EP0783089B1 - Kegelbrenner - Google Patents

Kegelbrenner Download PDF

Info

Publication number
EP0783089B1
EP0783089B1 EP96810821A EP96810821A EP0783089B1 EP 0783089 B1 EP0783089 B1 EP 0783089B1 EP 96810821 A EP96810821 A EP 96810821A EP 96810821 A EP96810821 A EP 96810821A EP 0783089 B1 EP0783089 B1 EP 0783089B1
Authority
EP
European Patent Office
Prior art keywords
cone
burner
outlet diffuser
fuel
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810821A
Other languages
English (en)
French (fr)
Other versions
EP0783089A2 (de
EP0783089A3 (de
Inventor
Klaus Dr. Döbbeling
Adnan Dr. Eroglu
Hans Peter Knöpfel
Wolfgang Dr. Polifke
Thomas Dr. Sattelmayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0783089A2 publication Critical patent/EP0783089A2/de
Publication of EP0783089A3 publication Critical patent/EP0783089A3/de
Application granted granted Critical
Publication of EP0783089B1 publication Critical patent/EP0783089B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C15/00Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to a cone burner for gaseous and / or liquid fuels, according to the preamble of the claim 1.
  • EP-B1-0321809 discloses a gas for combustion and / or liquid fuels suitable double cone burners known.
  • This burner consists of two hollow, one into one Partial conical bodies which are tangential Have air inlet slots. At the radial end of each air inlet slot is a line for gaseous fuel arranged. Mixing the gaseous fuel into the combustion air flowing in tangentially therefore takes place within the air inlet slots, and that in the entire interior of the burner. When using liquid fuel this via a centrally arranged nozzle into the interior of the burner injected.
  • the invention tries to avoid all of these disadvantages. It is based on the task of a cone burner for gaseous and / or to create liquid fuels, the one has reduced NOx and CO emissions.
  • the partial cone body a common one at its downstream end Have outlet diffuser.
  • the partial cone bodies have one Transition area to the outlet diffuser, in which the size of the air inlet slots continuously in the direction of flow decreases.
  • the outlet diffuser is circular and has no air inlet slots educated.
  • the cone burner now has a circular exit cross-section to the combustion chamber, which is compared to the known double-cone burners the cooling air requirement for those used there Sickles are eliminated.
  • the outlet diffuser provides an additional advantage a stronger shielding of the reaction zone the neighboring burners, resulting in increased flame stability is achieved.
  • the diameter of the Fuel supply decreases in the direction of flow.
  • the gas perforation in the transition area according to the local slot width adjusted and an even distribution of the gaseous fuel in the combustion air.
  • the outlet diffuser has a length from about 10 to 25 percent of the total length of the cone burner has and has an exit surface which is not greater than 1.3 times one at the beginning of the transition area formed cross-sectional area of the partial cone bodies formed double cone part. Such, relative short diffuser results in a small boundary layer thickness, preventing the flame from kicking back in the boundary layer becomes.
  • the outlet diffuser has an opening angle that increases continuously in the direction of flow, which is initially equal to the cone angle of the burner and downstream continuously larger than this is. This stabilizes the wall boundary layer and thus minimizing the risk of flow separation.
  • FIG. 1 shows one known from the prior art Double cone burner shown. It consists of two halves, hollow partial cone bodies 1, 2 which are laterally offset from one another, lie on top of each other and complement each other to form a body. Therefore, the partial cone bodies 1, 2 have in the flow direction 3 offset central axes 4, 5 (Fig. 2). The double-cone burner points in the direction of flow 3 conical burner interior 6. Between the partial cone bodies 1, 2 are tangential air inlet slots 7, 8 formed.
  • both partial cone bodies 1, 2 and there at the outer end of the Air inlet slots 7, 8 are each a fuel line 9, 10 arranged for gaseous fuel 11 (Fig. 1).
  • the Fuel lines 9, 10 are with several, in the entire area of the air inlet slots 7, 8 evenly distributed and fuel feeds formed as openings 12 are provided.
  • Both partial cone bodies 1, 2 each have a cylindrical one Initial part 13, 14, which are also offset from one another are arranged.
  • the tangential air inlet slots 7, 8 upstream over the entire length of the double cone burner.
  • the double cone burner i.e. in its cylindrical beginning 13, 14, is an opening into the burner interior 6, central liquid fuel nozzle 15 arranged.
  • Both Partial cone bodies 1, 2 have a flat, in the range of 10 ° up to 30 ° trained cone angle 16.
  • Combustion chamber side 17 is a collar-shaped on the double-cone burner, as anchoring for the partial cone body 1, 2 serving end plate 18th arranged.
  • end plate 18 is a number of Bores 19 formed through which cooling air 20 for the Immediately upstream of the end plate 18, crescent-shaped Ends of the partial cone bodies 1, 2 to the combustion chamber 17 is derived.
  • liquid fuel 21 When liquid fuel 21 is used, its injection takes place at an acute angle, at the narrowest cross section of the burner interior 6. This forms a conical fuel profile 22, which is surrounded by rotating combustion air 23 flowing in via the tangential air inlet slots 7, 8. In the axial direction, the concentration of the liquid fuel 21 is continuously reduced by the mixed-in combustion air 23. At the downstream end of the double-cone burner, a central backflow zone 24 of the fuel mixture is formed, which causes the conical fuel profile 22 to burst (vortex breakdown). As a result, a good fuel concentration over the burner cross section is achieved in this area. The combustion mixture is ignited at the top of the reverse flow zone 24. Only at this point can a stable flame front 25 arise. If gaseous fuel 11 is burned, it passes through the openings 12 into the burner interior 6, where it is mixed with the combustion air 23. A conical fuel profile 22 is also formed in the burner interior 6.
  • FIG. 3 shows a schematic representation of a device according to the invention Double cone burner.
  • Double cone burner For the sake of clarity are only the essential components or the opposite the prior art shown in FIGS. 1 and 2 changed Components shown.
  • the two half, hollow partial cone bodies 1, 2 of the burner complement each other to form a body designed as a double cone part 26, which downstream in a common, circular Outlet diffuser 27 merges.
  • a transition region 28 from the double cone part 26 to the outlet diffuser 27 is Immediately upstream of the outlet diffuser 27.
  • this transition area 28 takes the size of the air inlet slots 7, 8 continuously in the direction of flow 3.
  • the burner cross section is continuously expanded, making the Area through which the fuel mixture flows also in the transition area 28 becomes larger or at least remains constant.
  • the outlet diffuser 27 has a length 29 of approximately 15 percent the total length 30 of the double-burner. Its exit surface 31 corresponds to approximately 1.3 times the cross-sectional area 32 at the beginning of the transition area 28. He owns an opening angle 33 which is initially equal to the cone angle 16 of the burner and in the flow direction 3 continuously increases.
  • transition region 28 to the outlet diffuser 27 is shown in FIG shown enlarged, whereby the arrangement and design of the ending at the downstream end of the transition region 28 Fuel line 9 become clear.
  • Figures 5 to 7 show three partial cross sections of the double cone part 26 in its transition region 28.
  • Fig. 5 is the beginning, in Fig. 6 the middle part and in Fig. 7 the end of the transition area 28 shown.
  • the transition area 28 becomes the diameter of the fuel line 9 and the openings 12 reduced in the direction of flow 3.
  • the air inlet slots 7, 8 are completely closed.
  • At downstream adjoining circular outlet diffuser 27 neither air inlet slots 7, 8 nor fuel lines 9, 10 arranged (Fig. 3).
  • the flow of the fuel mixture is in the outlet diffuser 27 slightly delayed and therefore unstable at its center. Thereby it only comes close to the downstream end of the outlet diffuser 27 to form the central backflow zone 24 of the fuel mixture and thus to burst the conical Fuel profile 22. Because the outlet diffuser 27 is trumpet-shaped is formed, there is a constant surface course from transition area 28 to the entry of the fuel mixture reached in the combustion chamber 17. As a result, the boundary layer resolves does not decrease in its interior, so that is advantageous a stable flame front only downstream of the double-cone burner 25 can train. By changing the length of the double cone part 26, the slot width, the opening angle 33 or the number of air inlet slots 7, 8 can be the location the vortex burst according to the specific conditions to be influenced.
  • Air inlet slots 7, 8 become a fluid transition from the double-cone burner geometry to the circular one Outlet diffuser 27 reached. This makes sudden cross-sectional jumps avoided.
  • the adjustment of the gas perforation the local size of the air inlet slots 7, 8 takes place through the corresponding reduction in the opening diameter. Naturally the distance between the openings 12 can also be increased become.
  • An additional advantage of the trumpet-shaped trained outlet diffuser 27 is the stabilizing one Effect of its convex curved wall.
  • the outlet diffuser has 27 an opening angle 34, which is equal to the cone angle 16 of the burner is formed (Fig. 8). Because of the simple, Straight shape of the outlet diffuser 27 can this double cone burner manufactured much lighter and cheaper become.
  • a cooling air baffle is outside the combustion chamber wall 35 36 arranged, which is upstream to the outlet diffuser 27 is sufficient and at the downstream end of the air inlet slots 7, 8 ends.
  • the outlet diffuser 27 is with in the space between combustion chamber wall 35 and cooling air baffle 36 back-flowing cooling air cooled from the outside, the latter finally in a plenum formed upstream of the burner 37 opens. Because of this convective cooling of the outlet diffuser 27, the operational security compared to first embodiment further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Spray-Type Burners (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft einen Kegelbrenner für gasförmige und/oder flüssige Brennstoffe, gemäss dem Oberbegriff des Anspruchs 1.
Stand der Technik
Aus dem EP-B1-0321809 ist ein für die Verbrennung gasförmiger und/oder flüssiger Brennstoffe geeigneter Doppelkegelbrenner bekannt. Dieser Brenner besteht aus zwei hohlen, sich zu einem Körper ergänzenden Teilkegelkörpern, welche tangentiale Lufteintrittschlitze aufweisen. Am radialen Ende jedes Lufteintrittschlitzes ist eine Leitung für gasförmigen Brennstoff angeordnet. Das Zumischen des gasförmigen Brennstoffs in die tangential einströmende Verbrennungsluft erfolgt daher innerhalb der Lufteintrittschlitze, und zwar im gesamten Innenraum des Brenners. Bei Verwendung von flüssigem Brennstoff wird dieser über eine zentral angeordnete Düse in den Brennerinnenraum eingedüst.
Am Brennerende eines solchen Doppelkegelbrenners kommt es zur Ausbildung einer zentralen Rückströmzone des Brenngemisches. In diesem Bereich ist bereits ein im zeitlichen Mittel homogenes Brennstoffprofil über den Brennerquerschnitt erreicht. Die Zündung des Brenngemisches erfolgt an der Spitze der Rückströmzone, so dass dort eine stabile Flammenfront entsteht. Durch die plötzliche Flächenerweiterung zur Brennkammer bildet sich zudem auch ein äusseres Rezirkulationsgebiet, welches ebenfalls zur Flammenstabilisierung beiträgt.
Bei Verwendung von flüssigem Brennstoff wird die Brennstoffkonzentration durch die tangential eingeleitete Verbrennungsluft in axialer Richtung abgebaut, so dass ein gut vorgemischtes Brenngemisch entsteht. Wird jedoch gasförmiger Brennstoff eingesetzt, so ist der Abstand zumindest von den im stromabwärtigen Bereich des Brenners angeordneten Einmischstellen des Brennstoffes bis zur Flamme nur sehr gering. Deshalb führt das dort vorliegende, zeitlich und örtlich noch nicht vollständig homogenisierte Brenngemisch zu einer erhöhten Produktion von Stickoxiden und von Kohlenmonoxid.
Darstellung der Erfindung
Die Erfindung versucht, alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, einen Kegelbrenner für gasförmige und/oder flüssige Brennstoffe zu schaffen, der eine verringerte NOx- und CO-Emission aufweist.
Erfindungsgemäss wird dies dadurch erreicht, dass bei einer Vorrichtung gemäss dem Oberbegriff des Anspruchs 1, die Teilkegelkörper an ihrem stromabwärtigen Ende einen gemeinsamen Auslassdiffusor besitzen. Die Teilkegelkörper weisen einen Übergangsbereich zum Auslassdiffusor auf, in dem die Grösse der Lufteintrittschlitze in Strömungsrichtung kontinuierlich abnimmt. Der Auslassdiffusor ist kreisrund und ohne Lufteintrittschlitze ausgebildet.
Aufgrund dieser Ausbildung des Kegelbrenners wird bei geeigneter Wahl der Schlitzweite das Wirbelaufplatzen und damit die Zündung des Brenngemisches weiter stromab, in die Nähe des Auslassdiffusorendes verlagert. Dadurch wird die am Brennerende zur Verfügung stehende Mischstrecke und Mischzeit wesentlich verlängert. Somit entsteht ein besser homogenisiertes Brenngemisch, was zu einer deutlichen Verringerung der NOx- und der CO-Emissionen führt. Dies betrifft sowohl den Einsatz von flüssigem als auch von gasförmigem Brennstoff, wobei der Vorteil bei letzterem bedeutend grösser ist. Mit der kontinuierlichen Verringerung der Grösse der Lufteintrittschlitze werden plötzliche Querschnittsprünge im Übergangsbereich von der Kegelbrennergeometrie zum kreisrunden Auslassdiffusor verhindert. Auf diese Weise lassen sich Ablösegebiete der Strömung des Frisch-Brenngemisches und somit eine dort unerwünschte Flammenhaltung vermeiden. Der Kegelbrenner weist nunmehr einen kreisförmigen Austrittsquerschnitt zum Brennraum auf, womit gegenüber den bekannten-Doppelkegelbrennern der Kühlluftbedarf für die dort eingesetzten Sicheln entfällt. Als zusätzlichen Vorteil bewirkt der Auslassdiffusor eine stärkere Abschirmung der Reaktionszone gegenüber den benachbarten Brennern, wodurch eine erhöhte Flammenstabilität erreicht wird.
Es ist besonders zweckmässig, wenn im Übergangsbereich der Teilkegelkörper zum Auslassdiffusor der Durchmesser der Brennstoffzuführungen in Strömungsrichtung abnimmt. Damit wird die Gasbelochung im Übergangsbereich entsprechend der lokalen Schlitzweite angepasst und eine gleichmässige Verteilung des gasförmigen Brennstoffes in der Verbrennungsluft erreicht.
Ferner ist es vorteilhaft, wenn der Auslassdiffusor eine Länge von etwa 10 bis 25 Prozent der Gesamtlänge des Kegelbrenners aufweist und eine Austrittsfläche besitzt, welche nicht grösser als das 1,3-fache einer am Anfang des Übergangsbereiches ausgebildeten Querschnittsfläche des von den Teilkegelkörpern gebildeten Doppelkegelteils ist. Ein solcher, relativ kurzer Diffusor hat eine geringe Grenzschichtdicke zur Folge, so dass ein Rückschlagen der Flamme in der Grenzschicht verhindert wird.
In einer zweiten Ausführungsform besitzt der Auslassdiffusor einen in Strömungsrichtung kontinuierlich zunehmenden Öffnungswinkel, der anfänglich gleich dem Kegelwinkel des Brenners und stromab kontinuierlich grösser als dieser ausgebildet ist. Dadurch wird die Wandgrenzschicht stabilisiert und so die Gefahr der Strömungsablösung minimiert.
Kurze Beschreibung der Zeichnung
In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung anhand eines mit einer Brennkammer verbundenen Doppelkegelbrenners dargestellt.
Es zeigen:
Fig. 1
einen Doppelkegelbrenner des Standes der Technik, perspektivisch und entsprechend aufgeschnitten dargestellt;
Fig. 2
einen Schnitt II-II durch den in Fig. 1 gezeigten Brenner, schematisch vereinfacht dargestellt;
Fig. 3
eine schematische Darstellung eines erfindungsgemässen Doppelkegelbrenners in Seitenansicht;
Fig. 4
einen Ausschnitt von Fig. 3 mit vergrösserter Darstellung des Übergangsbereiches zum Auslassdiffusor;
Fig. 5 bis Fig. 7
Teilquerschnitte des Übergangsbereiches, entlang der Linien V-V, VI-VI, VII-VII in Fig. 4;
Fig. 8
eine Darstellung entsprechend Fig. 3, jedoch in einer anderen Ausführungsform.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
In der Figur 1 ist ein aus dem Stand der Technik bekannter Doppelkegelbrenner dargestellt. Er besteht aus zwei halben, hohlen Teilkegelkörpern 1, 2, die seitlich versetzt zueinander, aufeinander liegen und sich zu einem Körper ergänzen. Daher besitzen die Teilkegelkörper 1, 2 in Strömungsrichtung 3 versetzt zueinander angeordnete Mittelachsen 4, 5 (Fig. 2). Der Doppelkegelbrenner weist einen sich in Strömungsrichtung 3 kegelförmig erweiternden Brennerinnenraum 6 auf. Zwischen den Teilkegelkörpern 1, 2 sind tangentiale Lufteintrittschlitze 7, 8 ausgebildet.
An beiden Teilkegelkörpern 1, 2 und dort am äusseren Ende der Lufteintrittschlitze 7, 8 ist jeweils eine Brennstoffleitung 9, 10 für gasförmigen Brennstoff 11 angeordnet (Fig. 1). Die Brennstoffleitungen 9, 10 sind mit mehreren, im gesamten Bereich der Lufteintrittschlitze 7, 8 gleichmässig verteilten und als Öffnungen ausgebildeten Brennstoff zuführungen 12 versehen. Beide Teilkegelkörper 1, 2 besitzen jeweils einen zylindrischen Anfangsteil 13, 14, welche ebenfalls versetzt zueinander angeordnet sind. Somit sind die tangentialen Lufteintrittschlitze 7, 8 anströmseitig über die gesamte Länge des Doppelkegelbrenners ausgebildet. Am stromaufwärtigen Ende des Doppelkegelbrenners, d.h. in dessen zylindrischem Anfangsteil 13, 14, ist eine in den Brennerinnenraum 6 mündende, zentralen Flüssigbrennstoffdüse 15 angeordnet. Beide Teilkegelkörper 1, 2 weisen einen flachen, im Bereich von 10° bis 30° ausgebildeten Kegelwinkel 16 auf. Brennkammerseitig 17 ist am Doppelkegelbrenner eine kragenförmige, als Verankerung für die Teilkegelkörper 1, 2 dienende Abschlussplatte 18 angeordnet. In der Abschlussplatte 18 ist eine Anzahl von Bohrungen 19 ausgebildet, durch welche Kühlluft 20 für die unmittelbar stromauf der Abschlussplatte 18 befindlichen, sichelförmigen Enden der Teilkegelkörper 1, 2 zur Brennkammer 17 abgeleitet wird.
Bei Verwendung von flüssigem Brennstoff 21 erfolgt dessen Eindüsung in einem spitzen Winkel, am engsten Querschnitt des Brennerinnenraumes 6. Dadurch bildet sich ein kegeliges Brennstoffprofil 22 aus, welches von über die tangentialen Lufteintrittschlitze 7, 8 einströmender, rotierender Verbrennungsluft 23 umschlossen wird. In axialer Richtung wird die Konzentration des flüssigen Brennstoffes 21 fortlaufend durch die eingemischte Verbrennungsluft 23 abgebaut. Am stromabwärtigen Ende des Doppelkegelbrenners kommt es zur Ausbildung einer zentralen Rückströmzone 24 des Brenngemisches, welches das kegelige Brennstoffprofil 22 zum Aufplatzen (Vortex-Breakdown) bringt. Dadurch wird in diesem Bereich eine gute Brennstoffkonzentration über den Brennerquerschnitt erreicht. Die Zündung des Brenngemisches erfolgt an der Spitze der-Rückströmzone 24. Erst an dieser Stelle kann eine stabile Flammenfront 25 entstehen.
Wird gasförmiger Brennstoff 11 verbrannt, gelangt dieser durch die Öffnungen 12 in den Brennerinnenraum 6, wobei er der Verbrennungsluft 23 zugemischt wird. Dabei bildet sich im Brennerinnenraum 6 ebenfalls ein kegeliges Brennstoffprofil 22 aus.
Die Fig. 3 zeigt eine schematische Darstellung eines erfindungsgemässen Doppelkegelbrenners. Aus Gründen der Übersichtlichkeit sind nur die wesentlichen Bauteile bzw. die gegenüber dem in Fig. 1 und 2 aufgezeigten Stand der Technik veränderten Bauteile dargestellt.
Die beiden halben, hohlen Teilkegelkörper 1, 2 des Brenners ergänzen sich zu einem als Doppelkegelteil ausgebildeten Körper 26, welcher stromab in einen gemeinsamen, kreisrunden Auslassdiffusor 27 übergeht. Unmittelbar stromauf des Auslassdiffusors 27 ist ein Übergangsbereich 28 vom Doppelkegelteil 26 zum Auslassdiffusor 27 ausgebildet. In diesem Übergangsbereich 28 nimmt die Grösse der Lufteintrittschlitze 7, 8 in Strömungsrichtung 3 kontinuierlich ab. Dabei wird jedoch der Brennerquerschnitt kontinuierlich erweitert, wodurch die vom Brenngemisch durchströmte Fläche auch im Übergangsbereich 28 grösser wird oder zumindest konstant bleibt.
Der Auslassdiffusor 27 weist eine Länge 29 von etwa 15 Prozent der Gesamtlänge 30 des Doppelkelbrenners auf. Seine Austrittsfläche 31 entspricht etwa dem 1,3-fachen der Querschnittsfläche 32 am Anfang des Übergangsbereiches 28. Er besitzt einen Öffnungswinkel 33, der zunächst gleich dem Kegelwinkel 16 des Brenners ist und in Strömungsrichtung 3 kontinuierlich zunimmt.
In Figur 4 ist der Übergangsbereich 28 zum Auslassdiffusor 27 vergrössert dargestellt, wodurch Anordnung und Ausbildung der am stromabwärtigen Ende des Übergangsbereichs 28 endenden Brennstoffleitung 9 deutlich werden.
Die Figuren 5 bis 7 zeigen drei Teilquerschnitte des Doppelkegelteils 26 in seinem Übergangsbereich 28. In Fig. 5 ist der Beginn, in Fig. 6 der Mittelteil und in Fig. 7 das Ende des Übergangsbereiches 28 dargestellt. Im Übergangsbereich 28 wird der Durchmesser der Brennstoffleitung 9 sowie der Öffnungen 12 in Strömungsrichtung 3 reduziert. Bereits am Ende des Übergangsbereiches 28 sind die Lufteintrittschlitze 7, 8 und die Öffnungen 12 vollständig verschlossen. Am sich stromabwärts anschliessenden, kreisrunden Auslassdiffusor 27 sind weder Lufteintrittschlitze 7, 8 noch Brennstoffleitungen 9, 10 angeordnet (Fig. 3).
Im Unterschied zur bereits oben beschriebenen Funktion eines bekannten Doppelkegelbrenners wird durch die Anordnung des Auslassdiffusors 27 zusätzlich Zeit und Raum für die Einmischung auch des erst im stromabwärtigen Bereich des Doppelkegelteils 26 eingeführten, gasförmigen Brennstoffes 11 gewonnen. Auf diese Weise wird eine optimale Brennstoffkonzentration über den Brennerquerschnitt erreicht. Bei Verbrennung eines solchen, homogenisierten Brenngemisches werden die NOx- und die CO-Emissionen deutlich gesenkt. Auch bei Verwendung von flüssigem Brennstoff 21 wird eine Verringerung der Emissionen erreicht, jedoch ist der Vorteil in diesem Fall nicht so gross.
Im Auslassdiffusor 27 wird die Strömung des Brenngemisches leicht verzögert und somit in ihrem Zentrum instabil. Dadurch kommt es erst in die Nähe des stromabwärtigen Endes des Auslassdiffusors 27 zur Ausbildung der zentralen Rückströmzone 24 des Brenngemisches und somit zum Aufplatzen des kegeligen Brennstoffprofils 22. Weil der Auslassdiffusor 27 trompetenförmig ausgebildet ist, wird ein stetiger Oberflächenverlauf vom Übergangsbereich 28 bis zum Eintritt des Brenngemisches in die Brennkammer 17 erreicht. Demzufolge löst die Grenzschicht in seinem Inneren nicht ab, so dass sich vorteilhaft erst stromab des Doppelkegelbrenners eine stabile Flammenfront 25 ausbilden kann. Durch Veränderung der Länge des Doppelkegelteils 26, der Schlitzweite, des Öffnungswinkels 33 oder der Anzahl der Lufteintrittschlitze 7, 8 kann der Ort des Wirbelaufplatzens entsprechend der konkreten Bedingungen beeinflusst werden.
Wegen der im Übergangsbereich 28 vom Doppelkegelteil 26 zum Auslassdiffusor 27 kontinuierlich verringerten Grösse der Lufteintrittschlitze 7, 8 wird ein strömungsgünstiger Übergang von der Doppelkegelbrenner-Geometrie zum kreisrunden Auslassdiffusor 27 erreicht. Damit werden plötzliche Querschnittsprünge vermieden. Die Anpassung der Gasbelochung an die lokale Grösse der Lufteintrittschlitze 7, 8 erfolgt durch die entsprechende Verringerung der Öffnungsdurchmesser. Natürlich kann auch der Abstand zwischen den Öffnungen 12 erhöht werden. Ein zusätzlicher Vorteil des trompetenförmig ausgebildeten Auslassdiffusors 27 ist die stabilisierende Wirkung seiner konvex gekrümmten Wand.
In einem zweiten Ausführungsbeispiel besitzt der Auslassdiffusor 27 einen Öffnungswinkel 34, der gleich dem Kegelwinkel 16 des Brenners ausgebildet ist (Fig. 8). Aufgrund der einfachen, geraden Form des Auslassdiffusors 27 kann dieser Doppelkegelbrenner wesentlich leichter und billiger gefertigt werden. Zudem ist ausserhalb der Brennkammerwand 35 ein Kühlluftleitblech 36 angeordnet, welches stromauf bis zum Auslassdiffusor 27 reicht und am stromabwärtigen Ende der Lufteintrittschlitze 7, 8 endet. Der Auslassdiffusor 27 wird mit im Raum zwischen Brennkammerwand 35 und Kühlluftleitblech 36 zurückströmender Kühlluft von aussen gekühlt, wobei letztere schliesslich in ein stromauf des Brenners ausgebildetes Plenum 37 mündet. Aufgrund dieser konvektiven Kühlung des Auslassdiffusors 27 wird die Betriebssicherheit gegenüber dem ersten Ausführungsbeispiel weiter verbessert.
Bezugszeichenliste
1
Teilkegelkörper
2
Teilkegelkörper
3
Strömungsrichtung
4
Mittelachse
5
Mittelachse
6
Brennerinnenraum
7
Lufteintrittschlitz
8
Lufteintrittschlitz
9
Brennstoffleitung
10
Brennstoffleitung
11
gasförmiger Brennstoff
12
Brennstoffzuführung, Öffnung
13
Anfangsteil
14
Anfangsteil
15
Flüssigbrennstoffdüse
16
Kegelwinkel
17
Brennkammer
18
Abschlussplatte
19
Bohrung
20
Kühlluft
21
flüssiger Brennstoff
22
kegeliges Brennstoffprofil
23
Verbrennungsluft
24
Rückströmzone
25
Flammenfront
26
Körper, Doppelkegelteil
27
Auslassdiffusor
28
Übergangsbereich
29
Länge von 27
30
Gesamtlänge von 26 und 27
31
Austrittsfläche von 27
32
Querschnittsfläche
33
Öffnungswinkel von 27
34
Öffnungswinkel von 27
35
Brennkammerwand
36
Kühlluftleitblech
37
Plenum

Claims (5)

  1. Kegelbrenner für gasförmige und/oder flüssige Brennstoffe (11, 21), bestehend aus
    a) zumindest zwei hohlen, sich zu einem Körper (26) ergänzenden Teilkegelkörpern (1, 2), deren Mittelachsen (4, 5) in Strömungsrichtung (3) versetzt zueinander angeordnet sind,
    b) zwischen den Teilkegelkörpern (1, 2) angeordneten, tangentialen Lufteintrittschlitzen (7, 8),
    c) mehreren, im gesamten Bereich der Lufteintrittschlitze (7, 8) gleichmässig verteilten Brennstoffzuführungen (12) für gasförmigen Brennstoff (11),
    d) einem sich in Strömungsrichtung (3) kegelförmig erweiternden Brennerinnenraum (6),
    e) einer am stromaufwärtigen Ende des Kegelbrenners angeordneten und in den Brennerinnenraum (6) mündenden, zentralen Flüssigbrennstoffdüse (15),
    dadurch gekennzeichnet, dass
    f) die Teilkegelkörper (1, 2) an ihrem stromabwärtigen Ende einen gemeinsamen Auslassdiffusor (27) besitzen,
    g) die Teilkegelkörper (1, 2) einen Übergangsbereich (28) zum Auslassdiffusor (27) aufweisen, in dem die Grösse der Lufteintrittschlitze (7, 8) in Strömungsrichtung (3) kontinuierlich abnimmt,
    h) der Auslassdiffusor (27) kreisrund und ohne Lufteintrittschlitze (7, 8) ausgebildet ist.
  2. Kegelbrenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchmesser der Brennstoffzuführungen (12) im Übergangsbereich (28) der Teilkegelkörper (1, 2) in Strömungsrichtung (3) abnimmt.
  3. Kegelbrenner nach Anspruch 2, dadurch gekennzeichnet, dass der Auslassdiffusor (27) eine Länge (29) von etwa 10 bis 25 Prozent der Gesamtlänge (30) des Kegelbrenners aufweist und eine Austrittsfläche (31) besitzt, die nicht grösser als das 1,3-fache einer am Anfang des Übergangsbereiches (28) ausgebildeten Querschnittsfläche (32) des Körpers (26) ist.
  4. Kegelbrenner nach Anspruch 3, dadurch gekennzeichnet, dass der Auslassdiffusor (27) einen Öffnungswinkel (34) besitzt, der gleich dem Kegelwinkel (16) des Brenners ist.
  5. Kegelbrenner nach Anspruch 3, dadurch gekennzeichnet, dass der Auslassdiffusor (27) einen Öffnungswinkel (33) besitzt, der anfänglich gleich dem Kegelwinkel (16) des Brenners ist und der in Strömungsrichtung (3) kontinuierlich zunimmt.
EP96810821A 1995-12-27 1996-11-25 Kegelbrenner Expired - Lifetime EP0783089B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19548853 1995-12-27
DE19548853A DE19548853A1 (de) 1995-12-27 1995-12-27 Kegelbrenner

Publications (3)

Publication Number Publication Date
EP0783089A2 EP0783089A2 (de) 1997-07-09
EP0783089A3 EP0783089A3 (de) 1998-11-11
EP0783089B1 true EP0783089B1 (de) 2001-04-11

Family

ID=7781504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810821A Expired - Lifetime EP0783089B1 (de) 1995-12-27 1996-11-25 Kegelbrenner

Country Status (5)

Country Link
US (1) US5807097A (de)
EP (1) EP0783089B1 (de)
JP (1) JP3810502B2 (de)
CN (1) CN1119560C (de)
DE (2) DE19548853A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59708077D1 (de) * 1997-12-22 2002-10-02 Alstom Brenner
DE50110801D1 (de) * 2000-12-23 2006-10-05 Alstom Technology Ltd Brenner zur Erzeugung eines Heissgases
DE10342763A1 (de) * 2003-09-16 2005-07-07 BSH Bosch und Siemens Hausgeräte GmbH Gasbrenner für flüssigen Brennstoff
FR2870741B1 (fr) * 2004-05-25 2008-03-14 Coletica Sa Phase lamellaires hydratees ou liposomes, contenant une monoamine grasse ou un polymere cationique favorisant la penetration intercellulaire, et composition cosmetique ou pharmaceutique la contenant.
WO2006058843A1 (de) * 2004-11-30 2006-06-08 Alstom Technology Ltd Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner
FR2915989B1 (fr) * 2007-05-10 2011-05-20 Saint Gobain Emballage Injecteur mixte a bas nox
CN101852443B (zh) * 2010-03-15 2012-04-18 高海华 生物质锅炉加氧猛火燃尽装置
CN104185763B (zh) * 2012-03-29 2017-03-08 通用电器技术有限公司 燃气涡轮燃烧器
EP2722591A1 (de) 2012-10-22 2014-04-23 Alstom Technology Ltd Mehrfach-Kegelbrenner für eine Gasturbine
US8967985B2 (en) 2012-11-13 2015-03-03 Roper Pump Company Metal disk stacked stator with circular rigid support rings
CN104566371A (zh) * 2014-12-15 2015-04-29 昆山富凌能源利用有限公司 一种环保节能燃气灶芯
KR101990767B1 (ko) * 2017-08-09 2019-06-20 한국기계연구원 이중 원추형 가스터빈용 버너 및 이 버너에 공기를 공급하는 방법
CN109737450B (zh) * 2018-12-11 2019-12-03 北京航空航天大学 燃烧室燃烧振荡控制装置及燃烧室燃烧振荡控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707773C2 (de) * 1987-03-11 1996-09-05 Bbc Brown Boveri & Cie Einrichtung zur Prozesswärmeerzeugung
CH674561A5 (de) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
CH679692A5 (de) * 1989-04-24 1992-03-31 Asea Brown Boveri
EP0481111B1 (de) * 1990-10-17 1995-06-28 Asea Brown Boveri Ag Brennkammer einer Gasturbine
DE4316474A1 (de) * 1993-05-17 1994-11-24 Abb Management Ag Vormischbrenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
DE4426353A1 (de) * 1994-07-25 1996-02-01 Abb Research Ltd Brenner

Also Published As

Publication number Publication date
DE59606762D1 (de) 2001-05-17
US5807097A (en) 1998-09-15
JPH09189406A (ja) 1997-07-22
EP0783089A2 (de) 1997-07-09
JP3810502B2 (ja) 2006-08-16
CN1119560C (zh) 2003-08-27
DE19548853A1 (de) 1997-07-03
EP0783089A3 (de) 1998-11-11
CN1158397A (zh) 1997-09-03

Similar Documents

Publication Publication Date Title
EP0918191B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0675322B1 (de) Vormischbrenner
DE3222347C2 (de)
EP0321809B1 (de) Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
DE4426351B4 (de) Brennkammer für eine Gasturbine
EP0777081B1 (de) Vormischbrenner
DE19640198A1 (de) Vormischbrenner
DE19545310B4 (de) Vormischbrenner
WO2006069861A1 (de) Vormischbrenner mit mischstrecke
EP0783089B1 (de) Kegelbrenner
EP0641971B1 (de) Verfahren zum Betrieb eines Vormischbrenners und Vormischbrenner zur Durchführung des Verfahrens
EP0718561A2 (de) Brennkammer
EP0851172B1 (de) Brenner und Verfahren zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP0394800B1 (de) Vormischbrenner für die Heissgaserzeugung
EP0816759B1 (de) Vormischbrenner und Verfahren zum Betrieb des Brenners
EP0775869A2 (de) Vormischbrenner
EP0994300B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
DE19527453B4 (de) Vormischbrenner
EP0742411B1 (de) Luftzuströmung zu einer Vormischbrennkammer
EP0483554B1 (de) Verfahren zur Minimierung der NOx-Emissionen aus einer Verbrennung
EP0919768B1 (de) Brenner zum Betrieb eines Wärmeerzeugers
DE4412315B4 (de) Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine
EP0740108A2 (de) Brenner
EP0866268B1 (de) Verfahren zum Betrieb eines drallstabilisierten Brenners sowie Brenner zur Durchführung des Verfahrens
EP0961905B1 (de) Vorrichtung und verfahren zum verbrennen von brennstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19981022

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000515

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59606762

Country of ref document: DE

Date of ref document: 20010517

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010615

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606762

Country of ref document: DE

Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606762

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Effective date: 20130508

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606762

Country of ref document: DE

Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

Effective date: 20130508

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606762

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20130508

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606762

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20130508

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM (SWITZERLAND) LTD, CH

Effective date: 20131003

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151118

Year of fee payment: 20

Ref country code: DE

Payment date: 20151119

Year of fee payment: 20

Ref country code: IT

Payment date: 20151125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606762

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606762

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606762

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606762

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59606762

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161124