EP0780629A2 - Burner for a heat generator - Google Patents

Burner for a heat generator Download PDF

Info

Publication number
EP0780629A2
EP0780629A2 EP96810804A EP96810804A EP0780629A2 EP 0780629 A2 EP0780629 A2 EP 0780629A2 EP 96810804 A EP96810804 A EP 96810804A EP 96810804 A EP96810804 A EP 96810804A EP 0780629 A2 EP0780629 A2 EP 0780629A2
Authority
EP
European Patent Office
Prior art keywords
flow
burner according
swirl generator
tube
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96810804A
Other languages
German (de)
French (fr)
Other versions
EP0780629B1 (en
EP0780629A3 (en
Inventor
Hans Peter Knöpfel
Thomas Ruch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0780629A2 publication Critical patent/EP0780629A2/en
Publication of EP0780629A3 publication Critical patent/EP0780629A3/en
Application granted granted Critical
Publication of EP0780629B1 publication Critical patent/EP0780629B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a burner according to the preamble of claim 1.
  • a cone-shaped burner known as a double-cone burner, consisting of several shells, is known for generating a closed swirl flow in the cone head, which becomes unstable due to the increasing swirl along the cone tip and changes into an annular swirl flow with backflow in the core.
  • Fuels such as gaseous fuels, are injected along the channels formed by the individual adjacent shells, also called air inlet slots, and mixed homogeneously with the air before the combustion starts by ignition at the stagnation point of the backflow zone or backflow bubble, which is used as a flame holder.
  • Liquid fuels are preferably injected via a central nozzle on the burner head and then evaporate in the cone cavity.
  • the invention seeks to remedy this.
  • the invention is based on the object of proposing, in a burner of the type mentioned, precautions by which a perfect premixing of fuels of different types is achieved and by which an operationally reliable and optimal flame positioning is achieved.
  • the proposed burner has a swirl generator on the head side and upstream of a mixing section, which can preferably be designed such that the basic aerodynamic principles of the so-called double-cone burner according to EP-A1-0 321 809 are used. In principle, however, the use of an axial or radial swirl generator is also possible.
  • the mixing section itself preferably consists of a tubular mixing element, hereinafter referred to as the mixing tube, which permits perfect premixing of fuels of various types.
  • the flow from the swirl generator is introduced seamlessly into the mixing tube: this is done by means of a transition geometry which consists of transition channels which are excluded in the initial phase of this mixing tube, and which transfer the flow into the subsequent effective flow cross-section of the mixing tube.
  • This low-loss flow introduction between the swirl generator and the mixing tube initially prevents the immediate formation of a backflow zone at the outlet of the swirl generator.
  • the swirl strength in the swirl generator is selected via its geometry so that the swirl does not burst in the mixing tube, but further downstream at the combustion chamber inlet, the length of this mixing tube being dimensioned such that there is sufficient mixing quality for all types of fuel. If, for example, the swirl generator used is constructed according to the basic principles of the double-cone burner, the swirl strength results from the design of the corresponding cone angle, the air inlet slots and their number.
  • the axial speed profile has a pronounced maximum on the axis and thus prevents reignitions in this area.
  • the axial speed drops towards the wall.
  • various precautions are provided: For example, the entire speed level can be raised by using a mixing tube with a sufficiently small diameter.
  • Another possibility is to only increase the speed in the outer region of the mixing tube, in that a small part of the combustion air flows into the mixing tube via an annular gap or through filming holes downstream of the transition channels.
  • transition channels mentioned for introducing the flow from the swirl generator into the mixing tube it can be said that the course of these transition channels can be designed to narrow or widen in a spiral fashion, in accordance with the effective subsequent flow cross-section of the mixing tube.
  • Part of the pressure loss that may be generated can be compensated for by attaching a diffuser to the end of the mixing tube.
  • a venturi section can also be provided in this area or upstream.
  • the combustion chamber connects with a cross-sectional jump.
  • a central backflow zone is formed here, the properties of which are those of a flame holder.
  • the generation of a stable backflow zone requires a sufficiently high number of swirls in the mixing tube. However, if this is initially undesirable, stable return flow zones can be created at the end of the pipe by supplying small, strongly swirled air volumes, 5-20% of the total air volume.
  • Fig. 1 shows the overall structure of a burner.
  • a swirl generator 100 is effective, the design of which is shown and described in more detail in the following FIGS. 2-5.
  • This swirl generator 100 is a conical structure which is acted upon tangentially several times by a tangentially flowing combustion air flow 115.
  • the flow formed here is seamlessly transferred to a transition piece 200 using a transition geometry provided downstream of the swirl generator 100, in such a way that no separation areas can occur there.
  • the configuration of this transition geometry is described in more detail in FIG. 6.
  • This transition piece 200 is extended on the outflow side of the transition geometry by a tube 20, both parts forming the actual mixing tube 220, also called the mixing section, of the burner.
  • the mixing tube 220 can consist of a single piece, that is to say then that the transition piece 200 and tube 20 are fused into a single coherent structure, the characteristics of each part being retained. If the transition piece 200 and the tube 20 are created from two parts, they are connected by a bushing ring 10, the same bushing ring 10 serving as an anchoring surface for the swirl generator 100 on the head side. Such a bushing ring 10 also has the advantage that different mixing tubes can be used.
  • the actual combustion chamber 30 is located on the outflow side of the tube 20 and is here only symbolized by the flame tube.
  • the mixing tube 220 fulfills the condition that a defined mixing section is provided downstream of the swirl generator 100, in which a perfect premixing of fuels of different types is achieved.
  • This mixing section that is to say the mixing tube 220, furthermore enables loss-free flow guidance, so that it is also in operative connection cannot initially form a backflow zone with the transition geometry, which means that the length of the mixing tube 220 can influence the quality of the mixture for all types of fuel.
  • this mixing tube 220 has yet another property, which consists in the fact that in the mixing tube 220 itself the axial speed profile has a pronounced maximum on the axis, so that the flame cannot be re-ignited from the combustion chamber. However, it is correct that with such a configuration this axial speed drops towards the wall.
  • the mixing tube 220 is provided with a number of regularly or irregularly distributed bores 21 of various cross-sections and directions in the flow and circumferential direction, through which an amount of air flows into the interior of the mixing tube 220 and along the wall in the Inducing an increase in speed in the sense of filming.
  • Another possibility of achieving the same effect is that the flow cross section of the mixing tube 220 is narrowed on the downstream side of the transition channels 201, which form the transition geometry already mentioned, as a result of which the overall speed level within the mixing tube 220 is increased.
  • these bores 21 run at an acute angle with respect to the burner axis 60.
  • the outlet of the transition channels 201 corresponds to the narrowest flow cross-section of the mixing tube 220.
  • the transition channels 201 mentioned therefore bridge the respective cross-sectional difference without adversely affecting the flow formed. If the selected precaution triggers an intolerable pressure loss when guiding the pipe flow 40 along the mixing pipe 220, this can be remedied by providing a diffuser (not shown in the figure) at the end of the mixing pipe.
  • a combustion chamber 30 adjoins the end of the mixing tube 220, a cross-sectional jump occurring between the two flow cross sections. Only here does one form central backflow zone 50, which has the properties of a flame holder.
  • a flow-like edge zone forms in this cross-sectional jump during operation, in which vortex detachments arise due to the prevailing negative pressure, this leads to an increased ring stabilization of the backflow zone 50.
  • the combustion chamber 30 has a number of openings 31 through which an air quantity flows directly into the cross-sectional jump flows, and there contributes the others below that the ring stabilization of the backflow zone 50 is strengthened.
  • the generation of a stable backflow zone 50 also requires a sufficiently high number of twists in a pipe. If this is initially undesirable, stable backflow zones can be created by supplying small, strongly swirled air flows at the pipe end, for example through tangential openings. It is assumed here that the amount of air required for this is about 5-20% of the total amount of air.
  • FIG. 3 is used at the same time as FIG. 2. Furthermore, in order not to make this FIG. 2 unnecessarily confusing, the guide plates 121a, 121b shown schematically according to FIG. 3 have only been hinted at in it. In the description of FIG. 2, reference is made below to the figures mentioned as required.
  • the first part of the burner according to FIG. 1 forms the swirl generator 100 shown in FIG. 2. It consists of two hollow, conical partial bodies 101, 102, which are nested one inside the other.
  • the number of conical partial bodies can of course be greater than two, as shown in FIGS. 4 and 5; this depends on how each further will be explained in more detail below, depending on the mode of operation of the entire burner. In certain operating constellations, it is not excluded to provide a swirl generator consisting of a single spiral.
  • the offset of the respective central axis or longitudinal symmetry axes 201b, 202b of the conical partial bodies 101, 102 to one another creates a tangential channel, that is to say an air inlet slot 119, 120 (FIG.
  • the conical shape of the partial bodies 101, 102 shown in the flow direction has a specific fixed angle.
  • the partial bodies 101, 102 can have an increasing or decreasing cone inclination in the direction of flow, similar to a trumpet or. Tulip. The last two forms are not included in the drawing, since they can be easily understood by a person skilled in the art.
  • the two tapered partial bodies 101, 102 each have a cylindrical starting part 101a, 102a, which, similarly to the conical partial bodies 101, 102, also run offset from one another, so that the tangential air inlet slots 119, 120 are present over the entire length of the swirl generator 100.
  • a nozzle 103 is preferably accommodated for a liquid fuel 112, the injection 104 of which coincides approximately with the narrowest cross section of the conical cavity 114 formed by the conical partial bodies 101, 102.
  • the injection capacity and the type of this nozzle 103 depend on the given parameters of the respective burner.
  • the swirl generator 100 can be designed in a purely conical manner, that is to say without cylindrical starting parts 101a, 102a.
  • the conical sub-bodies 101, 102 each further have a fuel line 108, 109, which are arranged along the tangential air inlet slots 119, 120 and are provided with injection openings 117, through which a gaseous fuel is preferably provided 113 is injected into the combustion air 115 flowing through there, as is to be symbolized by the arrows 116.
  • These fuel lines 108, 109 are preferably placed at the latest at the end of the tangential inflow, before entering the cone cavity 114, in order to obtain an optimal air / fuel mixture.
  • the fuel 112 brought in through the nozzle 103 is normally a liquid fuel, and it is readily possible to form a mixture with another medium. This fuel 112 is injected into the cone cavity 114 at an acute angle.
  • a cone-shaped fuel spray 105 is thus formed from the nozzle 103 and is enclosed by the rotating combustion air 115 flowing in tangentially.
  • the concentration of the injected fuel 112 is continuously reduced by the inflowing combustion air 115 to mix in the direction of evaporation.
  • a gaseous fuel 113 is introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120.
  • the combustion air 115 is additionally preheated or, for example, enriched with a recirculated flue gas or exhaust gas, this provides lasting support the vaporization of the liquid fuel 112 before this mixture flows into the downstream stage.
  • the design of the swirl generator 100 is furthermore excellently suitable for changing the size of the tangential air inlet slots 119, 120, with which a relatively large operational bandwidth can be recorded without changing the overall length of the swirl generator 100.
  • the partial bodies 101, 102 can also be displaced relative to one another in another plane, as a result of which an overlap thereof can even be provided. It is also possible to interleave the partial bodies 101, 102 in a spiral manner by counter-rotating movement. It is thus possible to vary the shape, size and configuration of the tangential air inlet slots 119, 120 as desired, with which the swirl generator 100 can be used universally without changing its overall length.
  • FIG. 3 now shows the geometric configuration of the guide plates 121a, 121b. They have a flow introduction function, which, depending on their length, extend the respective end of the tapered partial bodies 101, 102 in the direction of flow relative to the combustion air 115.
  • the channeling of the combustion air 115 into the cone cavity 114 can be optimized by opening or closing the guide plates 121a, 121b about a pivot point 123 located in the region of the entry of this channel into the cone cavity 114, in particular this is necessary if the original gap size of the tangential air inlet slots 119, 120 should be changed dynamically.
  • these dynamic arrangements can also be provided statically, in that guide baffles as required form a fixed component with the tapered partial bodies 101, 102.
  • the swirl generator 100 can also be operated without baffles, or other aids can be provided for this.
  • the swirl generator 100 is now composed of four partial bodies 130, 131, 132, 133.
  • the associated longitudinal symmetry axes for each partial body are marked with the letter a.
  • this configuration it should be said that, due to the lower swirl strength generated in this way and in cooperation with a correspondingly enlarged slot width, it is ideally suited to prevent the vortex flow from bursting in the mixing tube on the downstream side of the swirl generator, so that the mixing tube can best fulfill the role intended for it .
  • FIG. 5 differs from FIG. 4 in that the partial bodies 140, 141, 142, 143 have a blade profile shape which is provided to provide a certain flow. Otherwise the mode of operation of the swirl generator has remained the same.
  • the admixture of the fuel 116 in the combustion air flow 115 takes place from the inside of the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the longitudinal axes of symmetry to the individual partial bodies are identified by the letter a.
  • the transition geometry is constructed for a swirl generator 100 with four partial bodies, corresponding to FIG. 4 or 5. Accordingly, the transition geometry as a natural extension of the upstream partial body four transition channels 201, whereby the conical quarter surface of the partial body is extended until it the wall of the tube 20 or. of the mixing tube 220 cuts.
  • the same considerations also apply if the swirl generator is constructed from a principle other than that described under FIG. 2.
  • the surface of the individual transition channels 201 which runs downward in the direction of flow has a shape which runs in a spiral in the direction of flow and which describes a crescent shape, corresponding to FIG The fact that in the present case the flow cross section of the transition piece 200 widens conically in the flow direction.
  • the swirl angle of the transition channels 201 in the flow direction is selected such that the pipe flow then still has a sufficiently large distance up to the cross-sectional jump at the combustion chamber inlet in order to achieve a perfect premixing with the injected fuel. Furthermore, the above-mentioned measures also increase the axial speed on the mixing tube wall downstream of the swirl generator. The transition geometry and the measures in the area of the mixing tube bring about a significant increase in the axial speed profile towards the center of the mixing tube, so that the risk of early ignition is decisively counteracted.
  • Fig. 7 shows the tear-off edge already mentioned, which is formed at the burner outlet.
  • the flow cross-section of the tube 20 receives a transition radius R in this area, the size of which basically depends on the flow within the tube 20.
  • This radius R is selected so that the flow is applied to the wall and the swirl number can increase sharply.
  • the size of the radius R can be quantitatively defined so that it is> 10% of the inner diameter d of the tube 20.
  • the backflow bladder 50 now increases enormously.
  • This radius R extends to the exit plane of the tube 20, the angle ⁇ between the beginning and end of the curvature being ⁇ 90 °.
  • the tear-off edge A runs along one leg of the angle ⁇ into the interior of the tube 20 and thus forms a tear-off step S with respect to the front point of the tear-off edge A, the depth of which is> 3 mm.
  • the edge running parallel to the exit plane of the tube 20 can be brought back to the exit plane level using a curved course.
  • the angle ⁇ ' which extends between the tangent of the tear-off edge A and perpendicular to the exit plane of the tube 20, is the same size as the angle ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Gas Burners (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The burner has a mixer section and a swirl generator. The mixer section (220) is positioned downstream from the swirl generator (100) and has, within a first part of the section (200) transfer ducts (201) running in the direction of flow for transmitting a current (40) formed in the swirl generator into a pipe situated downstream from the transfer ducts. The outlet plane of the pipe to the combustion chamber (30) has a break edge (A) for stabilising and enlarging a reverse current zone (50) formed downstream. The number of transfer ducts in the mixed section matches the number of art currents formed by the swirl generator. The pipe situated after the transfer ducts has openings (21) for injecting an air current into the pipe.

Description

Technisches GebietTechnical field

Die vorliegende Erfindung betrifft einen Brenner gemäss Oberbegriff des Anspruchs 1.The present invention relates to a burner according to the preamble of claim 1.

Stand der TechnikState of the art

Aus EP-B1-0 321 809 ist ein aus mehreren Schalen bestehender kegelförmiger Brenner, sogenannter Doppelkegelbrenner, zur Erzeugung einer geschlossenen Drallströmung im Kegelkopf bekanntgeworden, welche aufgrund des zunehmenden Dralls entlang der Kegelspitze instabil wird und in eine annulare Drallströmung mit Rückströmung im Kern übergeht. Brennstoffe, wie beispielsweise gasförmige Brennstoffe, werden entlang der durch die einzelnen benachbarten Schalen gebildeten Kanäle, auch Lufteintrittsschlitze genannt, eingedüst und homogen mit der Luft vermischt, bevor die Verbrennung durch Zündung am Staupunkt der Rückströmzone oder Rückströmblase, welche als Flammenhalter benutzt wird, einsetzt. Flüssige Brennstoffe werden vorzugsweise über eine zentrale Düse am Brennerkopf eingedüst und verdampfen dann im Kegelhohlraum. Unter gasturbinentypischen Bedingungen findet die Zündung dieser flüssigen Brennstoffe schon früh in der Nähe der Brennstoffdüse statt, womit nicht zu umgehen ist, dass die NOx-Werte gerade aufgrund dieser mangelnden Vormischung kräftig ansteigen, was beispielsweise das Einspritzen von Wasser notwendig macht. Darüber hinaus musste festgestellt werden, dass der Versuch, wasserstoffhaltige Gase ähnlich wie Erdgas zu verbrennen, zu Frühzündproblemen an den Gasbohrungen mit anschliessender Ueberhitzung des Brenners geführt haben. Hiergegen hat man Abhilfe gesucht, indem am Brenneraustritt eine spezielle Injektionsmethode für solche gasförmige Brennstoffe eingeführt worden ist, deren Resultate aber nicht ganz zu befriedigen vermochten.From EP-B1-0 321 809, a cone-shaped burner, known as a double-cone burner, consisting of several shells, is known for generating a closed swirl flow in the cone head, which becomes unstable due to the increasing swirl along the cone tip and changes into an annular swirl flow with backflow in the core. Fuels, such as gaseous fuels, are injected along the channels formed by the individual adjacent shells, also called air inlet slots, and mixed homogeneously with the air before the combustion starts by ignition at the stagnation point of the backflow zone or backflow bubble, which is used as a flame holder. Liquid fuels are preferably injected via a central nozzle on the burner head and then evaporate in the cone cavity. Under typical gas turbine conditions, the ignition of these liquid fuels takes place early in the vicinity of the fuel nozzle, which is unavoidable that the NOx values rise sharply precisely because of this lack of premixing, for example it is necessary to inject water. In addition, it had to be determined that the attempt to burn hydrogen-containing gases similar to natural gas led to pre-ignition problems at the gas wells with subsequent overheating of the burner. This has been remedied by introducing a special injection method for such gaseous fuels at the burner outlet, but the results of which have not been entirely satisfactory.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Vorkehrungen vorzuschlagen, durch welche eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt und durch welche eine betriebssichere und optimale Flammenpositionierung erreicht wird.The invention seeks to remedy this. The invention, as characterized in the claims, is based on the object of proposing, in a burner of the type mentioned, precautions by which a perfect premixing of fuels of different types is achieved and by which an operationally reliable and optimal flame positioning is achieved.

Der vorgeschlagene Brenner weist kopfseitig und stromauf einer Mischstrecke einen Drallerzeuger auf, der vorzugsweise dahingehend ausgelegt werden kann, dass die aerodynamischen Grundprinzipien des sogenannten Doppelkegelbrenners nach EP-A1-0 321 809 benutzt werden. Grundsätzlich ist aber auch der Einsatz eines axialen oder radialen Drallerzeugers möglich. Die Mischstrecke selbst besteht vorzugsweise aus einem rohrförmigen Mischelement, im folgenden Mischrohr genannt, welches ein perfektes Vormischen von Brennstoffen verschiedener Art gestattet.The proposed burner has a swirl generator on the head side and upstream of a mixing section, which can preferably be designed such that the basic aerodynamic principles of the so-called double-cone burner according to EP-A1-0 321 809 are used. In principle, however, the use of an axial or radial swirl generator is also possible. The mixing section itself preferably consists of a tubular mixing element, hereinafter referred to as the mixing tube, which permits perfect premixing of fuels of various types.

Die Strömung aus dem Drallerzeuger wird nahtlos in das Mischrohr eingeleitet: Dies geschieht durch eine Uebergangsgeometrie, die aus Uebergangskanälen besteht, welche in der Anfangsphase dieses Mischrohres ausgenommen sind, und welche die Strömung in den anschliessenden effektiven Durchflussquerschnitt des Mischrohres überführen. Diese verlustarme Strömungseinleitung zwischen Drallerzeuger und Mischrohr verhindert zunächst die unmittelbare Bildung einer Rückströmzone am Ausgang des Drallerzeugers.The flow from the swirl generator is introduced seamlessly into the mixing tube: this is done by means of a transition geometry which consists of transition channels which are excluded in the initial phase of this mixing tube, and which transfer the flow into the subsequent effective flow cross-section of the mixing tube. This low-loss flow introduction between the swirl generator and the mixing tube initially prevents the immediate formation of a backflow zone at the outlet of the swirl generator.

Zunächst wird die Drallstärke im Drallerzeuger über seine Geometrie so gewählt, dass das Aufplatzen des Wirbels nicht im Mischrohr, sondern weiter stromab am Brennkammereintritt erfolgt, wobei die Länge dieses Mischrohres so dimensioniert ist, dass sich eine ausreichende Mischungsgüte für alle Brennstoffarten ergibt. Ist beispielsweise der eingesetzte Drallerzeuger nach den Grundzügen des Doppelkegelbrenners aufgebaut, so ergibt sich die Drallstärke aus der Auslegung des entsprechenden Kegelwinkels, der Lufteintrittsschlitze und deren Anzahl.First, the swirl strength in the swirl generator is selected via its geometry so that the swirl does not burst in the mixing tube, but further downstream at the combustion chamber inlet, the length of this mixing tube being dimensioned such that there is sufficient mixing quality for all types of fuel. If, for example, the swirl generator used is constructed according to the basic principles of the double-cone burner, the swirl strength results from the design of the corresponding cone angle, the air inlet slots and their number.

Im Mischrohr besitzt das Axialgeschindigkeits-Profil ein ausgeprägtes Maximum auf der Achse und verhindert dadurch Rückzündungen in diesem Bereich. Die Axialgeschwindigkeit fällt zur Wand hin ab. Um Rückzündungen auch in diesem Bereich zu unterbinden, werden verschiedene Vorkehrungen vorgesehen: Beispielsweise zum einen lässt sich das gesamte Geschwindigkeitsniveau durch Verwendung eines Mischrohres mit einem ausreichend kleinen Durchmesser anheben. Eine andere Möglichkeit besteht darin, nur die Geschwindigkeit im Aussenbereich des Mischrohres zu erhöhen, indem ein kleiner Teil der Verbrennungsluft über einen Ringspalt oder durch Filmlegungsbohrungen stromab der Uebergangskanäle in das Mischrohr einströmt.In the mixing tube, the axial speed profile has a pronounced maximum on the axis and thus prevents reignitions in this area. The axial speed drops towards the wall. In order to prevent reignitions in this area as well, various precautions are provided: For example, the entire speed level can be raised by using a mixing tube with a sufficiently small diameter. Another possibility is to only increase the speed in the outer region of the mixing tube, in that a small part of the combustion air flows into the mixing tube via an annular gap or through filming holes downstream of the transition channels.

Was die erwähnten Uebergangskanäle zur Einleitung der Strömung aus dem Drallerzeuger in das Mischrohr betrifft, so ist zu sagen, dass der Verlauf dieser Uebergangskanäle spiralförmig verengend oder erweiternd ausgebildet sein kann, entsprechend dem effektiven anschliessenden Durchflussquerschnitt des Mischrohres.As for the transition channels mentioned for introducing the flow from the swirl generator into the mixing tube, it can be said that the course of these transition channels can be designed to narrow or widen in a spiral fashion, in accordance with the effective subsequent flow cross-section of the mixing tube.

Ein Teil des allenfalls erzeugten Druckverlustes kann durch Anbringung eines Diffusors am Ende des Mischrohres wettgemacht werden. In diesem Bereich oder stromauf kann auch eine Venturistrecke vorgesehen werden.Part of the pressure loss that may be generated can be compensated for by attaching a diffuser to the end of the mixing tube. A venturi section can also be provided in this area or upstream.

Am Ende des Mischrohres schliesst sich die Brennkammer mit einem Querschnittssprung an. Hier bildet sich eine zentrale Rückströmzone, deren Eigenschaften die eines Flammenhalters sind.
Die Erzeugung einer stabilen Rückströmzone erfordert eine ausreichend hohe Drallzahl im Mischrohr. Ist aber eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner, stark verdrallter Luftmengen, 5-20% der Gesamtluftmenge, am Rohrende erzeugt werden.
At the end of the mixing tube, the combustion chamber connects with a cross-sectional jump. A central backflow zone is formed here, the properties of which are those of a flame holder.
The generation of a stable backflow zone requires a sufficiently high number of swirls in the mixing tube. However, if this is initially undesirable, stable return flow zones can be created at the end of the pipe by supplying small, strongly swirled air volumes, 5-20% of the total air volume.

In Verbindung mit dem erwähnten Querschnittssprung wird das Ende des Mischrohres mit einer Abrisskante ausgebildet, welche der Rückströmzone eine hohe räumliche Stabilität verleiht. Allgemein lassen sich durch die erwähnten Massnahmen folgende Vorteile erzielen:

  • a) Stabile Flammenposition;
  • b) Tiefere Schadstoff-Emissionen (Co, UHC, NOx);
  • c) Minimierung der Pulsationen;
  • d) Vollständiger Ausbrand;
  • e) Grosse Betriebsbereich-Abdeckung;
  • f) Gute Querzündung zwischen den verschiedenen Brennern, insbesondere bei gestufter Lasterstellung, bei welcher die Brenner untereinander interdependent betrieben werden;
  • g) Die Flamme kann der entsprechenden Brennkammergeometrie angepasst werden;
  • h) Kompakte Bauweise;
  • i) Verbesserte Mischung der Strömungsmedien;
  • j) Verbesserter "Patternfaktor" der Temperaturverteilung in der Brennkammer (= ausgeglichener Temperaturprofil der Brennkammerströmung).
In connection with the mentioned cross-sectional jump, the end of the mixing tube is formed with a tear-off edge, which gives the backflow zone a high spatial stability. In general, the measures mentioned can achieve the following advantages:
  • a) Stable flame position;
  • b) Lower pollutant emissions (Co, UHC, NOx);
  • c) minimization of pulsations;
  • d) complete burnout;
  • e) Large operating area coverage;
  • f) Good cross-ignition between the different burners, especially with stepped load position, in which the burners are operated interdependently with one another;
  • g) The flame can be adapted to the corresponding combustion chamber geometry;
  • h) compact design;
  • i) Improved mixing of the flow media;
  • j) Improved "pattern factor" of the temperature distribution in the combustion chamber (= balanced temperature profile of the combustion chamber flow).

Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.Advantageous and expedient developments of the task solution according to the invention are characterized in the further claims.

Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.Exemplary embodiments of the invention are explained in more detail below with reference to the drawings. All features which are not essential for the direct understanding of the invention have been omitted. Identical elements are provided with the same reference symbols in the various figures. The direction of flow of the media is indicated by arrows.

Kurze Bezeichnung der ZeichnungenBrief description of the drawings

Es zeigt:

Fig. 1
einen Brenner mit anschliessender Brennkammer,
Fig. 2
einen Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
Fig. 3
einen Schnitt durch den 2-Schalen-Drallerzeuger, nach Fig. 2,
Fig. 4
einen Schnitt durch einen 4-Schalen-Drallerzeuger,
Fig. 5
einen Schitt durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind,
Fig. 6
eine Darstellung der Form der Uebergangsgeometrie zwischen Drallerzeuger und Mischrohr und
Fig. 7
eine Abrisskante zur räumlichen Stabilisierung der Rückströmzone.
It shows:
Fig. 1
a burner with subsequent combustion chamber,
Fig. 2
a swirl generator in a perspective view, cut open accordingly,
Fig. 3
3 shows a section through the 2-shell swirl generator, according to FIG. 2,
Fig. 4
a section through a 4-shell swirl generator,
Fig. 5
a step through a swirl generator, the shells of which are profiled in a scoop shape,
Fig. 6
a representation of the shape of the transition geometry between swirl generator and mixing tube and
Fig. 7
a tear-off edge for spatial stabilization of the backflow zone.

Wege zur Ausführung der Erfindung, gewerbliche VerwertbarkeitWays of carrying out the invention, commercial usability

Fig. 1 zeigt den Gesamtaufbau eines Brenners. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 2-5 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das tangential mehrfach von einem tangential einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiguration dieser Uebergangsgeometrie wird unter Fig. 6 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Rohr 20 verlängert, wobei beide Teile das eigentliche Mischrohr 220, auch Mischstrecke genannt, des Brenners bilden. Selbstverständlich kann das Mischrohr 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und Rohr 20 zu einem einzigen zusammenhängenden Gebilde verschmolzen sind, wobei die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Rohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Verankerungsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Rohres 20 befindet sich die eigentliche Brennkammer 30, welche hier lediglich durch das Flammrohr versinnbildlicht ist. Das Mischrohr 220 erfüllt die Bedingung, dass stromab des Drallerzeugers 100 eine definierte Mischstrecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt wird. Diese Mischstrecke, also das Mischrohr 220, ermöglicht des weiteren eine verlustfreie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone bilden kann, womit über die Länge des Mischrohres 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Dieses Mischrohres 220 hat aber noch eine andere Eigenschaft, welche darin besteht, dass im Mischrohr 220 selbst das Axialgeschwindigkeits-Profil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer nicht möglich ist. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axialgeschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich zu unterbinden, wird das Mischrohr 220 in Strömungs- und Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilten Bohrungen 21 verschiedenster Querschnitte und Richtungen versehen, durch welche eine Luftmenge in das Innere des Mischrohres 220 strömt, und entlang der Wand im Sinne einer Filmlegung eine Erhöhung der Geschwindigkeit induzieren. Eine andere Möglichkeit die gleiche Wirkung zu erzielen, besteht darin, dass der Durchflussquerschnitt des Mischrohres 220 abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 220 angehoben wird. In der Figur verlaufen diese Bohrungen 21 unter einem spitzen Winkel gegenüber der Brennerachse 60. Des weiteren entspricht der Auslauf der Uebergangskanäle 201 dem engsten Durchflussquerschnitt des Mischrohres 220. Die genannten Uebergangskanäle 201 überbrücken demnach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen. Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 220 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende des Mischrohres ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 220 schliesst sich eine Brennkammer 30 an, wobei zwischen den beiden Durchflussquerschnitten ein Querschnittssprung vorhanden ist. Erst hier bildet sich eine zentrale Rückströmzone 50, welche die Eigenschaften eines Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Stirnseitig weist die Brennkammer 30 eine Anzahl Oeffnungen 31 auf, durch welche eine Luftmenge direkt in den Querschnittssprung strömt, und dort unteren anderen dazu beiträgt, dass die Ringstabilisation der Rückströmzone 50 gestärkt wird. Danebst darf nicht unerwähnt bleiben, dass die Erzeugung einer stabilen Rückströmzone 50 auch eine ausreichend hohe Drallzahl in einem Rohr erfordert. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt. Was die Ausgestaltung der Abrisskante am Ende des Mischrohres 220 betrifft, wird auf die Beschreibung unter Fig. 7 verwiesen.Fig. 1 shows the overall structure of a burner. Initially, a swirl generator 100 is effective, the design of which is shown and described in more detail in the following FIGS. 2-5. This swirl generator 100 is a conical structure which is acted upon tangentially several times by a tangentially flowing combustion air flow 115. The flow formed here is seamlessly transferred to a transition piece 200 using a transition geometry provided downstream of the swirl generator 100, in such a way that no separation areas can occur there. The configuration of this transition geometry is described in more detail in FIG. 6. This transition piece 200 is extended on the outflow side of the transition geometry by a tube 20, both parts forming the actual mixing tube 220, also called the mixing section, of the burner. Of course, the mixing tube 220 can consist of a single piece, that is to say then that the transition piece 200 and tube 20 are fused into a single coherent structure, the characteristics of each part being retained. If the transition piece 200 and the tube 20 are created from two parts, they are connected by a bushing ring 10, the same bushing ring 10 serving as an anchoring surface for the swirl generator 100 on the head side. Such a bushing ring 10 also has the advantage that different mixing tubes can be used. The actual combustion chamber 30 is located on the outflow side of the tube 20 and is here only symbolized by the flame tube. The mixing tube 220 fulfills the condition that a defined mixing section is provided downstream of the swirl generator 100, in which a perfect premixing of fuels of different types is achieved. This mixing section, that is to say the mixing tube 220, furthermore enables loss-free flow guidance, so that it is also in operative connection cannot initially form a backflow zone with the transition geometry, which means that the length of the mixing tube 220 can influence the quality of the mixture for all types of fuel. However, this mixing tube 220 has yet another property, which consists in the fact that in the mixing tube 220 itself the axial speed profile has a pronounced maximum on the axis, so that the flame cannot be re-ignited from the combustion chamber. However, it is correct that with such a configuration this axial speed drops towards the wall. In order to prevent re-ignition in this area, the mixing tube 220 is provided with a number of regularly or irregularly distributed bores 21 of various cross-sections and directions in the flow and circumferential direction, through which an amount of air flows into the interior of the mixing tube 220 and along the wall in the Inducing an increase in speed in the sense of filming. Another possibility of achieving the same effect is that the flow cross section of the mixing tube 220 is narrowed on the downstream side of the transition channels 201, which form the transition geometry already mentioned, as a result of which the overall speed level within the mixing tube 220 is increased. In the figure, these bores 21 run at an acute angle with respect to the burner axis 60. Furthermore, the outlet of the transition channels 201 corresponds to the narrowest flow cross-section of the mixing tube 220. The transition channels 201 mentioned therefore bridge the respective cross-sectional difference without adversely affecting the flow formed. If the selected precaution triggers an intolerable pressure loss when guiding the pipe flow 40 along the mixing pipe 220, this can be remedied by providing a diffuser (not shown in the figure) at the end of the mixing pipe. A combustion chamber 30 adjoins the end of the mixing tube 220, a cross-sectional jump occurring between the two flow cross sections. Only here does one form central backflow zone 50, which has the properties of a flame holder. If a flow-like edge zone forms in this cross-sectional jump during operation, in which vortex detachments arise due to the prevailing negative pressure, this leads to an increased ring stabilization of the backflow zone 50. At the end, the combustion chamber 30 has a number of openings 31 through which an air quantity flows directly into the cross-sectional jump flows, and there contributes the others below that the ring stabilization of the backflow zone 50 is strengthened. In addition, it should not go unmentioned that the generation of a stable backflow zone 50 also requires a sufficiently high number of twists in a pipe. If this is initially undesirable, stable backflow zones can be created by supplying small, strongly swirled air flows at the pipe end, for example through tangential openings. It is assumed here that the amount of air required for this is about 5-20% of the total amount of air. With regard to the configuration of the tear-off edge at the end of the mixing tube 220, reference is made to the description under FIG. 7.

Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 2 mindestens Fig. 3 herangezogen wird. Des weiteren, um diese Fig. 2 nicht unnötig unübersichtlich zu gestalten, sind in ihr die nach den Figur 3 schematisch gezeigten Leitbleche 121a, 121b nur andeutungsweise aufgenommen worden. Im folgenden wird bei der Beschreibung von Fig. 2 nach Bedarf auf die genannten Figuren hingewiesen.In order to better understand the structure of the swirl generator 100, it is advantageous if at least FIG. 3 is used at the same time as FIG. 2. Furthermore, in order not to make this FIG. 2 unnecessarily confusing, the guide plates 121a, 121b shown schematically according to FIG. 3 have only been hinted at in it. In the description of FIG. 2, reference is made below to the figures mentioned as required.

Der erste Teil des Brenners nach Fig. 1 bildet den nach Fig. 2 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohlen kegelförmigen Teilkörpern 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 4 und 5 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betreibungsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 201b, 202b der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Kanal, d.h. einen Lufteintrittsschlitz 119, 120 (Fig. 3), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen Anfangsteil 101a, 102a, die ebenfalls, analog den kegeligen Teilkörpern 101, 102, versetzt zueinander verlaufen, so dass die tangentialen Lufteintrittsschlitze 119, 120 über die ganze Länge des Drallerzeugers 100 vorhanden sind. Im Bereich des zylindrischen Anfangsteils ist eine Düse 103 vorzugsweise für einen flüssigen Brennstoff 112 untergebracht, deren Eindüsung 104 in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammenfällt. Die Eindüsungskapazität und die Art dieser Düse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Selbstverständlich kann der Drallerzeuger 100 rein kegelig, also ohne zylindrische Anfangsteile 101a, 102a, ausgeführt sein. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, plaziert, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Düse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Düse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen wird. In axialer Richtung wird die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung Richtung Verdampfung abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt. Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende nicht gezeigte Zuführung eines axialen Verbrennungsluftstromes verändern. Eine entsprechende Drallerzeugung verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohr. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.The first part of the burner according to FIG. 1 forms the swirl generator 100 shown in FIG. 2. It consists of two hollow, conical partial bodies 101, 102, which are nested one inside the other. The number of conical partial bodies can of course be greater than two, as shown in FIGS. 4 and 5; this depends on how each further will be explained in more detail below, depending on the mode of operation of the entire burner. In certain operating constellations, it is not excluded to provide a swirl generator consisting of a single spiral. The offset of the respective central axis or longitudinal symmetry axes 201b, 202b of the conical partial bodies 101, 102 to one another creates a tangential channel, that is to say an air inlet slot 119, 120 (FIG. 3), through which the combustion air 115 in Interior of the swirl generator 100, ie flows into the cone cavity 114 of the same. The conical shape of the partial bodies 101, 102 shown in the flow direction has a specific fixed angle. Of course, depending on the operational use, the partial bodies 101, 102 can have an increasing or decreasing cone inclination in the direction of flow, similar to a trumpet or. Tulip. The last two forms are not included in the drawing, since they can be easily understood by a person skilled in the art. The two tapered partial bodies 101, 102 each have a cylindrical starting part 101a, 102a, which, similarly to the conical partial bodies 101, 102, also run offset from one another, so that the tangential air inlet slots 119, 120 are present over the entire length of the swirl generator 100. In the area of the cylindrical initial part, a nozzle 103 is preferably accommodated for a liquid fuel 112, the injection 104 of which coincides approximately with the narrowest cross section of the conical cavity 114 formed by the conical partial bodies 101, 102. The injection capacity and the type of this nozzle 103 depend on the given parameters of the respective burner. Of course, the swirl generator 100 can be designed in a purely conical manner, that is to say without cylindrical starting parts 101a, 102a. The conical sub-bodies 101, 102 each further have a fuel line 108, 109, which are arranged along the tangential air inlet slots 119, 120 and are provided with injection openings 117, through which a gaseous fuel is preferably provided 113 is injected into the combustion air 115 flowing through there, as is to be symbolized by the arrows 116. These fuel lines 108, 109 are preferably placed at the latest at the end of the tangential inflow, before entering the cone cavity 114, in order to obtain an optimal air / fuel mixture. As mentioned, the fuel 112 brought in through the nozzle 103 is normally a liquid fuel, and it is readily possible to form a mixture with another medium. This fuel 112 is injected into the cone cavity 114 at an acute angle. A cone-shaped fuel spray 105 is thus formed from the nozzle 103 and is enclosed by the rotating combustion air 115 flowing in tangentially. In the axial direction, the concentration of the injected fuel 112 is continuously reduced by the inflowing combustion air 115 to mix in the direction of evaporation. If a gaseous fuel 113 is introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120. If the combustion air 115 is additionally preheated or, for example, enriched with a recirculated flue gas or exhaust gas, this provides lasting support the vaporization of the liquid fuel 112 before this mixture flows into the downstream stage. The same considerations also apply if liquid fuels should be supplied via lines 108, 109. When designing the conical partial bodies 101, 102 with respect to the cone angle and the width of the tangential air inlet slots 119, 120, strict limits must be observed per se so that the desired flow field of the combustion air 115 can be set at the outlet of the swirl generator 100. In general, it can be said that reducing the tangential air inlet slots 119, 120 already favors the faster formation of a backflow zone in the area of the swirl generator. The axial speed within the swirl generator 100 cannot be changed by a corresponding one change the supply of an axial combustion air flow shown. A corresponding swirl generation prevents the formation of flow separations within the mixing tube downstream of the swirl generator 100. The design of the swirl generator 100 is furthermore excellently suitable for changing the size of the tangential air inlet slots 119, 120, with which a relatively large operational bandwidth can be recorded without changing the overall length of the swirl generator 100. Of course, the partial bodies 101, 102 can also be displaced relative to one another in another plane, as a result of which an overlap thereof can even be provided. It is also possible to interleave the partial bodies 101, 102 in a spiral manner by counter-rotating movement. It is thus possible to vary the shape, size and configuration of the tangential air inlet slots 119, 120 as desired, with which the swirl generator 100 can be used universally without changing its overall length.

Aus Fig. 3 geht nunmehr die geometrische Konfiguration der Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden. Ebenfalls kann der Drallerzeuger 100 auch ohne Leitbleche betrieben werden, oder es können andere Hilfsmittel hierfür vogesehen werden.3 now shows the geometric configuration of the guide plates 121a, 121b. They have a flow introduction function, which, depending on their length, extend the respective end of the tapered partial bodies 101, 102 in the direction of flow relative to the combustion air 115. The channeling of the combustion air 115 into the cone cavity 114 can be optimized by opening or closing the guide plates 121a, 121b about a pivot point 123 located in the region of the entry of this channel into the cone cavity 114, in particular this is necessary if the original gap size of the tangential air inlet slots 119, 120 should be changed dynamically. Of course, these dynamic arrangements can also be provided statically, in that guide baffles as required form a fixed component with the tapered partial bodies 101, 102. Likewise, the swirl generator 100 can also be operated without baffles, or other aids can be provided for this.

Fig. 4 zeigt gegenüber Fig. 3, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.4 shows that the swirl generator 100 is now composed of four partial bodies 130, 131, 132, 133. The associated longitudinal symmetry axes for each partial body are marked with the letter a. Regarding this configuration, it should be said that, due to the lower swirl strength generated in this way and in cooperation with a correspondingly enlarged slot width, it is ideally suited to prevent the vortex flow from bursting in the mixing tube on the downstream side of the swirl generator, so that the mixing tube can best fulfill the role intended for it .

Fig. 5 unterscheidet sich gegenüber Fig. 4 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.FIG. 5 differs from FIG. 4 in that the partial bodies 140, 141, 142, 143 have a blade profile shape which is provided to provide a certain flow. Otherwise the mode of operation of the swirl generator has remained the same. The admixture of the fuel 116 in the combustion air flow 115 takes place from the inside of the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades. Here, too, the longitudinal axes of symmetry to the individual partial bodies are identified by the letter a.

Fig. 6 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 4 oder 5, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf, wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Rohres 20 resp. des Mischrohres 220 schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 2 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf, welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitert. Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.6 shows the transition piece 200 in a three-dimensional view. The transition geometry is constructed for a swirl generator 100 with four partial bodies, corresponding to FIG. 4 or 5. Accordingly, the transition geometry as a natural extension of the upstream partial body four transition channels 201, whereby the conical quarter surface of the partial body is extended until it the wall of the tube 20 or. of the mixing tube 220 cuts. The same considerations also apply if the swirl generator is constructed from a principle other than that described under FIG. 2. The surface of the individual transition channels 201 which runs downward in the direction of flow has a shape which runs in a spiral in the direction of flow and which describes a crescent shape, corresponding to FIG The fact that in the present case the flow cross section of the transition piece 200 widens conically in the flow direction. The swirl angle of the transition channels 201 in the flow direction is selected such that the pipe flow then still has a sufficiently large distance up to the cross-sectional jump at the combustion chamber inlet in order to achieve a perfect premixing with the injected fuel. Furthermore, the above-mentioned measures also increase the axial speed on the mixing tube wall downstream of the swirl generator. The transition geometry and the measures in the area of the mixing tube bring about a significant increase in the axial speed profile towards the center of the mixing tube, so that the risk of early ignition is decisively counteracted.

Fig. 7 zeigt die bereits angesprochene Abrisskante, welche am Brenneraustritt gebildet ist. Der Durchflussquerschnitt des Rohres 20 erhält in diesem Bereich einen Uebergangsradius R, dessen Grösse grundsätzlich von der Strömung innerhalb des Rohres 20 abhängt. Dieser Radius R wird so gewählt, dass sich die Strömung an die Wand anlegt und so die Drallzahl stark ansteigen lässt. Quantitativ lässt sich die Grösse des Radius R so definieren, dass dieser > 10% des Innendurchmessers d des Rohres 20 beträgt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmblase 50 gewaltig. Dieser Radius R verläuft bis zur Austrittsebene des Rohres 20, wobei der Winkel ß zwischen Anfang und Ende der Krümmung < 90° beträgt. Entlang des einen Schenkels des Winkels ß verläuft die Abrisskante A ins Innere des Rohres 20 und bildet somit eine Abrissstufe S gegenüber dem vorderen Punkt der Abrisskante A, deren Tiefe > 3 mm beträgt. Selbstverständlich kann die hier parall zur Austrittsebene des Rohres 20 verlaufende Kante anhand eines gekrümmten Verlaufs wieder auf Stufe Austrittsebene gebracht werden. Der Winkel β', der sich zwischen Tangente der Abrisskante A und Senkrechte zur Austrittsebene des Rohres 20 ausbreitet, ist gleich gross wie Winkel β. Auf die Vorteile dieser Ausbildung ist bereits oben unter dem Kapitel "Darstellung der Erfindung" näher eingegangen.Fig. 7 shows the tear-off edge already mentioned, which is formed at the burner outlet. The flow cross-section of the tube 20 receives a transition radius R in this area, the size of which basically depends on the flow within the tube 20. This radius R is selected so that the flow is applied to the wall and the swirl number can increase sharply. The size of the radius R can be quantitatively defined so that it is> 10% of the inner diameter d of the tube 20. Compared to a flow without a radius, the backflow bladder 50 now increases enormously. This radius R extends to the exit plane of the tube 20, the angle β between the beginning and end of the curvature being <90 °. The tear-off edge A runs along one leg of the angle β into the interior of the tube 20 and thus forms a tear-off step S with respect to the front point of the tear-off edge A, the depth of which is> 3 mm. Of course, the edge running parallel to the exit plane of the tube 20 can be brought back to the exit plane level using a curved course. The angle β ', which extends between the tangent of the tear-off edge A and perpendicular to the exit plane of the tube 20, is the same size as the angle β. On the Advantages of this training have already been discussed in more detail above under the chapter "Presentation of the Invention".

BezugszeichenlisteReference list

1010th
BuchenringBeech ring
2020th
Rohrpipe
2121
Bohrungen, OeffnungenHoles, openings
3030th
BrennkammerCombustion chamber
3131
OeffnungenOpenings
4040
Strömung, Rohrströmung im MischrohrFlow, pipe flow in the mixing pipe
5050
Rückströmzone, RückströmblaseBackflow zone, backflow bubble
6060
BrennerachseBurner axis
100100
DrallerzeugerSwirl generator
101, 102101, 102
TeilkörperPartial body
101a, 102b101a, 102b
Zylindrische AnfangsteileCylindrical starting parts
101b, 102b101b, 102b
LängssymmetrieachsenLongitudinal symmetry axes
103103
BrennstoffdüseFuel nozzle
104104
BrennstoffeindüsungFuel injection
105105
Brennstoffspray (Brennstoffeindüsungsprofil)Fuel spray (fuel injection profile)
108, 109108, 109
BrennstoffleitungenFuel lines
112112
Flüssiger BrennstoffLiquid fuel
113113
Gasförmiger BrennstoffGaseous fuel
114114
KegelhohlraumCone cavity
115115
Verbrennungsluft (Verbrennungsluftstrom)Combustion air (combustion air flow)
116116
Brennstoff-Eindüsung aus den Leitungen 108, 109Fuel injection from lines 108, 109
117117
BrennstoffdüsenFuel nozzles
119, 120119, 120
Tangentiale LufteintrittsschlitzeTangential air inlet slots
121a, 121b121a, 121b
LeitblecheBaffles
123123
Drehpunkt der LeitblechePivot point of the guide plates
130, 131, 132, 133130, 131, 132, 133
TeilkörperPartial body
131a, 131a, 132a,-133a131a, 131a, 132a, -133a
LängssymmetrieachsenLongitudinal symmetry axes
140, 141, 142, 143140, 141, 142, 143
Schaufelprofilförmige TeilkörperVane-shaped partial body
140a, 141a, 142a, 143a140a, 141a, 142a, 143a
LängssymmetrieachsenLongitudinal symmetry axes
200200
UebergangsstückTransition piece
201201
UebergangskanäleTransition channels
220220
MischrohrMixing tube
dd
Innendurchmesser des Rohres 20Inner diameter of the tube 20
RR
UebergangsradiusTransition radius
TT
Tangentiale der AbrisskanteTangent line of the tear-off edge
AA
AbrisskanteTear-off edge
SS
AbrissstufeDemolition level
ββ
Uebergangswinkel von RTransition angle from R
β'β '
Winkel zwischen T und AAngle between T and A

Claims (14)

Brenner für einen Wärmeerzeuger, im wesentlichen bestehend aus einem Drallerzeuger für einen Verbrennungsluftstrom und aus Mitteln zur Eindüsung eines Brennstoffes in den Verbrennungsluftstrom, dadurch gekennzeichnet, dass stromab des Drallerzeugers (100) eine Mischstrecke (220) angeordnet ist, welche innerhalb eines ersten Streckenteils (200) in Strömungsrichtung verlaufende Uebergangskanäle (201) zur Ueberführung einer im Drallerzeuger (100) gebildeten Strömung (40) in ein stromab der Uebergangskanäle (201) nachgeschaltetes Rohr (20) aufweist, und dass die Austrittsebene dieses Rohres (20) zur Brennkammer (30) mit einer Abrisskante (A) zur Stabilisierung und Vergrösserung einer sich stromab bildenden Rückstromzone (50) ausgebildet istBurner for a heat generator, essentially consisting of a swirl generator for a combustion air flow and means for injecting a fuel into the combustion air flow, characterized in that a mixing section (220) is arranged downstream of the swirl generator (100) and is located within a first section part (200 ) has transition channels (201) running in the flow direction for transferring a flow (40) formed in the swirl generator (100) into a pipe (20) connected downstream of the transition channels (201), and that the outlet plane of this pipe (20) to the combustion chamber (30) with a tear-off edge (A) for stabilizing and enlarging a downstream backflow zone (50) Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Uebergangskanäle (201) in der Mischstrecke (220) der Anzahl der vom Drallerzeuger (100) gebildeten Teilströme entspricht.Burner according to claim 1, characterized in that the number of transition channels (201) in the mixing section (220) corresponds to the number of partial flows formed by the swirl generator (100). Brenner nach Anspruch 1, dadurch gekennzeichnet, dass das der Uebergangskanäle (201) nachgeschaltete Rohr (20) in Strömungs- und Umfangsrichtung mit Oeffnungen (21) zur Eindüsung eines Luftstromes ins Innere des Rohres (20) versehen ist.Burner according to Claim 1, characterized in that the tube (20) connected downstream of the transition channels (201) is provided with openings (21) in the flow and circumferential direction for injecting an air stream into the interior of the tube (20). Brenner nach Anspruch 3, dadurch gekennzeichnet, dass die Oeffnungen (21) unter einem spitzen Winkel gegenüber der Brennerachse (60) des Rohres (20) verlaufen.Burner according to claim 3, characterized in that the openings (21) run at an acute angle with respect to the burner axis (60) of the tube (20). Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Abrisskante (A) aus einem Uebergangsradius (R) im Bereich der Austrittsebene des Rohres (20) und einer von der Austrittsebene des Rohres (20) abgesetzten Abrissstufe (S) besteht.Burner according to claim 1, characterized in that the tear-off edge (A) consists of a transition radius (R) in the region of the exit plane of the tube (20) and a tear-off step (S) offset from the exit plane of the tube (20). Brenner nach Anspruch 5, dadurch gekennzeichnet, dass der Uebergangsradius (R) > 10% des Innendurchmessers des Rohres (20) beträgt, und dass die Abrissstufe (S) eine Tiefe > 3 mm aufweist.Burner according to claim 5, characterized in that the transition radius (R) is> 10% of the inner diameter of the tube (20) and that the tear-off step (S) has a depth> 3 mm. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflussquerschnitt des Rohres (20) stromab der Uebergangskanäle (201) kleiner, gleich gross oder grösser als der Querschnitt der im Drallerzeuger (100) gebildeten Strömung (40) ist.Burner according to claim 1, characterized in that the flow cross-section of the tube (20) downstream of the transition channels (201) is smaller, equal or larger than the cross-section of the flow (40) formed in the swirl generator (100). Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromab der Mischstrecke (220) eine Brennkammer (30) angeordnet ist, dass zwischen der Mischstrecke (220) und der Brennkammer (30) ein Querschnittssprung vorhanden ist, der den anfänglichen Strömungsquerschnitt der Brennkammer (30) induziert, und dass im Bereich dieses Querschnittssprunges eine Rückströmzone (50) wirkbar ist.Burner according to claim 1, characterized in that a combustion chamber (30) is arranged downstream of the mixing section (220), that between the mixing section (220) and the combustion chamber (30) there is a cross-sectional jump which corresponds to the initial flow cross section of the combustion chamber (30) induced, and that a backflow zone (50) is effective in the area of this cross-sectional jump. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromauf der Abrisskante (A) ein Diffusor und/oder eine Venturistrecke vorhanden ist.Burner according to claim 1, characterized in that upstream of the tear-off edge (A) there is a diffuser and / or a venturi section. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Drallerzeuger (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) besteht, dass die jeweiligen Längssymmetrieachsen (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) dieser Teilkörper gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle (119, 120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpern gebildeten Kegelhohlraum (114) mindestens eine Brennstoffdüse (103) angeordnet ist.Burner according to claim 1, characterized in that the swirl generator (100) consists of at least two hollow, conical, part-bodies (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) nested one inside the other in the flow direction, that the respective longitudinal symmetry axes (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) of these partial bodies are offset with respect to one another in such a way that the adjacent walls of the partial bodies form tangential channels (119, 120) for a combustion air flow (115) in their longitudinal extent, and that at least in the cone cavity (114) formed by the partial bodies a fuel nozzle (103) is arranged. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass im Bereich der tangentialen Kanäle (119, 120) in deren Längserstreckung weitere Brennstoffdüsen (117) angeordnet sind.Burner according to Claim 10, characterized in that further fuel nozzles (117) are arranged in the region of the tangential channels (119, 120) in their longitudinal extent. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass die Teilkörper (140, 141, 142, 143) im Querschnitt eine schaufelförmige Profilierung aufweisen.Burner according to claim 10, characterized in that the partial bodies (140, 141, 142, 143) have a blade-shaped profile in cross section. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass die Teilkörper in Strömungsrichtung einen festen Kegelwinkel, oder eine zunehmende Kegelneigung, oder eine abnehmende Kegelneigung aufweisen.Burner according to claim 10, characterized in that the partial bodies have a fixed cone angle in the flow direction, or an increasing cone inclination, or a decreasing cone inclination. Brenner nach Anspruch 10, dadurch gekennzeichnet, dass die Teilkörper spiralförmig ineinandergeschachtelt sind.Burner according to claim 10, characterized in that the partial bodies are nested spirally one inside the other.
EP96810804A 1995-12-21 1996-11-18 Burner for a heat generator Expired - Lifetime EP0780629B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19547913 1995-12-21
DE19547913A DE19547913A1 (en) 1995-12-21 1995-12-21 Burners for a heat generator

Publications (3)

Publication Number Publication Date
EP0780629A2 true EP0780629A2 (en) 1997-06-25
EP0780629A3 EP0780629A3 (en) 1998-08-19
EP0780629B1 EP0780629B1 (en) 2001-07-11

Family

ID=7780868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810804A Expired - Lifetime EP0780629B1 (en) 1995-12-21 1996-11-18 Burner for a heat generator

Country Status (7)

Country Link
US (1) US5735687A (en)
EP (1) EP0780629B1 (en)
JP (1) JPH09184606A (en)
KR (1) KR970046984A (en)
AT (1) ATE203101T1 (en)
CA (1) CA2190805A1 (en)
DE (2) DE19547913A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903540A1 (en) 1997-09-19 1999-03-24 Abb Research Ltd. Burner for operating a heat generator
EP0909921A1 (en) 1997-10-14 1999-04-21 Abb Research Ltd. Burner for operating a heat generator
EP0913630A1 (en) 1997-10-31 1999-05-06 Abb Research Ltd. Burner for the operation of a heat generator
EP0916894A1 (en) 1997-11-13 1999-05-19 Abb Research Ltd. Burner for operating a heat generator
EP0918191A1 (en) 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
EP0918190A1 (en) 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
EP0919768A1 (en) 1997-11-25 1999-06-02 Abb Research Ltd. Burner for the operation of a heat generator
EP0899506A3 (en) * 1997-08-30 1999-06-16 Abb Research Ltd. Combustion device
DE19757189A1 (en) * 1997-12-22 1999-06-24 Abb Research Ltd Heat-creator burner operating process
EP0931980A1 (en) 1998-01-23 1999-07-28 Abb Research Ltd. Burner for operating a heat generator
EP0994300A1 (en) 1998-10-14 2000-04-19 Abb Research Ltd. Burner for operating a heat generator
EP1065346A1 (en) 1999-07-02 2001-01-03 Asea Brown Boveri AG Gas-turbine engine combustor
EP1070914A1 (en) 1999-07-22 2001-01-24 ABB Alstom Power (Schweiz) AG Premix burner
EP1070915A1 (en) 1999-07-22 2001-01-24 Asea Brown Boveri AG Premix burner
EP1182398A1 (en) 2000-08-21 2002-02-27 Alstom (Switzerland) Ltd Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process
EP1199516A1 (en) * 2000-10-11 2002-04-24 ALSTOM (Switzerland) Ltd Burner
EP1217297A1 (en) * 2000-12-22 2002-06-26 ALSTOM Power N.V. Burner with increased flame stability
EP1262714A1 (en) 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Burner with exhausts recirculation
EP1279898A2 (en) 2001-07-26 2003-01-29 ALSTOM (Switzerland) Ltd Premix burner with high flame stability
US6558154B2 (en) 2000-11-13 2003-05-06 Alstom (Switzerland) Ltd Burner system with staged fuel injection and method for its operation
US6679060B2 (en) 2000-12-16 2004-01-20 Alstom Technology Ltd Method for operating a premix burner
EP1389713A1 (en) 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Premixed exit ring pilot burner
US6969251B2 (en) 2002-10-12 2005-11-29 Alstom Technology Ltd Burner
US7003957B2 (en) 2001-10-19 2006-02-28 Alstom Technology Ltd Burner for synthesis gas
US7013648B2 (en) 2002-05-16 2006-03-21 Alstom Technology Ltd. Premix burner
US7189073B2 (en) 2000-10-16 2007-03-13 Alstom Technology Ltd. Burner with staged fuel injection
US7241138B2 (en) 2001-12-24 2007-07-10 Alstom Technology Ltd. Burner with stepped fuel injection
EP2058590A1 (en) 2007-11-09 2009-05-13 ALSTOM Technology Ltd Method for operating a burner
WO2009068424A1 (en) 2007-11-27 2009-06-04 Alstom Technology Ltd Method and device for burning hydrogen in a premix burner
US7610761B2 (en) 2005-03-23 2009-11-03 Alstom Technology Ltd. Method and device for the combustion of hydrogen in a premix burner
US7871262B2 (en) 2004-11-30 2011-01-18 Alstom Technology Ltd. Method and device for burning hydrogen in a premix burner
WO2011032935A2 (en) 2009-09-17 2011-03-24 Alstom Technology Ltd. Method for combusting hydrogen-rich, gaseous fuels in a burner, and burner for performing said method
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
EP2703721A1 (en) 2012-08-31 2014-03-05 Alstom Technology Ltd Premix burner
EP3228939A1 (en) 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion appliance
EP3228937A1 (en) 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device
US9890955B2 (en) 2012-08-24 2018-02-13 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
EP3306194A1 (en) 2016-10-06 2018-04-11 Ansaldo Energia IP UK Limited Combustor wall element and method for manufacturing the same
US10151487B2 (en) 2014-01-10 2018-12-11 Ansaldo Energia Switzerland AG Sequential combustion arrangement with dilution gas
US10422535B2 (en) 2013-04-26 2019-09-24 Ansaldo Energia Switzerland AG Can combustor for a can-annular combustor arrangement in a gas turbine
EP2179222B2 (en) 2007-08-07 2021-12-01 Ansaldo Energia IP UK Limited Burner for a combustion chamber of a turbo group

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954496A (en) * 1996-09-25 1999-09-21 Abb Research Ltd. Burner for operating a combustion chamber
DE19736902A1 (en) * 1997-08-25 1999-03-04 Abb Research Ltd Burners for a heat generator
EP0908671B1 (en) 1997-10-08 2003-05-14 ALSTOM (Switzerland) Ltd Combustion process for gaseous, liquid fuels and fuels having medium or low calorific value in a burner
DE59809222D1 (en) 1998-09-16 2003-09-11 Abb Research Ltd Burners for a heat generator
DE19859829A1 (en) 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Burner for operating a heat generator
DE19914666B4 (en) * 1999-03-31 2009-08-20 Alstom Burner for a heat generator
DE10026122A1 (en) * 2000-05-26 2001-11-29 Abb Alstom Power Nv Burner for heat generator has shaping element with inner surface curving away from or towards burner axis; flow from mixing tube contacts inner surface and its spin rate increases
JP4625609B2 (en) * 2000-06-15 2011-02-02 アルストム テクノロジー リミテッド Burner operation method and staged premixed gas injection burner
DE10121768B4 (en) * 2001-05-04 2007-03-01 Robert Bosch Gmbh Mixing device for gases in fuel cells
DE10210034B4 (en) * 2002-03-07 2009-10-01 Webasto Ag Mobile heater with a fuel supply
WO2004079264A1 (en) 2003-03-07 2004-09-16 Alstom Technology Ltd Premixing burner
EP1828572B1 (en) 2004-12-23 2015-07-01 Alstom Technology Ltd Method for the operation of a gas turbo group
EP2252831B1 (en) 2008-03-07 2013-05-08 Alstom Technology Ltd Burner arrangement, and use of such a burner arrangement
US8561602B2 (en) * 2008-12-24 2013-10-22 Agio International Company, Ltd. Gas feature and method
US8256226B2 (en) * 2009-04-23 2012-09-04 General Electric Company Radial lean direct injection burner
RU2561956C2 (en) * 2012-07-09 2015-09-10 Альстом Текнолоджи Лтд Gas-turbine combustion system
EP2685163B1 (en) * 2012-07-10 2020-03-25 Ansaldo Energia Switzerland AG Premix burner of the multi-cone type for a gas turbine
EP2685161B1 (en) * 2012-07-10 2018-01-17 Ansaldo Energia Switzerland AG Combustor arrangement, especially for a gas turbine
EP2685160B1 (en) * 2012-07-10 2018-02-21 Ansaldo Energia Switzerland AG Premix burner of the multi-cone type for a gas turbine
EP2837888A1 (en) 2013-08-15 2015-02-18 Alstom Technology Ltd Sequential combustion with dilution gas mixer
EP2857658A1 (en) 2013-10-01 2015-04-08 Alstom Technology Ltd Gas turbine with sequential combustion arrangement
EP2921779B1 (en) 2014-03-18 2017-12-06 Ansaldo Energia Switzerland AG Combustion chamber with cooling sleeve
JP6602004B2 (en) * 2014-09-29 2019-11-06 川崎重工業株式会社 Fuel injector and gas turbine
EP3015771B1 (en) 2014-10-31 2020-01-01 Ansaldo Energia Switzerland AG Combustor arrangement for a gas turbine
EP3015772B1 (en) 2014-10-31 2020-01-08 Ansaldo Energia Switzerland AG Combustor arrangement for a gas turbine
EP3067622B1 (en) 2015-03-12 2018-12-26 Ansaldo Energia Switzerland AG Combustion chamber with double wall and method of cooling the combustion chamber
EP3130848B1 (en) 2015-08-12 2019-01-16 Ansaldo Energia Switzerland AG Sequential combustion arrangement with cooling gas for dilution
EP3133343A1 (en) 2015-08-18 2017-02-22 General Electric Technology GmbH Gas turbine with diluted liquid fuel
EP3135880B1 (en) 2015-08-25 2020-07-08 Ansaldo Energia IP UK Limited Gas turbine with a sequential combustion arrangement and fuel composition control
US10782017B2 (en) 2018-04-24 2020-09-22 Trane International Inc. Wing vaned flame shaper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809B1 (en) 1987-12-21 1991-05-15 BBC Brown Boveri AG Process for combustion of liquid fuel in a burner

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183596A (en) * 1938-01-28 1939-12-19 Eastman Kodak Co Burner construction
US3656692A (en) * 1971-01-05 1972-04-18 Texaco Inc Oil burner
US3851466A (en) * 1973-04-12 1974-12-03 Gen Motors Corp Combustion apparatus
US3905752A (en) * 1974-05-03 1975-09-16 Hy Way Heat Systems Inc Oil burner
US3905192A (en) * 1974-08-29 1975-09-16 United Aircraft Corp Combustor having staged premixing tubes
US4271675A (en) * 1977-10-21 1981-06-09 Rolls-Royce Limited Combustion apparatus for gas turbine engines
US4561841A (en) * 1980-11-21 1985-12-31 Donald Korenyi Combustion apparatus
US5251447A (en) * 1992-10-01 1993-10-12 General Electric Company Air fuel mixer for gas turbine combustor
JPH07190308A (en) * 1993-12-28 1995-07-28 Hitachi Ltd Turning type burner
FR2717250B1 (en) * 1994-03-10 1996-04-12 Snecma Premix injection system.
DE4408136A1 (en) * 1994-03-10 1995-09-14 Bmw Rolls Royce Gmbh Method for fuel preparation for gas turbine combustion chamber
DE4416650A1 (en) * 1994-05-11 1995-11-16 Abb Management Ag Combustion process for atmospheric combustion plants
DE4435266A1 (en) * 1994-10-01 1996-04-04 Abb Management Ag burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809B1 (en) 1987-12-21 1991-05-15 BBC Brown Boveri AG Process for combustion of liquid fuel in a burner

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899506A3 (en) * 1997-08-30 1999-06-16 Abb Research Ltd. Combustion device
US5944511A (en) * 1997-09-19 1999-08-31 Abb Research Ltd. Burner for operating a heat generator
EP0903540A1 (en) 1997-09-19 1999-03-24 Abb Research Ltd. Burner for operating a heat generator
EP0909921A1 (en) 1997-10-14 1999-04-21 Abb Research Ltd. Burner for operating a heat generator
US5954495A (en) * 1997-10-14 1999-09-21 Abb Research Ltd. Burner for operating a heat generator
EP0913630A1 (en) 1997-10-31 1999-05-06 Abb Research Ltd. Burner for the operation of a heat generator
US6059565A (en) * 1997-10-31 2000-05-09 Abb Alstom Power (Switzereland) Ltd Burner for operating a heat generator
EP0916894A1 (en) 1997-11-13 1999-05-19 Abb Research Ltd. Burner for operating a heat generator
US6027331A (en) * 1997-11-13 2000-02-22 Abb Research Ltd. Burner for operating a heat generator
EP0918190A1 (en) 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
US6019596A (en) * 1997-11-21 2000-02-01 Abb Research Ltd. Burner for operating a heat generator
EP0918191A1 (en) 1997-11-21 1999-05-26 Abb Research Ltd. Burner for the operation of a heat generator
US6155820A (en) * 1997-11-21 2000-12-05 Abb Research Ltd. Burner for operating a heat generator
US5954490A (en) * 1997-11-25 1999-09-21 Abb Research Ltd. Burner for operating a heat generator
EP0919768A1 (en) 1997-11-25 1999-06-02 Abb Research Ltd. Burner for the operation of a heat generator
DE19757189A1 (en) * 1997-12-22 1999-06-24 Abb Research Ltd Heat-creator burner operating process
US6045351A (en) * 1997-12-22 2000-04-04 Abb Alstom Power (Switzerland) Ltd Method of operating a burner of a heat generator
DE19757189B4 (en) * 1997-12-22 2008-05-08 Alstom Method for operating a burner of a heat generator
EP0931980A1 (en) 1998-01-23 1999-07-28 Abb Research Ltd. Burner for operating a heat generator
US6186775B1 (en) 1998-01-23 2001-02-13 Abb Research Ltd. Burner for operating a heat generator
EP0994300A1 (en) 1998-10-14 2000-04-19 Abb Research Ltd. Burner for operating a heat generator
US6152726A (en) * 1998-10-14 2000-11-28 Asea Brown Boveri Ag Burner for operating a heat generator
EP1065346A1 (en) 1999-07-02 2001-01-03 Asea Brown Boveri AG Gas-turbine engine combustor
EP1070914A1 (en) 1999-07-22 2001-01-24 ABB Alstom Power (Schweiz) AG Premix burner
EP1070915A1 (en) 1999-07-22 2001-01-24 Asea Brown Boveri AG Premix burner
US6331109B1 (en) 1999-07-22 2001-12-18 Alstom (Switzerland) Ltd. Premix burner
EP1182398A1 (en) 2000-08-21 2002-02-27 Alstom (Switzerland) Ltd Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process
EP1199516A1 (en) * 2000-10-11 2002-04-24 ALSTOM (Switzerland) Ltd Burner
US6901760B2 (en) 2000-10-11 2005-06-07 Alstom Technology Ltd Process for operation of a burner with controlled axial central air mass flow
US7189073B2 (en) 2000-10-16 2007-03-13 Alstom Technology Ltd. Burner with staged fuel injection
US6558154B2 (en) 2000-11-13 2003-05-06 Alstom (Switzerland) Ltd Burner system with staged fuel injection and method for its operation
US6817188B2 (en) 2000-12-16 2004-11-16 Alstom (Switzerland) Ltd Method for operating a premix burner
US6679060B2 (en) 2000-12-16 2004-01-20 Alstom Technology Ltd Method for operating a premix burner
US6640545B2 (en) 2000-12-22 2003-11-04 Alstom Ltd. Burner with high flame stability
EP1217297A1 (en) * 2000-12-22 2002-06-26 ALSTOM Power N.V. Burner with increased flame stability
US6672863B2 (en) 2001-06-01 2004-01-06 Alstom Technology Ltd Burner with exhaust gas recirculation
EP1262714A1 (en) 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Burner with exhausts recirculation
EP1279898A3 (en) * 2001-07-26 2003-04-16 ALSTOM (Switzerland) Ltd Premix burner with high flame stability
US6834504B2 (en) 2001-07-26 2004-12-28 Alstom Technology Ltd Premix burner with high flame stability having a net-like structure within the mixing section
EP1279898A2 (en) 2001-07-26 2003-01-29 ALSTOM (Switzerland) Ltd Premix burner with high flame stability
US7003957B2 (en) 2001-10-19 2006-02-28 Alstom Technology Ltd Burner for synthesis gas
US7241138B2 (en) 2001-12-24 2007-07-10 Alstom Technology Ltd. Burner with stepped fuel injection
US7013648B2 (en) 2002-05-16 2006-03-21 Alstom Technology Ltd. Premix burner
EP1389713A1 (en) 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Premixed exit ring pilot burner
US7140183B2 (en) 2002-08-12 2006-11-28 Alstom Technology Ltd. Premixed exit ring pilot burner
US6969251B2 (en) 2002-10-12 2005-11-29 Alstom Technology Ltd Burner
US7871262B2 (en) 2004-11-30 2011-01-18 Alstom Technology Ltd. Method and device for burning hydrogen in a premix burner
US7610761B2 (en) 2005-03-23 2009-11-03 Alstom Technology Ltd. Method and device for the combustion of hydrogen in a premix burner
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
EP2179222B2 (en) 2007-08-07 2021-12-01 Ansaldo Energia IP UK Limited Burner for a combustion chamber of a turbo group
EP2058590A1 (en) 2007-11-09 2009-05-13 ALSTOM Technology Ltd Method for operating a burner
US9103547B2 (en) 2007-11-09 2015-08-11 Alstom Technology Ltd Method for operating a burner
WO2009068424A1 (en) 2007-11-27 2009-06-04 Alstom Technology Ltd Method and device for burning hydrogen in a premix burner
US8066509B2 (en) 2007-11-27 2011-11-29 Alstom Technology Ltd. Method and device for combusting hydrogen in a premix burner
WO2011032935A2 (en) 2009-09-17 2011-03-24 Alstom Technology Ltd. Method for combusting hydrogen-rich, gaseous fuels in a burner, and burner for performing said method
US8549860B2 (en) 2009-09-17 2013-10-08 Alstom Technology Ltd Method for combusting hydrogen-rich, gaseous fuels in a burner, and burner for performing said method
DE112010003677B4 (en) 2009-09-17 2023-10-26 Ansaldo Energia Switzerland AG METHOD FOR BURNING HYDROGEN-RICH, GASEOUS FUELS IN A BURNER AND BURNER FOR CARRYING OUT THE METHOD
US9890955B2 (en) 2012-08-24 2018-02-13 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
US10634357B2 (en) 2012-08-24 2020-04-28 Ansaldo Energia Switzerland AG Sequential combustion with dilution gas mixer
EP2703721A1 (en) 2012-08-31 2014-03-05 Alstom Technology Ltd Premix burner
US9400105B2 (en) 2012-08-31 2016-07-26 General Electric Technology Gmbh Premix burner
US10422535B2 (en) 2013-04-26 2019-09-24 Ansaldo Energia Switzerland AG Can combustor for a can-annular combustor arrangement in a gas turbine
US10151487B2 (en) 2014-01-10 2018-12-11 Ansaldo Energia Switzerland AG Sequential combustion arrangement with dilution gas
EP3228939A1 (en) 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion appliance
EP3228937A1 (en) 2016-04-08 2017-10-11 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device
US10539322B2 (en) 2016-04-08 2020-01-21 Ansaldo Energia Switzerland AG Method for combusting a fuel, and combustion device
EP3306194A1 (en) 2016-10-06 2018-04-11 Ansaldo Energia IP UK Limited Combustor wall element and method for manufacturing the same

Also Published As

Publication number Publication date
EP0780629B1 (en) 2001-07-11
DE19547913A1 (en) 1997-06-26
CA2190805A1 (en) 1997-06-22
DE59607269D1 (en) 2001-08-16
US5735687A (en) 1998-04-07
KR970046984A (en) 1997-07-26
JPH09184606A (en) 1997-07-15
ATE203101T1 (en) 2001-07-15
EP0780629A3 (en) 1998-08-19

Similar Documents

Publication Publication Date Title
EP0780629B1 (en) Burner for a heat generator
EP0704657B1 (en) Burner
EP0899508B1 (en) Burner for a heat producing device
EP0918191B1 (en) Burner for the operation of a heat generator
EP0918190A1 (en) Burner for the operation of a heat generator
EP0780630B1 (en) Burner for a heat generator
EP0797051B1 (en) Burner for a heat generator
EP0833105B1 (en) Premix burner
DE19757189B4 (en) Method for operating a burner of a heat generator
EP0777081B1 (en) Premix burner
EP0718561B1 (en) Combustor
EP0994300B1 (en) Burner for operating a heat generator
EP0931980B1 (en) Burner for operating a heat generator
EP0987493B1 (en) Burner for a heat generator
EP0916894B1 (en) Burner for operating a heat generator
EP0909921B1 (en) Burner for operating a heat generator
EP0903540B1 (en) Burner for operating a heat generator
EP0751351A1 (en) Combustion chamber
EP0919768B1 (en) Burner for the operation of a heat generator
DE19537636B4 (en) Power plant
EP0833104B1 (en) Burner for operating a combustion chamber
EP0913630B1 (en) Burner for the operation of a heat generator
DE19914666B4 (en) Burner for a heat generator
EP0740108A2 (en) Burner
DE10042315A1 (en) Burner for heat generator comprises three injectors for gaseous or liquid fuel, swirl generator, mixing section , and transfer ducts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19990129

17Q First examination report despatched

Effective date: 20000403

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUCK, THOMAS

Inventor name: KNOEPFEL, HANS PETER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010711

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20010711

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010711

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB RESEARCH LTD.

REF Corresponds to:

Ref document number: 203101

Country of ref document: AT

Date of ref document: 20010715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59607269

Country of ref document: DE

Date of ref document: 20010816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011011

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607269

Country of ref document: DE

Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607269

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Effective date: 20130508

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607269

Country of ref document: DE

Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE

Effective date: 20130508

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607269

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20130508

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607269

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20130508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151119

Year of fee payment: 20

Ref country code: GB

Payment date: 20151118

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607269

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607269

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607269

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607269

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59607269

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161117