EP0780822A1 - Verfahren und Anordnung zum kontaktlosen Übertragen von Messwerten - Google Patents

Verfahren und Anordnung zum kontaktlosen Übertragen von Messwerten Download PDF

Info

Publication number
EP0780822A1
EP0780822A1 EP96203531A EP96203531A EP0780822A1 EP 0780822 A1 EP0780822 A1 EP 0780822A1 EP 96203531 A EP96203531 A EP 96203531A EP 96203531 A EP96203531 A EP 96203531A EP 0780822 A1 EP0780822 A1 EP 0780822A1
Authority
EP
European Patent Office
Prior art keywords
measuring point
base station
transmitter
receiver
evaluation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96203531A
Other languages
English (en)
French (fr)
Other versions
EP0780822B1 (de
Inventor
Siegfried Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0780822A1 publication Critical patent/EP0780822A1/de
Application granted granted Critical
Publication of EP0780822B1 publication Critical patent/EP0780822B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/04Arrangements for transmitting signals characterised by the use of a wireless electrical link using magnetically coupled devices

Definitions

  • the invention relates to a method for the contactless transmission of measured values and a corresponding arrangement for the contactless transmission of measured values.
  • Methods or arrangements for contactless transmission are preferably used for measured values from those measuring points which are not easily accessible and whose measured values are not required continuously. This includes, for example, many consumption data measurements and temperature measurements such as measuring a room temperature to control a heating system. Such methods or arrangements can also be used advantageously in the medical field, when physiological measured values from an implanted measuring point are required over a longer period of time.
  • a method and a device are known with which measured values from a remote measuring point can be detected by a reading device.
  • a reading device At the measuring point there is a sensor and an electronic interface circuit which is operated by a local energy source and which converts the measured values of the sensor into preferably digital measured data.
  • both the measuring point and the reading device are provided with a transmitting / receiving arrangement.
  • the interface circuit In order to consume as little energy as possible from the energy source, the interface circuit is switched inactive for longer periods of time and is only switched to receive periodically. If data are to be transmitted, the reading device sends out a data request signal, possibly several times in succession, until a request signal falls within a period in which the interface circuit is activated.
  • This interface circuit then initiates the transmission of a measured value or a sequence of measured values.
  • This transmission of data requires a relatively large amount of energy from the energy source, even if only for a short time, so that the energy source is heavily loaded and has a short lifespan, particularly in the case of frequent measurement data transmission.
  • EP 0 601 739 A2 discloses a method and an arrangement for data transmission from a measuring point with the aid of an interrogation circuit, the circuit of the measuring point and the interrogation circuit being coupled to one another via antennas.
  • the energy for operating the sensor and converting the measured values and for transmitting them is supplied via these antennas.
  • the measuring point therefore does not need its own energy source.
  • a measurement can only be carried out if the interface circuit is active.
  • practically only one measuring point can be detected in this way by an interface circuit.
  • this known method the case can no longer occur that a measurement or transmission of measurement data is no longer possible because an energy source is exhausted prematurely, since the query circuit is easily accessible or stationary and can therefore be provided with sufficiently large energy reserves.
  • the invention is based on the object of specifying a method or an arrangement with which the measurement data can be acquired by preferably a plurality of measurement points, these measurement points containing energy sources whose lifespan is as long as possible with small dimensions.
  • the energy source of the or each measuring point is used only for recording and converting the measured values, while for transmitting, ie for sending the measured data from the measuring point to a base station, the energy emitted by the base station is used.
  • the energy source of the measuring point for sending the data is not loaded and thus has a longer service life.
  • the base station in particular if it is used for the transmission of measured values from several measuring points, can be equipped with such a transmission power that even at a certain distance from the Sufficient energy is received in the measuring point, which can be used to transmit the measured values.
  • measurement values of the sensor are frequently converted into measurement data and temporarily stored in a memory of the evaluation circuit.
  • the data acquisition between the transmission processes must be fed by the energy source of the measuring point.
  • the stored measurement data are then transmitted for transmission from the memory via the transmitter / receiver of the measuring point to the base station.
  • the energy received in the measuring point from the base station can be used to transmit the measurement data by generating a direct voltage from this energy, which is taken up, for example, via a coil or a capacitor, which is used to feed the transmitter of the measuring point.
  • This transmitter then preferably transmits on a different frequency than the base station.
  • the base station and the measuring point are inductively coupled to each other via an antenna designed as a coil, that a controllable impedance is connected to the coil of the measuring point, which is controlled by the measurement data, and that the change in the base station of the Impedance is evaluated.
  • This principle is known in principle in data exchange arrangements with a portable data carrier and a fixed station, for example from DE 43 23 530 A1, which also describes the recharging of an energy store by means of the energy emitted by the fixed station.
  • the base station 1 contains a control arrangement 14 which is generally formed by a processor, in particular a microprocessor with further elements.
  • This control arrangement 14 controls a transmitter / receiver 12, which contains, inter alia, an oscillator and a demodulator. These are connected to a series resonant circuit comprising a series connection of a capacitor 11 and a coil 10, this coil representing an antenna.
  • this coil 10 is inductively coupled to a coil 20 of the measuring point 2, which represents the antenna of this measuring point.
  • the coil 20 forms a parallel resonant circuit with a capacitor 21, which is connected, inter alia, to a rectifier 22, which generates a DC voltage from the voltage induced in the coil 20. If this DC voltage has a sufficiently large value, a charging voltage for an energy store 26, which is shown here as an accumulator, is generated in a charging circuit 24 and the accumulator 26 is charged therewith.
  • the two voltage poles of the accumulator 26 are designated V S and V D and are connected to the correspondingly drawn supply voltage connections of two elements 32 and 34, which are explained below.
  • the parallel resonant circuit comprising the coil 20 and the capacitor 21 is also connected to a transmitter 30 and a receiver 28 of the measuring point 2.
  • the receiver 28 demodulates a signal with which the transmitter / receiver 12 of the base station 1 has modulated the vibration emitted via the series resonant circuit from the coil 10 and the capacitor 11. This modulation contains, in particular, a command for the measuring station 2 to subsequently transmit measurement data after this command.
  • This command is fed to an evaluation circuit 34 which can also be designed as a simple microprocessor and which is coupled to a sensor 36 which emits measured values.
  • a measured value can be represented, for example, by an analog electrical signal, and this is converted into digital measured data in the evaluation circuit 34.
  • the transmitter 30 contains the series connection of a switch and an impedance Z.
  • this impedance can be a resistor which, when the switch is closed, loads the resonant circuit from the coil 20 and the capacitor 21.
  • This additional load can be evaluated in the transmitter / receiver 12 of the base station 1, for example in that a higher current flows from the coil 10 and the capacitor 11 of the base station 2 in the series resonant circuit when there is an additional load in the measuring point 1 .
  • the impedance Z can also be designed, for example, as a capacitor, so that when the switch is closed, the resonance frequency of the parallel resonant circuit consisting of the coil 20 and the capacitor 21 and the capacitive impedance Z then adjusted to a different value. This can also be evaluated in the transmitter / receiver 12.
  • the series resonant circuit comprising the coil 10 and the capacitor 11 and the parallel resonant circuit comprising the coil 20 and the capacitor 21 are tuned to the substantially identical resonance frequency, at least when the switch in the transmitter 30 is open.
  • the transmission of the measured values from the measuring point 2 to the base station 1 thus takes place in that only one switch is closed or opened.
  • the control signal required to control the switch requires very little power, especially if the switch is designed as a field effect transistor. If the evaluation circuit 34 and the non-volatile memory 32 are also implemented in MOS technology, very little electrical energy from the accumulator 26 is required for their operation. As a result, it is possible that, even during the time in which the measuring point 2 is not coupled to the base station 1 or the latter does not emit a signal, measured values from the sensor 36 are repeatedly converted into measured data and stored in the memory 32 one after the other.
  • the memory 32 can also be used to store a program according to which the arrangement 34 operates.
  • This program or parts of programs can also be written into the memory 32 by the base station 1 via the receiver 28 of the measuring point 2 .
  • the evaluation program for the measured values of the sensor 36 can be changed during the operation of the measuring point.
  • the elements 22, 24 and 28 to 34 can expediently be combined in a single integrated circuit in order to achieve the smallest possible and inexpensive construction.
  • External memories can then be connected in addition to or even instead of the sensor 36 via the interface to the sensor 36 or even more favorably to an interface to the memory 32 which is led out of the integrated circuit, as a result of which the integrated circuit serves as an enlarged memory for a data exchange arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Near-Field Transmission Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

Eine nicht leicht zugängliche Meßstelle ist häufig mit einer Energiequelle versehen, die die Elemente für den Meßvorgang speist, insbesondere die Umsetzung eines analogen Meßsignals in digitale Meßdaten und ggf. deren Abspeicherung. Diese Meßdaten einer Meßstelle werden berührungslos zu einer Basisstation übertragen, sobald diese in die Nähe der Meßstelle gebracht wird und ein Signal aussendet. Um die Energiequelle möglichst wenig zu belasten, wird erfindungsgemäß vorgeschlagen, den Sender für die Übertragung der Meßdaten von der Meßstelle zur Basisstation nicht von der Energiequelle zu speisen, sondern dafür ein von der Basisstation ausgesandtes Signal zu verwenden. Aus diesem Signal kann in der Meßstelle beispielsweise eine Spannung zum Speisen des Senders gewonnen werden, während eine weitere Möglichkeit darin besteht, daß bei einer induktiven Kopplung zwischen Basisstation und Meßstelle über Schwingkreise an den Schwingkreis der Meßstelle eine Impedanz über einen Schalter angeschlossen wird, der von den übetragenden Meßdaten gesteuert wird. In der Basisstation kann diese Impedanzänderung beispielsweise durch Messung des Schwingkreisstroms ausgewertet werden. Das von der Basisstation ausgesandte Signal kann in der Meßstelle zusätzlich verwendet werden, um die Energiequelle wieder aufzuladen. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren zum kontaktlosen Übertragen von Meßwerten sowie eine entsprechende Anordnung zum kontaktlosen Übertragen von Meßwerten.
  • Verfahren bzw. Anordnungen zum kontaktlosen Übertragen werden bevorzugt für Meßwerte von solchen Meßstellen verwendet, die nicht leicht zugänglich sind und deren Meßwerte nicht kontinuierlich benötigt werden. Hierzu gehören beispielsweise viele Verbrauchsdatenmessungen sowie Temperaturmessungen wie die Messung einer Raumtemperatur zur Steuerung einer Heizungsanlage. Auch im medizinischen Bereich, wenn physiologische Meßwerte von einer implantierten Meßstelle über einen längeren Zeitraum benötigt werden, sind derartige Verfahren bzw. Anordnungen vorteilhaft einsetzbar.
  • Aus der WO 95-27272 ist ein Verfahren und ein Gerät bekannt, mit dem Meßwerte von einer entfernten Meßstelle von einem Lesegerät erfaßt werden können. An der Meßstelle ist ein Sensor und eine elektronische Schnittstellenschaltung vorhanden, die von einer örtlichen Energiequelle betrieben wird und die die Meßwerte des Sensors in vorzugsweise digitale Meßdaten umsetzt. Ferner sind sowohl Meßstelle als auch Lesegerät mit einer Sende/Empfangsanordnung versehen. Um möglichst wenig Energie aus der Energiequelle zu verbrauchen, wird die Schnittstellenschaltung während längerer Zeitabschnitte inaktiv geschaltet und nur periodisch empfangsbereit geschaltet. Wenn Daten übertragen werden sollen, sendet das Lesegerät ein Datenanforderungssignal aus, ggf. mehrmals hintereinander, bis ein Anforderungssignal in eine Zeitspanne fällt, in der die Schnittstellenschaltung aktiv geschaltet ist. Diese Schnittstellenschaltung veranlaßt daraufhin das Aussenden eines Meßwerts oder eine Folge von Meßwerten. Dieses Aussenden von Daten benötigt relativ viel Energie aus der Energiequelle, wenn auch nur kurze Zeit, so daß insbesondere bei einer häufigen Meßdatenübertragung die Energiequelle stark belastet wird und eine geringe Lebensdauer hat.
  • Aus der EP 0 601 739 A2 ist ein Verfahren und eine Anordnung zur Datenübertragung von einer Meßstelle mit Hilfe einer Abfrageschaltung bekannt, wobei die Schaltung der Meßstelle und die Abfrageschaltung über Antennen miteinander gekoppelt sind. Über diese Antennen wird die Energie zum Betreiben des Sensors und zum Umsetzen der Meßwerte und für deren Übertragung geliefert. Dabei benötigt die Meßstelle also keine eigene Energiequelle. Dabei kann eine Messung jedoch nur erfolgen, wenn die Schnittstellenschaltung aktiv ist. Außerdem kann auf diese Weise von einer Schnittstellenschaltung praktisch nur eine Meßstelle erfaßt werden. Andererseits kann bei diesem bekannten Verfahren nicht der Fall eintreten, daß eine Messung bzw. Übertragung von Meßdaten nicht mehr möglich ist, weil eine Energiequelle vorzeitig erschöpft ist, da die Abfrageschaltung leicht zugänglich bzw. stationär ist und daher mit ausreichend großen Energiereserven versehen werden kann.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren bzw. eine Anordnung anzugeben, mit der die Meßdaten von vorzugsweise mehreren Meßstellen erfaßt werden können, wobei diese Meßstellen Energiequellen enthalten, deren Lebensdauer bei kleinen Abmessungen möglichst lang ist.
  • Zur Lösung dieser Aufgabe wird die Energiequelle der bzw. jeder Meßstelle nur zum Aufnehmen und Umsetzen der Meßwerte verwendet, während zum Übertragen, d.h. zum Aussenden der Meßdaten von der Meßstelle zu einer Basisstation, die von der Basisstation ausgesendete Energie verwendet wird. Dadurch wird die Energiequelle der Meßstelle zum Aussenden der Daten nicht belastet und hat somit eine längere Lebensdauer. Die Basisstation, insbesondere wenn diese für die Übertragung von Meßwerten von mehreren Meßstellen verwendet wird, kann mit einer derartigen Sendeleistung ausgestattet werden, daß auch bei einer gewissen Entfernung von der Meßstelle in dieser noch genügend Energie empfangen wird, die zum Übertragen der Meßwerte verwendet werden kann.
  • Eine noch längere Lebensdauer der Energiequelle wird möglich, wenn in der Meßstelle die von der Basisstation empfangene Energie dazu verwendet wird, um der Energiequelle Energie zum Aufladen bzw. zum Nachladen zuzuführen. Bei entsprechender Sendedauer der Basisstation ist es dann möglich, die gesamte Energie, die zwischen zwei Übertragungsvorgängen in der Meßstelle verbraucht wurde, wieder in die Energiequelle nachzuladen, so daß ein nahezu zeitlich unbegrenzter Betrieb der Meßstelle auch bei sehr kleinen Energiequellen möglich ist, sofern diese ausreichend Energie speichern, die für die zwischen zwei Übertragungsvorgängen in der Meßstelle stattfindenden Funktionen notwendig ist.
  • Dies ist besonders dann wichtig, wenn die Zeitpunkte der Übertragungen von Meßdaten zeitlich relativ weit auseinander liegen und in den Zwischenzeiten häufig Meßwerte des Sensors in Meßdaten umgesetzt und in einem Speicher der Auswerteschaltung zwischengespeichert werden. Die Datenerfassung zwischen den Übertragungsvorgängen muß von der Energiequelle der Meßstelle gespeist werden. Die gespeicherten Meßdaten werden dann für eine Übertragung aus dem Speicher über den Sender/Empfänger der Meßstelle zur Basisstation übertragen.
  • Die Verwendung der in der Meßstelle von der Basisstation empfangenen Energie zum Aussenden der Meßdaten kann dadurch erfolgen, daß aus dieser Energie, die beispielsweise über eine Spule oder einen Kondensator aufgenommen wird, eine Gleichspannung erzeugt wird, die zum Speisen des Senders der Meßstelle verwendet wird. Dieser Sender sendet dann vorzugsweise auf einer anderen Frequenz als die Baisstation. Eine andere Möglichkeit besteht darin, wenn die Basisstation und die Meßstelle induktiv über je eine als Spule ausgeführte Antenne miteinander gekoppelt sind, daß an die Spule der Meßstelle eine steuerbare Impedanz angeschlossen ist, die von den Meßdaten gesteuert wird, und daß in der Basisstation die Änderung der Impedanz ausgewertet wird. Dieses Prinzip ist grundsätzlich bei Datenaustauschanordnungen mit einem tragbaren Datenträger und einer festen Station bekannt, beispielsweise aus der DE 43 23 530 Al, in der auch das Nachladen eines Energiespeichers mittels der von der festen Station ausgesendeten Energie beschrieben ist.
  • Die Erfindung wird anhand eines in der Figur dargestellten Ausführungsbeispiels näher erläutert.
  • Darin sind die für die Erfindung wichtigsten Elemente einer Basisstation 1 und einer Meßstelle 2 dargestellt. Die Basisstation 1 enthält eine Steueranordnung 14, die allgemein durch einen Prozessor, insbesondere einen Mikroprozessor mit weiteren Elementen gebildet wird. Diese Steueranordnung 14 steuert einen Sender/Empfänger 12, der u.a. einen Oszillator und einen Demodulator enthält. Diese sind an einen Reihenschwingkreis aus einer Reihenschaltung eines Kondensators 11 und einer Spule 10 angeschlossen, wobei diese Spule eine Antenne darstellt.
  • Diese Spule 10 ist während einer Übertragung von Meßwerten mit einer Spule 20 der Meßstelle 2 induktiv gekoppelt, die die Antenne dieser Meßstelle darstellt. Die Spule 20 bildet mit einem Kondensator 21 einen Parallelschwingkreis, der u.a. mit einem Gleichrichter 22 verbunden ist, der aus der in der Spule 20 induzierten Spannung eine Gleichspannung erzeugt. Wenn diese Gleichspannung einen genügend großen Wert hat, wird in einer Ladeschaltung 24 eine Ladespannung für einen Energiespeicher 26, der hier als Akkumulator dargestellt ist, erzeugt und der Akkumulator 26 damit aufgeladen. Die beiden Spannungspole des Akkumulators 26 sind mit VS und VD bezeichnet und mit den entsprechend gezeichneten Speisespannungsanschlüssen von zwei Elementen 32 und 34 verbunden, die nachfolgend erläutert werden.
  • Der Parallelschwingkreis aus der Spule 20 und dem Kondensator 21 ist ferner mit einem Sender 30 und einem Empfänger 28 der Meßstelle 2 verbunden. Der Empfänger 28 demoduliert ein Signal, mit dem der Sender/Empfänger 12 der Basisstation 1 die über den Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 ausgesendete Schwingung moduliert hat. Diese Modulation enthält insbesondere ein Kommando für die Meßstation 2, nachfolgend nach diesem Kommando Meßdaten zu übertragen.
  • Dieses Kommando wird einer Auswerteschaltung 34 zugeführt, die auch als einfacher Mikroprozessor ausgeführt sein kann und die mit einem Sensor 36 gekoppelt ist, der Meßwerte abgibt. Ein Meßwert kann beispielsweise durch ein analoges elektrisches Signal dargestellt sein, und dieses wird in der Auswerteschaltung 34 in digitale Meßdaten umgesetzt.
  • Diese Meßdaten werden einem nichtflüchtigen Speicher 32 zugeführt und darin eingeschrieben. Wenn von der Basisstation 1 ein Kommando zum Übertragen von Meßdaten im Empfänger 28 erkannt wird, steuert die Auswerteschaltung 34 den Speicher 32 an und liest die gespeicherten Meßwerte aus und führt diese dem Sender 30 zu. Der Sender 30 enthält hier die Reihenschaltung eines Schalters und einer Impedanz Z. Diese Impedanz kann im einfachsten Fall ein Widerstand sein, der bei geschlossenem Schalter den Schwingkreis aus der Spule 20 und dem Kondensator 21 belastet. Diese zusätzliche Belastung kann in dem Sender/Empfänger 12 der Basisstation 1 ausgewertet werden, beispielsweise dadurch, daß bei einer zusätzlichen Belastung in der Meßstelle 1 in dem Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 der Basisstation 2 ein höherer Strom fließt. Die Impedanz Z kann jedoch auch beispielsweise als Kondensator ausgeführt sein, so daß bei geschlossenem Schalter die Resonanzfrequenz des Parallelschwingkreises aus der Spule 20 und dem Kondensator 21 sowie der dann kapazitiven Impedanz Z auf einen anderen Wert abgestimmt wird. Auch dies kann in dem Sender/Empfänger 12 ausgewertet werden.
  • Es sei bemerkt, daß der Reihenschwingkreis aus der Spule 10 und dem Kondensator 11 sowie der Parallelschwingkreis aus der Spule 20 und dem Kondensator 21 zumindest bei offenem Schalter in dem Sender 30 auf die im wesentlichen gleiche Resonanzfrequenz abgestimmt sind.
  • Das Übertragen der Meßwerte von der Meßstelle 2 zur Basisstation 1 erfolgt also dadurch, daß lediglich ein Schalter geschlossen bzw. geöffnet wird. Das für die Steuerung des Schalters benötigte Steuersignal erfordert nur eine äußerst geringe Leistung, insbesondere wenn der Schalter als Feldeffekttransistor ausgeführt ist. Wenn auch die Auswerteschaltung 34 und der nichtflüchtige Speicher 32 in MOS-Technik ausgeführt sind, wird für deren Betrieb nur sehr wenig elektrische Energie aus dem Akkumulator 26 benötigt. Dadurch ist es möglich, daß auch während der Zeit, in der die Meßstelle 2 nicht mit der Basisstation 1 gekoppelt ist bzw. letztere kein Signal aussendet, wiederholt Meßwerte des Sensors 36 in Meßdaten umgesetzt und im Speicher 32 nacheinander abgespeichert werden. Dies kann zu wiederholten Zeitpunkten geschehen, wofür die Auswerteschaltung 34 dann mit einer zeitgesteuerten Meßschaltung versehen ist, oder wenn das vom Sensor 36 gelieferte Meßsignal bestimmte Bedingungen erfüllt, beispielsweise bestimmte Grenzwerte oder Änderungsgeschwindigkeiten überschreitet. Für die Anzahl der im Speicher 32 abgespeicherten Meßdaten sowie die gesamte Betriebsdauer der Meßstelle 2 zwischen zwei Übertragungen von Meßdaten zur Basisstation steht nahezu die gesamte Kapazität des Akkumulators 26 zur Verfügung, da er bei jeder Übertragung wieder auf seine maximale Kapazität aufgeladen werden kann, indem die Basisstation genügend lange ein Signal aussendet.
  • Der Speicher 32, genauer ein Teil davon, kann auch dazu verwendet werden, ein Programm zu speichern, nach dem die Anordnung 34 arbeitet. Dieses Programm oder Teile von Programmen können auch von der Basisstation 1 über den Empfänger 28 der Meßstelle 2 in den Speicher 32 eingeschrieben werden. Dadurch kann beispielsweise während des Betriebs der Meßstelle das Auswerteprogramm für die Meßwerte des Sensors 36 geändert werden.
  • Die Elemente 22, 24 sowie 28 bis 34 können zweckmäßig in einer einzigen integrierten Schaltung zusammengefaßt werden, um einen möglichst kleinen und kostengünstigen Aufbau zu verwirklichen. Über die Schnittstelle zum Sensor 36 oder noch günstiger an eine aus der integrierten Schaltung herausgeführten Schnittstelle zum Speicher 32 können dann externe Speicher zusätzlich oder sogar anstelle des Sensors 36 angeschlossen werden, wodurch die integrierte Schaltung als vergrößerter Speicher einer Datenaustauschanordnung dient.

Claims (11)

  1. Verfahren zum kontaktlosen Übertragen von Meßwerten wenigstens einer Meßstelle, an der die Meßwerte mittels eines Sensors gewonnen und in einer Auswerteschaltung, die von einer örtlichen Energiequelle betrieben wird, in Meßdaten umgesetzt werden, die zu einer Basisstation übertragen werden, wenn diese Basisstation in räumliche Nähe zur Meßstelle gebracht wird und ein Signal zur Meßstelle aussendet, dadurch gekennzeichnet,
    daß die Energiequelle nur zum Betrieb der Auswerteschaltung verwendet wird und daß die Meßdaten von der Meßstelle zur Basisstation mit Hilfe der Energie übertragen werden, die das von der Basisstation zur Meßstelle gesendete Signal enthält.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
    daß in der Meßstelle empfangene Energie aus dem von der Basisstation ausgesendeten Signal außerdem verwendet wird, um der Energiequelle zusätzliche Energie zuzuführen.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,
    daß die Auswerteschaltung zu bestimmten Zeitpunkten betrieben wird, um Meßsignale des Sensors in Meßdaten umzusetzen und diese Meßdaten in einem Speicher der Auswerteschaltung zwischenzuspeichern, wobei die Meßdaten aus dem Speicher unabhängig von ihrer Erfassungszeit zur Basisstation übertragen werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Basisstation und die Meßstelle induktiv über je eine Spule miteinander gekoppelt sind, dadurch gekennzeichnet,
    daß die Meßdaten durch Änderung einer mit der Spule der Meßstelle gekoppelten Impedanz und Auswertung der Impedanzänderung in der Basisstation übertragen werden.
  5. Anordnung zum kontaktlosen Übertragen von Meßwerten wenigstens einer Meßstelle mit
    für jede Meßstelle wenigstens einem Sensor und einer Auswerteschaltung zum Umsetzen der Meßwerte des Sensors in Meßdaten,
    einer Energiequelle und einem Sender/Empfänger zum Aussenden von Meßdaten und zum Empfangen von Signalen,
    wenigstens einer Basisstation mit einer Steuerschaltung und einem
    Sender/Empfänger zum Aussenden von Signalen an den Sender/Empfänger der Meßstelle und zum Empfangen von Meßdaten von der Meßstelle,
    wobei die Sender/Empfänger der Meßstelle und der Basisstation zeitweise miteinander gekoppelt sind und die Meßstelle erst bei Empfang des Signals der Basisstation Meßdaten aussendet, dadurch gekennzeichnet,
    daß die Energiequelle der Meßstelle mit einem Speisespannungsanschluß nur der Auswerteschaltung verbunden ist und daß der Sender der Meßstelle nur mittels der von der Basisstation empfangenen Energie die Meßdaten zur Basisstation überträgt.
  6. Anordnung nach Anspruch 6, dadurch gekennzeichnet,
    daß an dem Sender/Empfänger der Meßstelle eine Ladeschaltung angeschlossen ist, die bei Empfang von Energie im Empfänger eine Spannung zum Aufladen der Energiequelle abgibt.
  7. Anordnung nach Anspruch 5 oder 6, dadurch gekennzeichnet,
    daß die Auswerteschaltung eine Meßsteuerschaltung aufweist, um die Auswerteschaltung nur während vorgegebener erster Zeitspannen in einen Umsetzzustand und während der übrigen Zeitspannen in einen Energiesparzustand zu versetzen und daß die Auswerteschaltung einen Speicher zum Speichern von zu diesen in ersten Zeitspannen umgesetzten Meßdaten aufweist und daß ein Ausgang des Speichers mit dem Sender/Empfänger der Meßstelle gekoppelt ist.
  8. Anordnung nach einem der Ansprüche 5 bis 7, wobei der Sender/Empfänger sowohl der Meßstelle als auch der Basisstation eine als Spule ausgeführte Antenne aufweisen, die miteinander induktiv koppelbar sind, dadurch gekennzeichnet, daß an die Spule der Meßstelle eine von der Auswerteschaltung steuerbare Impedanz angeschlossen ist.
  9. Meßstelle für eine Anordnung nach einem der Ansprüche 5 bis 8, mit einem Sensor zum Abgeben von Meßwerten, einer Energiequelle, einer Auswerteschaltung zum Umsetzen der Meßwerte in Meßdaten und einem Sender/Empfänger zum Übertragen von Meßdaten und zum Empfangen von Signalen, dadurch gekennzeichnet,
    daß die Energiequelle nur mit einem Speisespannungsanschluß der Auswerteschaltung gekoppelt ist und daß der Sender/Empfänger eingerichtet ist, um Meßdaten nur bei Empfang eines Signals unter Verwendung der mit diesem Signal empfangenen Energie auszusenden.
  10. Meßstelle nach Anspruch 9, dadurch gekennzeichnet,
    daß ein Speicher zum Zwischenspeichern von Meßdaten vorgesehen ist, dessen Ausgang mit dem Sender/Empfänger gekoppelt ist, wobei die Auswerteschaltung, der Speicher und der Sender/Empfänger in einer integrierten Schaltung zusammengefaßt sind.
  11. Meßstelle nach Anspruch 10, dadurch gekennzeichnet,
    daß ein Datenanschluß des Speichers aus der integrierten Schaltung herausgeführt ist zum Anschluß weiterer Speicher.
EP96203531A 1995-12-20 1996-12-13 Verfahren und Anordnung zum kontaktlosen Übertragen von Messwerten Expired - Lifetime EP0780822B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19547684 1995-12-20
DE19547684A DE19547684A1 (de) 1995-12-20 1995-12-20 Verfahren und Anordnung zum kontaktlosen Übertragen

Publications (2)

Publication Number Publication Date
EP0780822A1 true EP0780822A1 (de) 1997-06-25
EP0780822B1 EP0780822B1 (de) 2003-07-09

Family

ID=7780728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96203531A Expired - Lifetime EP0780822B1 (de) 1995-12-20 1996-12-13 Verfahren und Anordnung zum kontaktlosen Übertragen von Messwerten

Country Status (4)

Country Link
US (1) US5859873A (de)
EP (1) EP0780822B1 (de)
JP (1) JP3842854B2 (de)
DE (2) DE19547684A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127656A1 (de) * 2008-04-17 2009-10-22 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
WO2012065968A1 (de) * 2010-11-19 2012-05-24 Endress+Hauser Gmbh+Co.Kg MESSGERÄT ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG MINDESTENS EINER PROZESSGRÖßE
WO2016202730A1 (de) * 2015-06-15 2016-12-22 Sentronic GmbH Gesellschaft für optische Meßsysteme Messeinrichtung zur bestimmung physikalischer eigenschaften, chemischer eigenschaften, biologischer eigenschaften und/oder von stoffen der umgebung wenigstens eines aufnehmers oder des wenigstens einen aufnehmers als bestandteil der messeinrichtung
US12003902B2 (en) 2015-06-15 2024-06-04 Sentronic Gmbh Gesellschaft Fur Optische Messsysteme System and method for transmitting information

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970393A (en) * 1997-02-25 1999-10-19 Polytechnic University Integrated micro-strip antenna apparatus and a system utilizing the same for wireless communications for sensing and actuation purposes
JP2001291181A (ja) * 2000-04-07 2001-10-19 Ricoh Elemex Corp センサ装置及びセンサシステム
EP1275207B1 (de) * 2000-04-18 2005-06-29 Schleifring und Apparatebau GmbH Anordnung zur übertragung elektrischer energie bzw. eines signals
JP3839224B2 (ja) * 2000-06-29 2006-11-01 株式会社山武 集積化センサ素子及びこれを用いた計測システム
US6668618B2 (en) 2001-04-23 2003-12-30 Agilent Technologies, Inc. Systems and methods of monitoring thin film deposition
US6992594B2 (en) * 2001-05-18 2006-01-31 Douglas Dudley Pipeline monitoring system
DE10255741A1 (de) * 2002-11-28 2004-06-09 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Modularer Messumformer mit galvanisch getrennten Messfühler
US7142114B2 (en) * 2003-09-30 2006-11-28 General Electric Company Non-contact patient temperature measurement
EP1844299B1 (de) * 2005-01-25 2011-10-05 Nxp B.V. Sensorenschaltungsarray, steuervorrichtung zum betreiben eines sensorenschaltungsarrays und sensorensystem
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20060283252A1 (en) * 2005-06-17 2006-12-21 Honeywell International Inc. Passive acoustic wave sensor system
CN101395617B (zh) * 2006-03-10 2012-05-30 株式会社半导体能源研究所 半导体器件及其操作方法
WO2007105606A1 (en) 2006-03-15 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102006051900A1 (de) 2006-10-31 2008-05-08 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
JP5412034B2 (ja) 2006-12-26 2014-02-12 株式会社半導体エネルギー研究所 半導体装置
JP2009271920A (ja) * 2008-04-30 2009-11-19 St Microelectronics (Rousset) Sas 能動トランスポンダの再充電
DE102008057751B4 (de) 2008-11-17 2011-03-10 Langerfeldt, Michael, Dr. Dr. Vorrichtung und Verfahren zum Lastmanagement
US7990103B2 (en) * 2008-11-24 2011-08-02 Sony Ericsson Mobile Communications Ab Portable electronic apparatus, and battery charging system comprising an antenna arrangement for a radio receiver
DE102011079827A1 (de) * 2011-07-26 2013-01-31 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur Kommunikation mittels eines Transformators
DE112019003276A5 (de) 2018-06-29 2021-03-18 Brusa Elektronik Ag Induktive leistungsübertragung mit schwingkreis und verfahren zum betrieb der vorrichtung

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138609A (en) * 1983-04-19 1984-10-24 Emi Ltd Electronic counter for mechanical drive
US4571599A (en) 1984-12-03 1986-02-18 Xerox Corporation Ink cartridge for an ink jet printer
USRE32572E (en) 1985-04-03 1988-01-05 Xerox Corporation Thermal ink jet printhead and process therefor
US4833491A (en) 1988-06-15 1989-05-23 Xerox Corporation Thermal ink jet printer adapted to operate in monochrome, highlight or process color modes
EP0457306A2 (de) * 1990-05-18 1991-11-21 Gas-, Elektrizitäts- Und Wasserwerke Köln Ag. Verfahren zum Auslesen und/oder Einlesen von Daten an einem mikroprozessorgesteuerten Datenspeicher, insbesondere eines registrierenden Mess- oder Zählgerätes sowie Einrichtung zur Durchführung des Verfahrens
US5138332A (en) 1990-10-29 1992-08-11 Xerox Corporation Ink jet printing apparatus
US5221397A (en) 1992-11-02 1993-06-22 Xerox Corporation Fabrication of reading or writing bar arrays assembled from subunits
US5289211A (en) 1991-04-15 1994-02-22 Ing. S. Olivetti & C., S.p.A. Ink detecting device for a liquid-ink printing element
WO1994011851A1 (de) * 1992-11-10 1994-05-26 Micro-Sensys Gmbh Miniaturisierter telemetriebaustein
EP0601739A2 (de) 1992-11-25 1994-06-15 Simmonds Precision Products Inc. Datenverarbeitungsstrukturen und Methoden
US5332812A (en) 1986-03-10 1994-07-26 Board Of Regents, The University Of Texas System Solid-phase substrate containing modified heparin
DE4323530A1 (de) 1993-07-14 1995-01-19 Philips Patentverwaltung Datenaustauschanordnung
US5414452A (en) 1992-06-08 1995-05-09 Ing. C. Olivetti & C., S.P.A. Recognition of ink expiry in an ink jet printing head
WO1995027272A1 (en) 1994-04-04 1995-10-12 Motorola Inc. Method and apparatus for activating and accessing remote meter interface devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837556A (en) * 1985-04-15 1989-06-06 Kabushiki Kaisha Nihon Denzai Kogyo Kenkyusho Signal transmission device
GB8627241D0 (en) * 1986-11-14 1986-12-17 Chubb Lips Nederland Bv Identification token
NL8700861A (nl) * 1987-04-13 1988-11-01 Nedap Nv Lees-, schrijfsysteem met miniatuur informatiedrager.
DE3722728C1 (en) * 1987-07-09 1988-12-08 Ulrich Schoberer Work meter for a crank drive

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138609A (en) * 1983-04-19 1984-10-24 Emi Ltd Electronic counter for mechanical drive
US4571599A (en) 1984-12-03 1986-02-18 Xerox Corporation Ink cartridge for an ink jet printer
USRE32572E (en) 1985-04-03 1988-01-05 Xerox Corporation Thermal ink jet printhead and process therefor
US5332812A (en) 1986-03-10 1994-07-26 Board Of Regents, The University Of Texas System Solid-phase substrate containing modified heparin
US4833491A (en) 1988-06-15 1989-05-23 Xerox Corporation Thermal ink jet printer adapted to operate in monochrome, highlight or process color modes
EP0457306A2 (de) * 1990-05-18 1991-11-21 Gas-, Elektrizitäts- Und Wasserwerke Köln Ag. Verfahren zum Auslesen und/oder Einlesen von Daten an einem mikroprozessorgesteuerten Datenspeicher, insbesondere eines registrierenden Mess- oder Zählgerätes sowie Einrichtung zur Durchführung des Verfahrens
US5138332A (en) 1990-10-29 1992-08-11 Xerox Corporation Ink jet printing apparatus
US5289211A (en) 1991-04-15 1994-02-22 Ing. S. Olivetti & C., S.p.A. Ink detecting device for a liquid-ink printing element
US5414452A (en) 1992-06-08 1995-05-09 Ing. C. Olivetti & C., S.P.A. Recognition of ink expiry in an ink jet printing head
US5221397A (en) 1992-11-02 1993-06-22 Xerox Corporation Fabrication of reading or writing bar arrays assembled from subunits
WO1994011851A1 (de) * 1992-11-10 1994-05-26 Micro-Sensys Gmbh Miniaturisierter telemetriebaustein
EP0601739A2 (de) 1992-11-25 1994-06-15 Simmonds Precision Products Inc. Datenverarbeitungsstrukturen und Methoden
DE4323530A1 (de) 1993-07-14 1995-01-19 Philips Patentverwaltung Datenaustauschanordnung
WO1995027272A1 (en) 1994-04-04 1995-10-12 Motorola Inc. Method and apparatus for activating and accessing remote meter interface devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127656A1 (de) * 2008-04-17 2009-10-22 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
WO2012065968A1 (de) * 2010-11-19 2012-05-24 Endress+Hauser Gmbh+Co.Kg MESSGERÄT ZUR BESTIMMUNG UND/ODER ÜBERWACHUNG MINDESTENS EINER PROZESSGRÖßE
CN103221789A (zh) * 2010-11-19 2013-07-24 恩德莱斯和豪瑟尔两合公司 用于确定和/或监测至少一个过程变量的测量设备
CN103221789B (zh) * 2010-11-19 2015-05-27 恩德莱斯和豪瑟尔两合公司 用于确定和/或监测至少一个过程变量的测量设备
WO2016202730A1 (de) * 2015-06-15 2016-12-22 Sentronic GmbH Gesellschaft für optische Meßsysteme Messeinrichtung zur bestimmung physikalischer eigenschaften, chemischer eigenschaften, biologischer eigenschaften und/oder von stoffen der umgebung wenigstens eines aufnehmers oder des wenigstens einen aufnehmers als bestandteil der messeinrichtung
US12003902B2 (en) 2015-06-15 2024-06-04 Sentronic Gmbh Gesellschaft Fur Optische Messsysteme System and method for transmitting information

Also Published As

Publication number Publication date
JP3842854B2 (ja) 2006-11-08
EP0780822B1 (de) 2003-07-09
DE19547684A1 (de) 1997-06-26
US5859873A (en) 1999-01-12
DE59610590D1 (de) 2003-08-14
JPH09215228A (ja) 1997-08-15

Similar Documents

Publication Publication Date Title
EP0780822B1 (de) Verfahren und Anordnung zum kontaktlosen Übertragen von Messwerten
DE60209386T2 (de) Kontaktloser integrierter schaltungsleser mit einem aktiv-bereitschafts-modus mit niedriger stromaufnahme
EP1583415B1 (de) Energieautarker sensor
EP0441237B1 (de) Tragbares feldprogrammierbares Detektierplättchen
DE60028101T2 (de) Reifendruck- Fernüberwachungssystem und Verfahren
EP0518913B1 (de) Vorrichtung mit einer signalempfangseinheit zum orten von golfbällen
DE69634844T2 (de) Verwendung eines &#34;Murmel&#34;-Modus in Güterordnung zur Datenerfassung von Frachtsensoren
EP0801358A2 (de) Verfahren zum Betrieb eines Systems aus einer Basisstation und einem damit kontaktlos gekoppelten Transponders sowie dafür geeignetes System
EP2567254B1 (de) Netzknoten für ein drahtloses sensornetz
DD269478A5 (de) Elektronisches datenverarbeitungssystem
DE10145498C2 (de) Mobiles Transponder-Lesegerät und Netzwerk zum Überwachen von transpondertragenden Objekten
EP0634729A2 (de) Datenaustauschanordnung
EP2425378A1 (de) Vorrichtung und verfahren zur energieversorgung eines rfid-bauteils
DE19621439A1 (de) Verfahren zur Leistungssteuerung und Vorrichtung für die Verwendung in einer Funkkommunikationsvorrichtung
DE60130816T2 (de) RFID-Transponder
DE4213065C2 (de)
DD292722A5 (de) Kennzeichnungssystem fuer viehzuchtfarmen
DE102011080192A1 (de) Verfahren und Vorrichtung zur Übertragung von Sensordaten eines implantierbaren Sensors auf ein externes datenverarbeitendes Gerät
EP2290588B1 (de) Verfahren zum Betrieb eines Transponders für die Radiofrequenz-Identifikation (RFID) und RFID-Transponder
DE102005017805B4 (de) Tragbare Vorrichtung für Steuersystem von Fahrzeugvorrichtungen
EP0446735A2 (de) Vorrichtung zum Überwachen von Objekten
EP2160852B1 (de) Verfahren zur übertragung von daten und datenübertragungsvorrichtung zur fernsteuerung und/oder fernabfrage
EP3607663A1 (de) Vorrichtung mit energie abhängiger sendeleistung
EP1479031B1 (de) Verfahren zur steuerung der energiever- sorgung eines mobilen datenspeichers, verwendung des verfahrens in einem identifikationssystem mit zumindest einem mobilen datenspeicher und einem schreib-/lesegerät
EP3667637B1 (de) Sensorsystem zur überwachung einer belegung eines warenregals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971229

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS PATENTVERWALTUNG GMBH

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59610590

Country of ref document: DE

Date of ref document: 20030814

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20030807

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

26N No opposition filed

Effective date: 20040414

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091221

Year of fee payment: 14

Ref country code: GB

Payment date: 20091209

Year of fee payment: 14

Ref country code: FR

Payment date: 20091221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091222

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101213

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59610590

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101213

REG Reference to a national code

Ref country code: FR

Ref legal event code: AU

Effective date: 20120126