistance.
  • the fibers according to the invention preferably have single filament titer greater than or equal to 0.6 dtex, in particular from 1 to 20 dtex.
  • the tensile strength of the fibers according to the invention is preferably 150 to 300 cN / tex.
  • the initial modulus, based on 100% elongation, of the fibers according to the invention is preferably 20 to 120 N / tex.
  • the cross-sectional shape of the fibers according to the invention can be any, for example triangular, tri-or multilobal or in particular elliptical or round.
  • the fibers according to the invention can be used for the production of protective clothing, anti-vandalism textiles and composite materials.
  • the use of the fibers for these purposes is also the subject of the present invention.
  • the fibers according to the invention are generally used in the form of yarns. This can be secondary spun yarns or preferably multifilament yarns. Typical yarn titers range from 50 to 9000 dtex.
  • Yarns containing the fibers of the invention are also an object of the present invention.
  • a preferred embodiment relates to blended yarns containing the fibers and fibers according to the invention made of inorganic materials, such as glass, boron, carbon, metals or ceramic materials. Mixing yarns of this type are characterized by a further increased cut resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Beschrieben werden schnittresistente Fasern enthaltend einen Füllstoff mit einer Härte nach Mohs von größer gleich 3 und als faserbildendes Material ausgewählte in polaren aprotischen organischen Lösungsmitteln lösliche aromatische Polyamide. Die beschriebenen Fasern lassen sich beispielsweise zur Herstellung von Schutzbekleidung einsetzen.

Description

  • Die vorliegende Erfindung betrifft Aramidfasern, die eine verbesserte Schnittresistenz aufweisen.
  • Beim Schmelzspinnen werden faserbildendenden Polymeren üblicherweise Feststoffe, wie Titandioxid oder kolloider Quarz, als Mattierungsmittel beigemischt. Auch der Zusatz anderer Feststoffe, beispielsweise zum Erzeugen magnetischer Eigenschaften ist an sich bekannt. Beispiele dafür sind in der JP-A-55-098,909 oder in der JP-A-3-130,413 zu finden. Der Einsatz derartiger Mattierungsmittel in lösungsgesponnenen Aramidfasern ist bislang nicht üblich.
  • Der Zusatz von Metallen bei der Herstellung von Schutzbekleidung ist ebenfalls bereits beschrieben worden. Derartige Produkte werden z.B. in den US-A-2,328,105 oder US-A-5,020,161 offenbart.
  • Schnittresistente Handschuhe wurden ebenfalls bereits beschrieben. Aus den US-A-4,004,295, -4,384,449, -4,470,251 und aus der EP-A-458,343 sind Handschuhe bekannt, die aus hochfesten Fasern bestehen oder die aus Garnen enthaltend Metalldrähte hergestellt worden sind.
  • Aus der EP-A-599,231 sind Fasern enthaltend flüssigkristalline Polymere bekannt, die mit Füllstoffen einer Härte nach Mohs von wenigstens 3 ausgerüstet sind. In dieser Schrift werden unter anderem auch flüssigkristalline aromatische Polyamide als faserbildendes Material beschrieben.
  • Aromatische Polyamide (Aramide) sind bekanntlich Rohstoffe von hoher thermischer und chemischer Stabilität sowie geringer Brennbarkeit. So zeigen beispielsweise Fasern und Folien aus solchen Rohstoffen sehr gute mechanische Eigenschaften, wie hohe Festigkeit und hohen Anfangsmodul (Elastizitätsmodul) und sind für technische Einsatzgebiete gut geeignet - beispielsweise zur Verstärkung von Kunststoffen oder als Filtermaterialien.
  • Es ist bekannt, daß Fäden oder Fasern aus Polyaramiden mit hoher Festigkeit und hohem Anfangsmodul hergestellt werden können, wenn die Amidbindungen an den aromatischen Kernen koaxial oder nahezu parallel zueinander orientiert sind, wodurch starre, stäbchenförmige Polymermoleküle entstehen. Ein typisches Polyamid dieser Art ist beispielsweise Poly-(p-phenylenterephthalamid).
  • Neben derartigen aromatischen Polyamiden, die infolge ihrer Unlöslichkeit in polaren organischen Lösungsmitteln schwierig herzustellen und zu verarbeiten sind, wurden Copolyamide entwickelt, welche eine gute Löslichkeit in den bekannten Amid-Lösungsmitteln haben, die sich auch gut verspinnen lassen und deren Filamente sich nach Verstreckung durch hohe Festigkeitswerte und Anfangsmoduli auszeichnen. Beispiele für derartige aromatische Copolyamide finden sich in der DE-PS-2,556,883, in der DE-A-3,007,063, und in den EP-A-199,090, EP-A-364,891, EP-A-364,892, EP-A-364,893 und EP-A-424,860 beschrieben.
  • Es wurde jetzt gefunden, daß die schon von Haus aus gute Schnittresistenz von Fasern aus derartigen Copolyamiden noch erheblich und über das erwartete Maß hinausgehend verbessert werden kann. Die Schnittresistenz derartiger Fasern, ermittelt nach der sogenannten Cut Protection Performance Test (CCP-Test), liegt üblicherweise mehr als ca. 8 % über derjenigen von Fasern aus unlöslichen Amiden.
  • Die vorliegende Erfindung betrifft schnittresistente Fasern enthaltend einen Füllstoff mit einer Härte nach Mohs von größer gleich 3 und als faserbildendes Material ein in polaren aprotischen organischen Lösungsmitteln lösliches aromatisches Polyamid enthaltend die wiederkehrenden Struktureinheiten der Formeln I, II und gegebenenfalls IIa

            -OC-Ar1-CO-NH-Ar2-NH-     (I),



            -OC-Ar1-CO-NH-Ar3-NH-     (II),



            -OC-Ar1-CO-NH-Ar3a-NH-     (IIa),

    • worin Ar1, Ar2, Ar3 und Ar3a unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in meta-Stellung oder in einer zu diesen Stellungen vergleichbaren parallelen, koaxialen oder gewinkelten Stellung zueinander befinden, und
    • Ar2, Ar3 und gegebenenfalls Ar3a im Einzelfall jeweils unterschiedliche im Rahmen der gegebenen Definitionen liegende Bedeutungen annehmen, und wobei die jeweiligen dem Polymeren zugrundeliegenden Monomerbausteine so ausgewählt werden, daß sich ein in organischen Lösungsmitteln lösliches und vorzugsweise isotrope Lösungen bildendes aromatisches Polyamid ergibt.
  • Bei den in den erfindungsgemäßen Fasern einzusetzenden Polymeren handelt es sich um Aramide, die zu einem wesentlichen Anteil para-aromatischen Monomeren aufgebaut sind, und die in polaren aprotischen organischen Lösungsmitteln löslich sind.
  • Unter löslichem aromatischen Polyamid ist im Rahmen dieser Erfindung ein aromatisches Polyamid zu verstehen, daß bei 25°C eine Löslichkeit in N-Methylpyrrolidon von mindestens 50 g/l aufweist.
  • Vorzugsweise enthält das polare aprotische organische Lösungsmittel zumindest ein Lösungsmittel vom Amidtyp, wie z.B. N-Methyl-2-pyrrolidon, N,N-Dimethylacetamid, Tetramethylharnstoff, N-Methyl-2-piperidon, N,N'-Dimethylethylenharnstoff, N,N,N',N'-Tetramethylmaleinsäureamid, N-Methylcaprolactam, N-Acetylpyrrolidin, N,N-Diethylacetamid, N-Ethyl-2-pyrrolidon, N,N'-Dimethylpropionsäureamid, N,N-Dimethylisobutylamid, N-Methylformamid, N,N'-Dimethylpropylenharnstoff. Für das erfindungsgemäße Verfahren sind die bevorzugten organischen Lösungsmittel N-Methyl-2-pyrrolidon, N,N-Dimethylacetamid und eine Mischung dieser Verbindungen.
  • Bei den erfindungsgemäß einzusetzenden aromatischen Polyamiden (im folgenden auch aromatische Copolyamide genannt) handelt es sich um Verbindungen, die in polaren aprotischen organischen Lösungsmitteln vorzugsweise unter der Ausbildung isotroper Lösungen löslich sind und die mindestens zwei, insbesondere drei verschiedene sich in den Diamineinheiten unterscheidende wiederkehrende Struktureinheiten gemäß der obigen Definition aufweisen.
  • Bedeuten irgendwelche Reste zweiwertige aromatische Reste, deren Valenzbindungen sich in para- oder in vergleichbarer koaxialer oder paralleler Position zueinander befinden, so handelt es sich dabei um ein- oder mehrkernige aromatische Kohlenwasserstoffreste oder um heterocyclisch-aromatische Reste, die ein- oder mehrkernig sein können. Im Falle von heterocyclisch-aromatischen Resten weisen diese insbesondere ein oder zwei Sauerstoff-, Stickstoff- oder Schwefelatome im aromatischen Kern auf.
  • Mehrkernige aromatische Reste können miteinander kondensiert sein oder über C-C-Bindungen oder über -CO-NH- Gruppen linear miteinander verbunden sein.
  • Die Valenzbindungen, die in koaxialer oder parallel zueinander befindlicher Stellung stehen, sind entgegengesetzt gerichtet. Ein Beispiel für koaxiale, entgegengesetzt gerichtete Bindungen sind die Biphenyl-4,4'-en-Bindungen. Ein Beispiel für parallel, entgegegesetzt gerichtete Bindungen sind die Naphthalin-1,5- oder -2,6-Bindungen, während die Naphthalin-1,8-Bindungen parallel gleichgerichtet sind.
  • Beispiele für bevorzugte zweiwertige aromatische Reste, deren Valenzbindungen sich in para- oder in vergleichbarer koaxialer oder paralleler Position zueinander befinden, sind einkernige aromatische Reste mit zueinander para-ständigen freien Valenzen, insbesondere 1,4-Phenylen oder zweikernige kondensierte aromatische Reste mit parallelen, entgegengesetzt gerichteten Bindungen, insbesondere 1,4-, 1,5- und 2,6-Naphthylen, oder zweikernige über eine C-C Bindung verknüpfte aromatische Reste mit koaxialen, entgegengesetzt gerichteten Bindungen, insbesondere 4,4'-Biphenylen.
  • Bedeuten irgendwelche Reste zweiwertige aromatische Reste, deren Valenzbindungen sich in meta- oder in vergleichbarer gewinkelter Position zueinander befinden, so handelt es sich dabei um ein- oder mehrkernige aromatische Kohlenwasserstoffreste oder um heterocyclisch-aromatische Reste, die ein- oder mehrkernig sein können. Im Falle von heterocyclisch-aromatischen Resten weisen diese insbesondere ein oder zwei Sauerstoff-, Stickstoff- oder Schwefelatome im aromatischen Kern auf.
  • Mehrkernige aromatische Reste können miteinander kondensiert sein oder über C-C-Bindungen oder über Brückengruppen, wie z.B. -O-, -CH2-, -S-, -CO- oder -SO2- miteinander verbunden sein.
  • Beispiele für bevorzugte zweiwertige aromatische Reste, deren Valenzbindungen sich in meta- oder in vergleichbarer gewinkelter Position zueinander befinden, sind einkernige aromatische Reste mit zueinander meta-ständigen freien Valenzen, insbesondere 1,3-Phenylen oder zweikernige kondensierte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen, insbesondere 1,6- und 2,7-Naphthylen, oder zweikernige über eine C-C Bindung verknüpfte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen, insbesondere 3,4'-Biphenylen.
  • Geringere Anteile, beispielsweise bis zu 5 Mol % der Monomereinheiten, bezogen auf das Polymere, können aliphatischer oder cycloaliphatischer Natur sein, beispielsweise Alkylen- oder Cycloalkyleneinheiten darstellen.
  • Unter Alkylenresten ist verzweigtes und insbesondere geradkettiges Alkylen zu verstehen, beispielsweise Alkylen mit zwei bis vier Kohlenstoffatomen, insbesondere Ethylen.
  • Unter Cycloalkylenresten sind beispielsweise Reste mit fünf bis acht Kohlenstoffatomen zu verstehen, insbesondere Cyclohexylen.
  • Alle diese aliphatischen, cycloaliphatischen oder aromatischen Reste können mit inerten Gruppen substituiert sein. Darunter sind Substituenten zu verstehen, die die ins Auge gefaßte Anwendung nicht negativ beeinflussen.
  • Beispiele für solche Substituenten sind Alkyl, Alkoxy oder Halogen.
  • Unter Alkylresten ist verzweigtes und insbesondere geradkettiges Alkyl zu verstehen, beispielsweise Alkyl mit ein bis sechs Kohlenstoffatomen, insbesondere Methyl.
  • Unter Alkoxyresten ist verzweigtes und insbesondere geradkettiges Alkoxy zu verstehen, beispielsweise Alkoxy mit ein bis sechs Kohlenstoffatomen, insbesondere Methoxy.
  • Bedeuten irgendwelche Reste Halogen, so handelt es sich dabei beispielsweise um Fluor, Brom oder insbesondere um Chlor.
  • Bevorzugt verwendet aromatische Polyamide auf der Basis von unsubstituierten Resten.
  • Als Dicarbonsäureeinheit in den aromatischen Polyamiden enthaltend die wiederkehrenden Struktureinheiten der Formeln I, II und gegebenenfalls III setzt man vorzugsweise Terephthalsäureeinheiten ein.
  • In den bevorzugten schnittresistenten Fasern werden besonders aromatische Copolyamide eingesetzt, die die wiederkehrenden Struktureinheiten der Formeln III und IV oder der Formeln III und VI oder der Formeln III, IV und V oder der Formeln III, IV und VI oder der Formeln IV, V und VI enthalten

            -OC-Ar1-CO-NH-Ar4-NH-     (III),



            -OC-Ar1-CO-NH-Ar5-Q-Ar6-NH-     (IV),



            -OC-Ar1-CO-NH-Ar7-Y-Ar8-NH-     (V),

    • Figure imgb0001
      worin Ar1 und Ar4 unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, insbesondere einkernige oder zweikernige aromatische Reste sind
    • Ar5 und Ar6 unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, oder worin Ar6 zusätzlich einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen kann, dessen freie Valenzen sich in meta-Stellung oder in einer zu dieser Stellung vergleichbaren gewinkelten Stellung zueinander befinden,
    • Q eine direkte C-C-Bindung oder eine Gruppe der Formel -O-, -S-, -SO2-, -O-Phenylen-O- oder Alkylen ist,
    • Ar7 und Ar8 eine der für Ar5 und Ar6 definierten Bedeutungen annehmen,
    • Y eine der für Q definierten Bedeutungen annimmt oder zusätzlich eine Gruppe der Formel -HN-CO- bedeuten kann, und
    • X eine Gruppe der Formel -O-, -S- oder insbesondere -NR1- bedeutet, worin R1 Alkyl, Cycloalkyl, Aryl, Aralkyl oder insbesondere Wasserstoff ist.
  • Besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III, IV und V, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5, Ar6 und Ar7 1,4-Phenylen darstellen, Ar8 1,3-Phenylen bedeutet, Q -O-1,4-Phenylen-O- ist und Y -O- ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    • wiederkehrende Struktureinheit der Formel III: 40-60 Mol%,
    • wiederkehrende Struktureinheit der Formel IV: 1-20 Mol%, und
    • wiederkehrende Struktureinheit der Formel V: 15-40 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III, IV und V, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 und Ar6 1,4-Phenylen darstellen, Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertens 1,4-Phenylen bedeuten, Q -O-1,4-Phenylen-O- ist und Y eine direkte C-C-Bindung ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    • wiederkehrende Struktureinheit der Formel III: 10-30 Mol%,
    • wiederkehrende Struktureinheit der Formel IV: 10-30 Mol%, und
    • wiederkehrende Struktureinheit der Formel V: 10-60 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III, IV und V, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 und Ar6 1,4-Phenylen darstellen, Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertens 1,4-Phenylen bedeuten, Q -O- ist und Y eine direkte C-C-Bindung ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    • wiederkehrende Struktureinheit der Formel III: 10-30 Mol%,
    • wiederkehrende Struktureinheit der Formel IV: 10-30 Mol%, und
    • wiederkehrende Struktureinheit der Formel V: 10-60 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III und IV, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 1,4-Phenylen ist, Ar6 1,3-Phenylen ist und Q -O- ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III und IV sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    • wiederkehrende Struktureinheit der Formel III: 20-50 Mol%, und
    • wiederkehrende Struktureinheit der Formel IV: 40-60 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III und VI, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist und X -NH- bedeutet; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III und VI sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    • wiederkehrende Struktureinheit der Formel III: 30 - 70 Mol%, und
    • wiederkehrende Struktureinheit der Formel VI: 70 - 30 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln III, IV und VI, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 1,4-Phenylen ist, Ar6 1,4- oder 1,3-Phenylen ist, Q -O- oder -O-1,4-Phenylen-O- bedeutet und X -NH- ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und VI sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    • wiederkehrende Struktureinheit der Formel III: 10 - 30 Mol%,
    • wiederkehrende Struktureinheit der Formel IV: 10 - 40 Mol%, und
    • wiederkehrende Struktureinheit der Formel VI: 50 - 70 Mol%.
  • Ebenfalls besonders bevorzugt werden schnittresistente Fasern enthaltend aromatische Copolyamide mit den wiederkehrenden Struktureinheiten der Formeln IV, V und VI, worin Ar1 1,4-Phenylen ist, Ar5 1,4-Phenylen ist, Ar6 1,4- oder 1,3-Phenylen ist, Q -O- oder -O-1,4-Phenylen-O- bedeutet, Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertes 1,4-Phenylen ist, Y eine direkte C-C-Bindung bedeutet und X -NH- ist; dabei werden diejenigen aromatischen Copolyamide besonders bevorzugt eingesetzt, bei denen sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln IV, V und VI sich innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    • wiederkehrende Struktureinheit der Formel IV: 10 - 40 Mol%,
    • wiederkehrende Struktureinheit der Formel V: 30 - 60 Mol%, und
    • wiederkehrende Struktureinheit der Formel VI: 50 - 70 Mol%.
  • Beispiele für bevorzugte Diaminkombinationen, die diesen bevorzugten wiederkehrenden Struktureinheiten der Formeln III und IV oder der Formeln III und VI oder der Formeln III, IV und V oder der Formeln III, IV und VI zugrundeliegen, sind 1,4-Phenylendiamin und 3,4'-Diaminodiphenylether; 1,4-Phenylendiamin, 4,4'-Diaminodiphenylmethan und 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin; sowie 1,4-Phenylendiamin, 1,4-Bis-(aminophenoxy)-benzol und 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin; sowie 1,4-Phenylendiamin, 3,4'-Diaminodiphenylether und 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin; sowie 1,4-Phenylendiamin, 3,4'-Diaminodiphenylether und 4,4'-Diaminobenzanilid; sowie 1,4-Phenylendiamin, 1,4-Bis-(aminophenoxy)-benzol und 3,4'-Diaminodiphenylether; sowie 1,4-Phenylendiamin und 5(6)-Amino-2-(para-aminophenyl)-benzimidazol; sowie 1,4-Phenylendiamin, 5(6)-Amino-2-(para-aminophenyl)-benzimidazol und 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin; sowie 1,4-Phenylendiamin, 5(6)-Amino-2-(para-aminophenyl)-benzimidazol und 3,4'-Diaminodiphenylether; sowie 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin, 5(6)-Amino-2-(para-aminophenyl)-benzimidazol und 1,4-Bis-(aminophenoxy)-benzol; sowie 5(6)-Amino-2-(para-aminophenyl)-benzimidazol, 3,3'-Dichlor-, 3,3'-Dimethyl- oder 3,3'-Dimethoxybenzidin und 3,4'-Diaminodiphenylether; sowie 1,4-Phenylendiamin, 5(6)-Amino-2-(para-aminophenyl)-benzimidazol und 1,4-Bis-(aminophenoxy)-benzol.
  • Aramide, die sich von solchen Diaminkombinationen ableiten und die sich bevorzugt gemäß der vorliegenden Erfindung einsetzen lassen, sind zum Teil in den EP-A-199,090, EP-A-364,891, EP-A-364,892, EP-A-364,893 und EP-A-424,860 beschrieben.
  • Die erfindungsgemäß einzusetzenden aromatischen Polyamide sind an sich bekannt.
  • Die Polykondensation und die Herstellung von Fasern aus den erfindungsgemäß einzusetzenden Coaramiden erfolgt nach an sich bekannten Verfahren, wie diese z.B. in den oben aufgeführten Schriften beschrieben worden sind. Das Einmischen des Füllstoffes und die Herstellung von füllstoffhaltigen Fasern kann beispielsweise nach dem in der EP-A-662,534 beschriebenen Verfahren erfolgen.
  • Die erfindungsgemäß einzusetzenden aromatischen Copolyaramide müssen ein für die Faserherstellung ausreichendes Molekulargewicht aufweisen. Eine ausreichende Molekül-Kettenlänge der erfindungsgemäß einzusetzenden Copolyaramide liegt beispielsweise vor, wenn die Viskosität der bei der Polykondensation erhaltenen Polymerlösung einer inhärenten Viskosität des Polymers von mehr als 2,5 dl/g, vorzugsweise 2,5 bis 7,0 dl/g, entspricht.
  • Unter inhärenter Viskosität wird der Ausdruck η inh = ln η rel c verstanden.
    Figure imgb0002
  • ηrel bedeutet dabei die relative Viskosität, c die angewandte Konzentration in g/100 ml.
  • Sie wird für die Zwecke der vorliegenden Erfindung bestimmt an 0,25 %igen Lösungen von Polymer in N-Methylpyrrolidon bei 25°C.
  • Der in den erfindungsgemäßen Fasern zum Einsatz kommende Füllstoff weist ganz allgemein eine Härte nach Mohs von größer gleich 3, vorzugsweise größer gleich 5 auf.
  • Als Füllstoffe lassen sich beliebige Materialien einsetzen, also Halbmetalle oder vorzugsweise Metalle oder Nichtmetalle sowie Legierungen dieser Materialien, sofern diese die oben definierte Härte aufweisen.
  • Bevorzugt eingesetzte Metalle sind beispielsweise Aluminium, Eisen, Nickel, rostfreier Stahl, Kupfer, Zink, Tantal, Titan, Wolfram oder Mischungen davon.
  • Besonders bevorzugt werden Metallegierungen mit Wolfram als Legierungsbestandteil, die eine Härte nach Mohs von 6,5 bis 7,5 aufweisen.
  • Bevorzugt eingesetzte Nichtmetalle sind beispielsweise Metalloxide, wie Aluminiumoxid; Metallcarbide, wie Wolframcarbid; Metallnitride, Metallsilikate, Metallsulfate, Metalphosphate, Metallboride oder Mischungen davon. Des weiteren können auch keramische Materialien eingesetzt werden.
  • Der Anteil des Füllstoffes in der erfindungsgemäßen Faser ist auf jeden Fall so zu wählen, daß die Schnittresistenz im Vergleich mit der unmodifizierten Faser vergrößert ist, beispielsweise um mindestens mehr als 8 % (gemessen nach dem CPP-Test). Überraschenderweise werden die übrigen mechanischen Eigenschaften der Fasern, wie Zugfestigkeit oder Modul, durch den Einsatz des Füllstoffes nur unwesentlich beeiträchtigt. So sinkt beispielsweise die Zugfestigkeit einer gefüllten Faser mit erhöhter Schnittfestigkeit auf etwa 205 cN/tex, verglichen mit der Zugfestigkeit von etwa 215 cN/tex der ungefüllten Faser.
  • Typische Mengen an Füllstoff bewegen sich im Bereich von weniger als 25 Gew.%, bezogen auf das Gewicht der Faser, vorzugsweise im Bereich von 0,05 bis 20 Gew.%.
  • Die Partikelform des zum Einsatz kommenden Füllstoffes kann beliebig sein; beispielsweise kugel- oder ellipsenförmig oder auch irregulär. Der Füllstoff wird beispielsweise in Form eines Pulvers eingemischt.
  • Vorzugsweise weist der Füllstoff einen mittleren Teilchendurchmesser von kleiner gleich 20 µm, insbesondere von 0,05 bis 5 µm auf.
  • Der Begriff "Fasern" ist im Rahmen dieser Erfindung in seiner breitesten Bedeutung zu verstehen; dazu zählen also zum Beispiel Stapelfasern oder insbesondere Filamente beliebiger Titer, einschließlich von Monofilamenten.
  • Die erfindungsgemäßen Fasern zeichnen sich durch ausgezeichnete mechanische Eigenschatten, wie hohe Reißfestigkeiten und Anfangsmoduli und niedrige Reißdehnungen, sowie durch die oben erwähnte erhöhte Schnittresistenz aus.
  • Die erfindungsgemäßen Fasern weisen vorzugsweise Einzelfilamenttiter von größer gleich 0,6 dtex, insbesondere von 1 bis 20 dtex, auf.
  • Die Zugfestigkeit der erfindungsgemäßen Fasern beträgt vorzugsweise 150 bis 300 cN/tex.
  • Der Anfangsmodul, bezogen auf 100 % Dehnung, der erfindungsgemäßen Fasern beträgt vorzugsweise 20 bis 120 N/tex.
  • Die Querschnittsform der erfindungsgemäßen Fasern kann beliebig sein, beispielsweise dreieckig, tri- oder multilobal oder insbesondere elliptisch oder rund.
  • Die erfindungsgemäßen Fasern lassen sich zur Herstellung von Schutzkleidung, Antivandalismus-Textilien und Verbundwerkstoffen einsetzen. Die Verwendung der Fasern zu diesen Zwecken ist ebenfalls Gegenstand der vorliegenden Erfindung.
  • Die erfindungsgemäßen Fasern werden im allgemeinen in Form von Garnen eingesetzt. Dabei kann es sich um sekundärgesponnene Garne oder vorzugsweise um Multifilamentgarne handeln. Typische Garntiter bewegen sich im Bereich von 50 bis 9000 dtex.
  • Garne enthaltend die erfindungsgemäßen Fasern sind ebenfalls ein Gegenstand der vorliegenden Erfindung.
  • Einer bevorzugte Ausführungsform betrifft Mischgarne enthaltend die erfindungsgemäßen Fasern und Fasern aus anorganischen Materialien, wie Glas, Bor, Kohlenstoff, Metallen oder keramischen Materialien. Derartige Mischgarne zeichnen sich durch eine nochmals erhöhte Schnittresistenz aus.
  • Das nachfolgende Beispiel verdeutlicht die Erfindung ohne diese zu begrenzen.
  • Beispiel 1:
  • Eine Faser bestehend aus einem aromatischen Copolyamid abgeleitet von Terephthaloylchlorid, 50 Mol.-% 3,3'-Dimethylbenzidin, 25 Mol.-% p-Phenylendiamin und 25 Mol.-% 1,4-Bis-(4-aminophenoxy)-benzol und aus 0,5 Gew.-% Aluminiumoxid wurde hinsichtlich der Zugfestigkeit und der Schnittfestigkeit mit einer ungefüllten Faser aus demselben aromatischen Copolyamid verglichen. Es wurden folgende Werte ermittelt:
    Schnittfestigkeit (CPP-Text) [ounze per squ. yard] Zugfestigkeit [cN/tex]
    ungefüllte Faser 96 212
    gefüllte Faser 110 203

Claims (20)

  1. Schnittresistente Faser enthaltend einen Füllstoff mit einer Härte nach Mohs von größer gleich 3 und als faserbildendes Material ein in polaren aprotischen organischen Lösungsmitteln lösliches aromatisches Polyamid enthaltend die wiederkehrenden Struktureinheiten der Formeln I, II und gegebenenfalls IIa

            -OC-Ar1-CO-NH-Ar2-NH-     (I),



            -OC-Ar1-CO-NH-Ar3-NH-     (II),



            -OC-Ar1-CO-NH-Ar3a-NH-     (IIa),

    worin Ar1, Ar2, Ar3 und Ar3a unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in meta-Stellung oder in einer zu diesen Stellungen vergleichbaren parallelen, koaxialen oder gewinkelten Stellung zueinander befinden, und
    Ar2, Ar3 und gegebenenfalls Ar3a im Einzelfall jeweils unterschiedliche im Rahmen der gegebenen Definitionen liegende Bedeutungen annehmen, und wobei die jeweiligen dem Polymeren zugrundeliegenden Monomerbausteine so ausgewählt werden, daß sich ein in organischen Lösungsmitteln lösliches und vorzugsweise isotrope Lösungen bildendes aromatisches Polyamid ergibt.
  2. Schnittresiste Faser nach Anspruch 1, dadurch gekennzeichnet, daß das aromatische Polyamid die wiederkehrenden Struktureinheiten der Formeln III und IV oder der Formeln III und VI oder der Formeln III, IV und V oder der Formeln III, IV und VI oder der Formeln IV, V und VI enthält

            -OC-Ar1-CO-NH-Ar4-NH-     (III),



            -OC-Ar1-CO-NH-Ar5-Q-Ar6-NH-     (IV),



            -OC-Ar1-CO-NH-Ar7-Y-Ar8-NH-     (V),

    Figure imgb0003
    worin Ar1 und Ar4 unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, insbesondere einkernige oder zweikernige aromatische Reste sind,
    Ar5 und Ar6 unabhängig voneinander einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, oder worin Ar6 zusätzlich einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellen kann, dessen freie Valenzen sich in meta-Stellung oder in einer zu dieser Stellung vergleichbaren gewinkelten Stellung zueinander befinden,
    Q eine direkte C-C-Bindung oder eine Gruppe der Formel -O-, -S-, -SO2-, -O-Phenylen-O- oder Alkylen ist,
    Ar7 und Ar8 eine der für Ar5 und Ar6 definierten Bedeutungen annehmen,
    Y eine der für Q definierten Bedeutungen annimmt oder zusätzlich eine Gruppe der Formel -HN-CO- bedeuten kann, und
    X eine Gruppe der Formel -O-, -S- oder insbesondere -NR1- bedeutet, worin R1 Alkyl, Cycloalkyl, Aryl, Aralkyl oder insbesondere Wasserstoff ist.
  3. Schnittresiste Faser nach Anspruch 2, dadurch gekennzeichnet, daß aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III, IV und V enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5, Ar6 und Ar7 1,4-Phenylen darstellen, Ar8 1,3-Phenylen bedeutet, Q -O-1,4-Phenylen-O- ist und Y -O- ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    wiederkehrende Struktureinheit der Formel III: 40-60 Mol%,
    wiederkehrende Struktureinheit der Formel IV: 1-20 Mol%, und
    wiederkehrende Struktureinheit der Formel V: 15-40 Mol%
  4. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III, IV und V enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 und Ar6 1,4-Phenylen darstellen, Ar7 und Ar8 methyl- methoxy- oder chlorsubstituiertens 1,4-Phenylen bedeuten, Q -O-1,4-Phenylen-O- ist und Y eine direkte C-C-Bindung ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    wiederkehrende Struktureinheit der Formel III: 10-30 Mol%,
    wiederkehrende Struktureinheit der Formel IV: 10-30 Mol%, und
    wiederkehrende Struktureinheit der Formel V: 10-60 Mol%.
  5. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III, IV und V enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 und Ar6 1,4-Phenylen darstellen Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertens 1,4-Phenylen bedeuten, Q -O- ist und Y eine direkte C-C-Bindung ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und V vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    wiederkehrende Struktureinheit der. Formel III: 10-30 Mol%,
    wiederkehrende Struktureinheit der Formel IV: 10-30 Mol%, und
    wiederkehrende Struktureinheit der Formel V: 10-60 Mol%.
  6. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III und IV enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 1,4-Phenylen ist, Ar6 1,3-Phenylen ist und Q -O- ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III und IV vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    wiederkehrende Struktureinheit der Formel III: 20-50 Mol%, und
    wiederkehrende Struktureinheit der Formel IV: 40-60 Mol%.
  7. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III und VI enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist und X -NH- bedeutet, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III und VI vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    wiederkehrende Struktureinheit der Formel III: 30-70 Mol%, und
    wiederkehrende Struktureinheit der Formel VI: 70-30 Mol%.
  8. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln III, IV und VI enthalten, worin Ar1 1,4-Phenylen ist, Ar4 1,4-Phenylen oder ein zweiwertiger Rest des 4,4'-Diaminobenzanilids ist, Ar5 1,4-Phenylen ist, Ar6 1,4- oder 1,3-Phenylen ist, Q -O- oder -O-1,4-Phenylen-O- bedeutet und X -NH- ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln III, IV und VI vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    wiederkehrende Struktureinheit der Formel III: 10-30 Mol%,
    wiederkehrende Struktureinheit der Formel IV: 10-40 Mol%, und
    wiederkehrende Struktureinheit der Formel VI: 50-70 Mol%.
  9. Schnittresiste Fasern nach Anspruch 2, dadurch gekennzeichnet, daß die aromatischen Copolyamide die wiederkehrenden Struktureinheiten der Formeln IV, V und VI enthalten, worin Ar1 1,4-Phenylen ist, Ar5 1,4-Phenylen ist, Ar6 1,4- oder 1,3-Phenylen ist, Q -O- oder -O-1,4-Phenylen-O- bedeutet, Ar7 und Ar8 methyl-, methoxy- oder chlorsubstituiertes 1,4-Phenylen ist, Y eine direkte C-C-Bindung bedeutet und X -NH- ist, wobei sich die Mengenanteile der wiederkehrenden Struktureinheiten der Formeln IV, V und VI vorzugsweise innerhalb folgender Bereiche, bezogen auf die Gesamtmenge dieser Struktureinheiten, bewegen:
    wiederkehrende Struktureinheit der Formel IV: 10-40 Mol%,
    wiederkehrende Struktureinheit der Formel V: 30-60 Mol%, und
    wiederkehrende Struktureinheit der Formel VI: 50-70 Mol%.
  10. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff in einer Menge von 0,05 bis 20 Gew.% in der Faser enthalten ist.
  11. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff eine Härte nach Mohs von größer gleich 5 aufweist.
  12. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff einen mittleren Teilchendurchmesser von kleiner gleich 20 µm, vorzugsweise von 0,05 bis 5 µm aufweist.
  13. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff die Form eines Ellipsoids aufweist, daß einen mittleren Teilchendurchmesser von kleiner gleich 20 µm, vorzugsweise von 0,05 bis 5 µm aufweist.
  14. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff ein Metall und/oder eine Metallegierung ist, vorzugsweise Aluminium, Eisen, Nickel, rostfreier Stahl, Kupfer, Zink, Tantal, Titan, Wolfram oder Mischungen dieser Metalle.
  15. Schnittresistente Faser nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff ein Nichtmetall ist, vorzugsweise ein Metalloxid, Metallcarbid, Metallnitrid, Metallsilikat, Metallsulfat, Metalphosphat, Metallborid oder Mischungen dieser Nichtmetalle.
  16. Schnittresiste Fasern nach Anspruch 1, dadurch gekennzeichnet, daß diese einen Einzelfilamenttiter von 1 bis 20 dtex aufweisen.
  17. Garne enthaltend die Fasern nach Anspruch 1.
  18. Game nach Anspruch 16, dadurch gekennzeichnet, daß es sich dabei um Mischgame enthaltend Fasern nach Anspruch 1 und Fasern aus anorganischen Materialien handelt.
  19. Garne nach Anspruch 17, dadurch gekennzeichnet, daß es sich bei den Fasern aus anorganischen Materialien Fasern aus Glas, Bor, Kohlenstoff, Metallen oder keramischen Materialien handelt.
  20. Verwendung der schnittresisten Fasern nach Anspruch 1 zur Herstellung von Schutzbekleidung,Antivandalismus-Textilien und Verbundwerkstoffen.
EP97101675A 1996-02-15 1997-02-04 Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung Expired - Lifetime EP0790335B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19605511A DE19605511A1 (de) 1996-02-15 1996-02-15 Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und deren Verwendung
DE19605511 1996-02-15

Publications (2)

Publication Number Publication Date
EP0790335A1 true EP0790335A1 (de) 1997-08-20
EP0790335B1 EP0790335B1 (de) 2005-06-15

Family

ID=7785416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97101675A Expired - Lifetime EP0790335B1 (de) 1996-02-15 1997-02-04 Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung

Country Status (3)

Country Link
US (1) US5738940A (de)
EP (1) EP0790335B1 (de)
DE (2) DE19605511A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017626A1 (en) * 1997-10-08 1999-04-15 Hoechst Celanese Corporation Polymeric articles having improved cut-resistance
CN101611182B (zh) * 2006-12-15 2012-08-01 帝人高科技产品株式会社 含杂环芳族聚酰胺纤维及其制备方法以及由该纤维构成的布帛和经该纤维补强的纤维强化复合材料

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162538A (en) * 1992-11-24 2000-12-19 Clemson University Research Foundation Filled cut-resistant fibers
AU2652799A (en) * 1998-01-20 1999-08-02 Hna Holdings, Inc. Ballistic-resistant textile articles made from cut-resistant fibers
FR2789094B1 (fr) * 1999-02-03 2001-05-25 Speed France Fil de coupe ou fil de peche en matiere synthetique
US6465389B1 (en) * 1999-07-29 2002-10-15 Sumitomo Chemical Company, Limited Heat resistant catalyst sheet and process for producing same
JP4831974B2 (ja) * 2005-01-27 2011-12-07 帝人テクノプロダクツ株式会社 防護衣料
US9334587B2 (en) 2005-02-11 2016-05-10 W. L. Gore & Associates, Inc. Fluoropolymer fiber composite bundle
US20060182962A1 (en) * 2005-02-11 2006-08-17 Bucher Richard A Fluoropolymer fiber composite bundle
JP4658194B2 (ja) * 2005-07-06 2011-03-23 コーロン インダストリーズ インク 全芳香族ポリアミドフィラメントの製造方法
US7559653B2 (en) * 2005-12-14 2009-07-14 Eastman Kodak Company Stereoscopic display apparatus using LCD panel
US8173256B2 (en) * 2006-07-26 2012-05-08 Teijin Techno Products Limited Aromatic polyamide fiber, a method for producing the same, and protective clothing material comprising the same
CN115369533A (zh) 2017-04-03 2022-11-22 帝斯曼知识产权资产管理有限公司 耐切割的经填充的伸长体
US11598027B2 (en) 2019-12-18 2023-03-07 Patrick Yarn Mills, Inc. Methods and systems for forming a composite yarn
KR102208801B1 (ko) * 2020-12-16 2021-01-28 김용건 고강력사 및 이를 이용한 장갑 제조방법

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2328105A (en) 1940-12-28 1943-08-31 Louis J Strobino X-ray shield
US4004295A (en) 1975-12-30 1977-01-25 Byrnes Sr Robert M Protective glove constructed of flexible strands of metal wire and fiber yarn
JPS5598909A (en) 1979-01-24 1980-07-28 Takeshi Naito Fiber and sewn product
DE3007063A1 (de) 1979-02-26 1980-08-28 Teijin Ltd Aromatisches copolyamid und verfahren zu seiner herstellung
DE2556883C2 (de) 1974-12-27 1981-11-26 Teijin Ltd., Osaka Aromatische Copolyamide und deren Verwendung zur Herstellung von Fasern, Fäden, Filmen und Folien
US4384449A (en) 1976-10-05 1983-05-24 Robert M. Byrnes, Sr. Protective gloves and the like and a yarn with flexible core wrapped with aramid fiber
US4470251A (en) 1978-03-30 1984-09-11 Bettcher Industries, Inc. Knittable yarn and safety apparel made therewith
EP0199090A2 (de) 1985-03-23 1986-10-29 Hoechst Aktiengesellschaft Geformte Gebilde aus aromatischen Copolyamiden und Verfahren zu ihrer Herstellung
EP0364892A2 (de) 1988-10-18 1990-04-25 Hoechst Aktiengesellschaft Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0364893A2 (de) 1988-10-18 1990-04-25 Hoechst Aktiengesellschaft Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0364891A2 (de) 1988-10-18 1990-04-25 Hoechst Aktiengesellschaft Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0424860A2 (de) 1989-10-25 1991-05-02 Hoechst Aktiengesellschaft Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
US5020161A (en) 1989-09-29 1991-06-04 E. I. Dupont De Nemours And Company Waterproof glove for protective coveralls
JPH03130413A (ja) 1989-10-17 1991-06-04 Teijin Ltd 芯鞘型複合磁性繊維及びそれを用いた磁性繊維集合体
EP0458343A1 (de) 1990-05-25 1991-11-27 BETTCHER INDUSTRIES, INC. (a Delaware Corporation) Strickfähiges Garn und Schutzkleidung
US5296543A (en) * 1993-04-23 1994-03-22 E. I. Du Pont De Nemours And Company Aromatic polyamide compositions and fibers
EP0599231A1 (de) 1992-11-24 1994-06-01 Hoechst Celanese Corporation Gefüllte Faser
EP0662534A1 (de) 1994-01-06 1995-07-12 Hoechst Aktiengesellschaft Verfahren zur Herstellung von massegefärbten geformten Gebilden auf der Basis von aromatischen Polyamiden, massegefärbte Fasern, sowie Vormischung zur Herstellung von massegefärbten geformten Gebilden
WO1995031593A1 (en) * 1994-05-16 1995-11-23 Hoechst Celanese Corporation Filled cut-resistant fiber
WO1996041042A1 (en) * 1995-06-07 1996-12-19 Hoechst Celanese Corporation Filled thermoplastic cut-resistant fiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4401233A1 (de) * 1994-01-18 1995-07-20 Hoechst Ag Bündel aus Stapelfasern aus aromatischen Polyamiden mit verbesserter Dispergierbarkeit in viskosen Matrizes, und Verfahren zur Herstellung von faserverstärkten Verbunden
DE4411755A1 (de) * 1994-04-06 1995-10-12 Hoechst Ag Verfahren zur Herstellung von Fasern oder Filmen unter Verwendung spezieller Ausformlösungen, sowie die danach erhältlichen Fasern oder Filme
EP0678539A3 (de) * 1994-04-06 1997-01-15 Hoechst Ag Aromatische Copolyamide, Verfahren zu deren Herstellung, geformte Gebilde und deren Herstellung.
US5597649A (en) * 1995-11-16 1997-01-28 Hoechst Celanese Corp. Composite yarns having high cut resistance for severe service

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2328105A (en) 1940-12-28 1943-08-31 Louis J Strobino X-ray shield
DE2556883C2 (de) 1974-12-27 1981-11-26 Teijin Ltd., Osaka Aromatische Copolyamide und deren Verwendung zur Herstellung von Fasern, Fäden, Filmen und Folien
US4004295A (en) 1975-12-30 1977-01-25 Byrnes Sr Robert M Protective glove constructed of flexible strands of metal wire and fiber yarn
US4384449A (en) 1976-10-05 1983-05-24 Robert M. Byrnes, Sr. Protective gloves and the like and a yarn with flexible core wrapped with aramid fiber
US4470251A (en) 1978-03-30 1984-09-11 Bettcher Industries, Inc. Knittable yarn and safety apparel made therewith
JPS5598909A (en) 1979-01-24 1980-07-28 Takeshi Naito Fiber and sewn product
DE3007063A1 (de) 1979-02-26 1980-08-28 Teijin Ltd Aromatisches copolyamid und verfahren zu seiner herstellung
EP0199090A2 (de) 1985-03-23 1986-10-29 Hoechst Aktiengesellschaft Geformte Gebilde aus aromatischen Copolyamiden und Verfahren zu ihrer Herstellung
EP0364891A2 (de) 1988-10-18 1990-04-25 Hoechst Aktiengesellschaft Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0364893A2 (de) 1988-10-18 1990-04-25 Hoechst Aktiengesellschaft Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0364892A2 (de) 1988-10-18 1990-04-25 Hoechst Aktiengesellschaft Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
US5020161A (en) 1989-09-29 1991-06-04 E. I. Dupont De Nemours And Company Waterproof glove for protective coveralls
JPH03130413A (ja) 1989-10-17 1991-06-04 Teijin Ltd 芯鞘型複合磁性繊維及びそれを用いた磁性繊維集合体
EP0424860A2 (de) 1989-10-25 1991-05-02 Hoechst Aktiengesellschaft Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0458343A1 (de) 1990-05-25 1991-11-27 BETTCHER INDUSTRIES, INC. (a Delaware Corporation) Strickfähiges Garn und Schutzkleidung
EP0599231A1 (de) 1992-11-24 1994-06-01 Hoechst Celanese Corporation Gefüllte Faser
US5296543A (en) * 1993-04-23 1994-03-22 E. I. Du Pont De Nemours And Company Aromatic polyamide compositions and fibers
EP0662534A1 (de) 1994-01-06 1995-07-12 Hoechst Aktiengesellschaft Verfahren zur Herstellung von massegefärbten geformten Gebilden auf der Basis von aromatischen Polyamiden, massegefärbte Fasern, sowie Vormischung zur Herstellung von massegefärbten geformten Gebilden
WO1995031593A1 (en) * 1994-05-16 1995-11-23 Hoechst Celanese Corporation Filled cut-resistant fiber
WO1996041042A1 (en) * 1995-06-07 1996-12-19 Hoechst Celanese Corporation Filled thermoplastic cut-resistant fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017626A1 (en) * 1997-10-08 1999-04-15 Hoechst Celanese Corporation Polymeric articles having improved cut-resistance
US6080474A (en) * 1997-10-08 2000-06-27 Hoechst Celanese Corporation Polymeric articles having improved cut-resistance
CN101611182B (zh) * 2006-12-15 2012-08-01 帝人高科技产品株式会社 含杂环芳族聚酰胺纤维及其制备方法以及由该纤维构成的布帛和经该纤维补强的纤维强化复合材料

Also Published As

Publication number Publication date
DE19605511A1 (de) 1997-08-21
US5738940A (en) 1998-04-14
DE59712341D1 (de) 2005-07-21
EP0790335B1 (de) 2005-06-15

Similar Documents

Publication Publication Date Title
EP0790335B1 (de) Schnittresistente Aramidfasern, Garne enthaltend diese Aramidfasern und dieser Verwendung
DE69727541T2 (de) Gefüllte schnittfeste Faser
EP0718425B1 (de) Zweikomponenten-Schlingengarne aus Aramidfilamenten, Verfahren zu deren Herstellung und deren Verwendung
EP0678539A2 (de) Aromatische Copolyamide, Verfahren zu deren Herstellung, geformte Gebilde und deren Herstellung
EP0695776A2 (de) Verfahren zur Herstellung von Fasern oder Filmen, danach hergestellte Fasern oder Filme
DE69405558T2 (de) Ppd-t und pvp lösung und daraus hergestellte artikel
DE4402193C1 (de) Präparationshaltige Aramidfasern und deren Verwendung
EP0364893B1 (de) Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0424860B1 (de) Vollaromatische Polyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
DE4410708C1 (de) Präparationshaltige Aramidfasern und deren Verwendung
EP0647731A1 (de) Aramidfasern hoher Festigkeit und hohen Titers, Verfahren zu deren Herstellung sowie deren Verwendung
EP0852246A2 (de) Zusammensetzungen enthaltend aromatische Polyamide und Fullerene, sowie geformte Gebilde daraus
DE3914226A1 (de) Fasermaterialien aus homogenen legierungen aus aromatischen polyamiden und poly-n-vinylpyrrolidon, verfahren zu ihrer herstellung und ihre verwendung
EP0496317B1 (de) Halbzeug und daraus hergestellte faserverstärkte Verbundwerkstoffe
EP0445673B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0553755B1 (de) Fasern aus aromatischem Copolyamid sowie deren Verwendung
EP0522418B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0578164A2 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0604881B1 (de) Homogene Polymerlegierungen auf der Basis von sulfonierten, aromatischen Polyetherketonen
DE19606959A1 (de) Faserpulp, Verfahren zu dessen Herstellung und dessen Verwendung
EP0553756B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
DE69632558T2 (de) Polyphthalamid-Harzzusammensetzungen
DE69431649T2 (de) Verfahren zur Herstellung von molekularen Verbundmaterialien, die ein steifes aromatisches Polymer enthalten
EP0499230B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde
EP0496318B1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE NL

17P Request for examination filed

Effective date: 19980220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HNA HOLDINGS, INC.

17Q First examination report despatched

Effective date: 19991227

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CNA HOLDINGS, INC.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLEMSON UNIVERSITY RESEARCH FOUNDATION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050615

REF Corresponds to:

Ref document number: 59712341

Country of ref document: DE

Date of ref document: 20050721

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100303

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100224

Year of fee payment: 14

Ref country code: DE

Payment date: 20100226

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59712341

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901