EP0775881B1 - Procédé et dispositif pour la récupération d'oxygène et d'azote à pression superatmosphérique - Google Patents

Procédé et dispositif pour la récupération d'oxygène et d'azote à pression superatmosphérique Download PDF

Info

Publication number
EP0775881B1
EP0775881B1 EP96118281A EP96118281A EP0775881B1 EP 0775881 B1 EP0775881 B1 EP 0775881B1 EP 96118281 A EP96118281 A EP 96118281A EP 96118281 A EP96118281 A EP 96118281A EP 0775881 B1 EP0775881 B1 EP 0775881B1
Authority
EP
European Patent Office
Prior art keywords
pressure column
low
pressure
column
vapour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96118281A
Other languages
German (de)
English (en)
Other versions
EP0775881A3 (fr
EP0775881A2 (fr
Inventor
Dietrich Dipl.-Ing. Rottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0775881A2 publication Critical patent/EP0775881A2/fr
Publication of EP0775881A3 publication Critical patent/EP0775881A3/fr
Application granted granted Critical
Publication of EP0775881B1 publication Critical patent/EP0775881B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04915Combinations of different material exchange elements, e.g. within different columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04363Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the invention relates to a process for the production of oxygen and nitrogen superatmospheric pressure due to low temperature separation of air in one Rectification column system, which has a pressure column and a low pressure column, with steps (a) to (g) listed in claim 1.
  • the invention is therefore based on the object, a method and a specify appropriate device of the type mentioned, with which at the same time, oxygen and nitrogen are obtained under superatmospheric pressure can be and which work particularly economically, especially through a high yield of oxygen.
  • This object is achieved in that the pressure of the liquid from the lower Area of the low pressure column upstream of the indirect heat exchange with condensing steam from the top of the pressure column is increased and that part of the steam obtained in indirect heat exchange, which in the low pressure column is returned before being introduced into the low pressure column is relaxed.
  • the pressures of the pressure column and the low pressure column decoupled that is, the pressure column can operate under particularly high pressure be (for example 8 bar, 10 bar or higher), whereas the pressure in the Low pressure column only at just above atmospheric pressure, for example at 1.2 to 2.0 bar, preferably 1.5 to 1.6 bar.
  • the pressure column pressure can to the desired nitrogen product pressure - so that the nitrogen product compressor can either be made smaller or can be omitted -, and the low pressure column can still operate with an optimal separation effect become.
  • the pressure of the liquid from the lower area of the low pressure column can be raised by any of the known methods, for example by a pump and / or by a hydrostatic potential.
  • the final pressure must are sufficient so that the liquid in the indirect heat exchange with the Pressure column pressure condensing vapor evaporates from the pressure column.
  • Indirect heat exchange serves on the one hand to cool the head of the pressure column - es becomes liquid return for the pressure column and if necessary for the Low-pressure column - on the other hand - creates a detour through an oxygen cycle with pressure increase in the liquid and gaseous expansion - for generation of rising steam for the low pressure column.
  • the steam obtained in indirect heat exchange is preferred warmed against feed air. Usually only a part of the warmed gas relaxed in the low pressure column. The rest can then continue on Ambient temperature warmed and as a gaseous oxygen pressure product be dissipated.
  • the two liquids passed from the pressure column to the low pressure column usually consist of sump liquid from the pressure column (first Liquid fraction) or from liquid from the top of the pressure column or from an intermediate point, the 10 to 30, preferably 20 theoretical floors below of the head of the pressure column (second liquid fraction).
  • the relaxation of the indirect heat exchange through evaporation of the Liquid obtained from the lower part of the low pressure column is vapor preferably performed work, for example in a Expansion turbine. A lot of process cold can thus be obtained. It is favorable if a magnetic or gas-bearing turbine is used as the expansion turbine Turbine is used.
  • At least part of the relaxation of the indirect Heat generated steam can generate energy for compression a process stream can be used, for example for compressing a nitrogenous fraction from the low pressure column to regenerate one Molecular sieve necessary pressure.
  • the devices for relaxation or compression are preferably mechanically coupled, for example by a common wave.
  • the steam obtained in indirect heat exchange can be upstream of the Relaxation can be heated in the low pressure column. This warming takes place preferably in a main heat exchanger, which is also used to cool the Operating air serves.
  • the part of the steam to be relaxed is generally led out of the main heat exchanger at a temperature between the Temperatures at the cold and warm end of the main heat exchanger.
  • an argon-containing fraction can be transferred from the low pressure column into a Raw argon column can be introduced. Details of such argon production are for example in EP-B-377117, EP-A-628777 or EP-A-669509 described.
  • the invention also relates to a device for producing oxygen and Nitrogen under superatmospheric pressure due to the low temperature decomposition of air according to claims 7 to 11.
  • Compressed and cleaned from water and carbon dioxide feed air 1 is in one Main heat exchanger 2 cooled to about dew point and via line 3 under one Pressure of 10 bar fed into a pressure column 4.
  • vaporous nitrogen which still contains about 1 ppm of impurities
  • Line 10 removed and to a part 11 in a head capacitor trained condenser-evaporator 12 condenses; the rest will be on line 14 led to the main heat exchanger 2, warmed there to about ambient temperature and discharged at 15 as a gaseous pressure product. That in the condenser evaporator 12 obtained condensate 13 serves as a return for the pressure column 4; to the others, it can be partially discharged as a liquid product 16.
  • Oxygen-enriched bottom liquid 5 is the first liquid fraction from the Throttled pressure column in a low pressure column 7 (6).
  • a second liquid fraction 8 20 theoretical plates below the head of the pressure column are subtracted and above the first liquid fraction, preferably at the top, into the low pressure column relaxed 9. (Alternatively or additionally, the one drawn off via line 16 could also be used Liquid is applied to the low pressure column 7.)
  • the bottom liquid of the low pressure column 7 (third liquid fraction 17) is by a Pump 18 brought to a pressure of about 5 bar, subcooled in a countercurrent and introduced into the evaporation space of the condenser-evaporator 12. A part the pumped liquid can be withdrawn as product 21 if required.
  • the one in Condenser-evaporator 12 won steam 22 is in the main heat exchanger 2 introduced and in part at the warm end 23 as a gaseous Print product won.
  • the rest is at an intermediate point from the Main heat exchanger 2 led out (24), in a turbine 25 to work about low pressure column pressure relaxed and through the counterflow 19 in the Low pressure column 7 fed back.
  • Nitrogen-containing residual gas 28 is drawn off from the top of the low-pressure column 7, first warmed against the two liquid fractions from the pressure column (29) and finally continued to the main heat exchanger 2.
  • the heated residual gas 30 can be discarded, for example, or as a regeneration gas for a molecular sieve system be used for air purification.
  • the two exemplary embodiments can additionally have a crude argon column 34 be equipped; for the case of FIG. 1, this is detailed in FIG. 3.
  • An argon vapor fraction 35 is emitted from a location of relatively high argon content led in the low pressure column 7 to the crude argon column 34 and there into a - for example, via liquid line 36 - crude argon fraction and into one Residual fraction 37 disassembled.
  • the head cooling 39 of the raw argon column 34 is carried out by Evaporation of a portion 38 of the bottom liquid 5 from the pressure column causes.
  • the steam 40 thereby generated is fed into the low-pressure column 7.
  • the mass transfer elements in the pressure column formed by still bottoms, those in the low pressure column and optionally in the crude argon column by orderly packing. Basically, however, at Invention in all columns conventional still bottoms, packing (disordered Pack) and / or ordered pack. Combinations too Different types of elements are possible in one column. Because of the small Ordered packs, especially in the low pressure column, become pressure loss prefers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (11)

  1. Procédé pour la récupération d'oxygène et d'azote à pression superatmosphérique par la décomposition de l'air à très basse température dans un système de colonnes de rectification, qui comporte une colonne sous pression (4) et une colonne à basse pression (7), comprenant les étapes suivantes:
    (a) introduction d'air d'admission comprimé et épuré (1, 3) dans la colonne sous pression (4),
    (b) introduction (6) d'au moins une partie d'une première fraction liquide (5) provenant de la région inférieure de la colonne sous pression (4) dans la colonne à basse pression (7),
    (c) introduction (9) d'une deuxième fraction liquide (8) provenant de la région supérieure ou moyenne de la colonne sous pression (4) dans la colonne à basse pression (7),
    (d) évaporation d'une troisième fraction liquide (17) provenant de la région inférieure de la colonne à basse pression (7) par un échange de chaleur indirect (12) avec de la vapeur qui se condense (11) provenant de la région supérieure de la colonne sous pression (4),
    (e) introduction d'au moins une partie de la vapeur obtenue lors de l'échange de chaleur indirect (22, 24, 26, 27) dans la colonne à basse pression (7),
    (f) introduction d'au moins une partie du condensat obtenu lors de l'échange de chaleur indirect (13) dans la colonne sous pression (4),
    (g) prélèvement d'une fraction d'azote sous pression (10, 14, 15) sous forme de produit à-partir de la région supérieure de la colonne sous pression (4),
    caractérisé en ce que
    (h) la pression de la troisième fraction liquide (17) provenant de la région inférieure de la colonne à basse pression (7) est augmentée en amont de l'échange de chaleur indirect (12) avec de la vapeur qui se condense (11) provenant de la région supérieure de la colonne sous pression (4), et
    (i) la partie (24) de la vapeur obtenue lors de l'échange de chaleur indirect, qui est renvoyée dans la colonne à basse pression (7), est détendue (25) avant l'introduction (27) dans la colonne à basse pression (7).
  2. Procédé suivant la revendication 1, caractérisé en ce que la détente (25) de la vapeur obtenue lors de l'échange de chaleur indirect suivant l'étape (i) est effectuée avec production d'un travail.
  3. Procédé suivant la revendication 2, caractérisé en ce qu'au moins une partie de l'énergie produite lors de la détente (25) de la vapeur obtenue lors de l'échange de chaleur indirect est utilisée pour la compression (32) d'un courant de fluide traité (31).
  4. Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que la vapeur (22) obtenue lors de l'échange de chaleur indirect est réchauffée (2) en amont de la détente (25) suivant l'étape (i).
  5. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce qu'une partie (23) de la vapeur (22) obtenue lors de l'échange de chaleur indirect (12) est récupérée sous forme de produit sous pression contenant de l'oxygène.
  6. Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'une fraction contenant de l'argon (35) provenant de la colonne à basse pression (7) est introduite dans une colonne à argon brut (34).
  7. Dispositif pour la récupération d'oxygène et d'azote à pression superatmosphérique par la décomposition de l'air à très basse température dans un système de colonnes de rectification, qui comporte une colonne sous pression (4) et une colonne à basse pression (7), comprenant
    (a) une conduite d'air d'admission (1, 3) pour l'introduction d'air d'admission comprimé et épuré dans la colonne sous pression (4),
    (b) une conduite pour une première fraction liquide (5), qui relie la région inférieure de la colonne sous pression (4) à la colonne à basse pression (7),
    (c) une conduite pour une deuxième fraction liquide (8), qui relie la région supérieure ou moyenne de la colonne sous pression (4) à la colonne à basse pression (7),
    (d) un évaporateur-condenseur (12), dont la chambre d'évaporation est reliée à la région inférieure de la colonne à basse pression (7) par une conduite pour une troisième fraction liquide (17) et dont la chambre de condensation est reliée à la région supérieure de la colonne sous pression (4) par (10, 11),
    (e) une conduite de vapeur (22, 24, 26, 27) disposée entre la chambre d'évaporation de l'évaporateur-condenseur (12) et la colonne à basse pression (7),
    (f) une conduite pour une quatrième fraction liquide (13) disposée entre la chambre de condensation de l'évaporateur-condenseur (12) et la colonne sous pression (4), et
    (g) une conduite pour un produit d'azote sous pression (10, 14, 15), qui est reliée à la région supérieure de la colonne sous pression (4),
    caractérisé par
    (h) des moyens (18) pour augmenter la pression dans la conduite pour la troisième fraction liquide (17), et
    (i) des moyens (25) pour abaisser la pression dans la conduite de vapeur (22, 24, 26, 27) disposée entre l'évaporateur-condenseur (12) et la colonne à basse pression (7).
  8. Dispositif suivant la revendication 7, caractérisé en ce que les moyens pour abaisser la pression présentent une machine de détente (25).
  9. Dispositif suivant la revendication 7 ou 8, caractérisé par une conduite de produit contenant de l'oxygène (23), qui est reliée à la conduite de vapeur (22).
  10. Dispositif suivant l'une quelconque des revendications 7 à 9, caractérisé par des moyens (33) pour le transfert d'énergie mécanique de la machine de détente (25) à un compresseur (32) pour la compression d'un courant de fluide traité (31).
  11. Dispositif suivant l'une quelconque des revendications 7 à 10, caractérisé par une colonne à argon brut (34), qui est reliée (35, 37) à la colonne à basse pression.
EP96118281A 1995-11-25 1996-11-14 Procédé et dispositif pour la récupération d'oxygène et d'azote à pression superatmosphérique Expired - Lifetime EP0775881B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19543953A DE19543953C1 (de) 1995-11-25 1995-11-25 Verfahren und Vorrichtung zur Gewinnung von Sauerstoff und Stickstoff unter überatmosphärischem Druck
DE19543953 1995-11-25

Publications (3)

Publication Number Publication Date
EP0775881A2 EP0775881A2 (fr) 1997-05-28
EP0775881A3 EP0775881A3 (fr) 1997-08-20
EP0775881B1 true EP0775881B1 (fr) 2000-05-17

Family

ID=7778392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96118281A Expired - Lifetime EP0775881B1 (fr) 1995-11-25 1996-11-14 Procédé et dispositif pour la récupération d'oxygène et d'azote à pression superatmosphérique

Country Status (9)

Country Link
US (1) US5749246A (fr)
EP (1) EP0775881B1 (fr)
JP (1) JPH09170874A (fr)
KR (1) KR970028406A (fr)
BR (1) BR9605678A (fr)
CA (1) CA2191161A1 (fr)
DE (2) DE19543953C1 (fr)
TW (1) TW332856B (fr)
ZA (1) ZA969797B (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59902744D1 (de) 1999-04-15 2002-10-24 Ford Global Tech Inc Verbindungsanordnung für ein auf einem Bolzen eines Stellgliedes zu montierendes Ende eines Betätigungszuges
FR2860576A1 (fr) * 2003-10-01 2005-04-08 Air Liquide Appareil et procede de separation d'un melange gazeux par distillation cryogenique
EP4214456B1 (fr) * 2020-09-17 2024-05-08 Linde GmbH Procédé et appareil de séparation cryogénique de l'air à l'aide d'une turbine à gaz mixte

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2402246A1 (de) * 1974-01-18 1975-07-31 Linde Ag Verfahren zur gewinnung von sauerstoff mittlerer reinheit
US4224045A (en) * 1978-08-23 1980-09-23 Union Carbide Corporation Cryogenic system for producing low-purity oxygen
DE3840506A1 (de) * 1988-12-01 1990-06-07 Linde Ag Verfahren und vorrichtung zur luftzerlegung
DE4126945A1 (de) * 1991-08-14 1993-02-18 Linde Ag Verfahren zur luftzerlegung durch rektifikation
US5195324A (en) * 1992-03-19 1993-03-23 Prazair Technology, Inc. Cryogenic rectification system for producing nitrogen and ultra high purity oxygen
DE4317916A1 (de) * 1993-05-28 1994-12-01 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Argon
CA2142318A1 (fr) * 1994-02-24 1995-08-25 Horst Corduan Methode et appareil pour la recuperation d'argon pur
US5456083A (en) * 1994-05-26 1995-10-10 The Boc Group, Inc. Air separation apparatus and method

Also Published As

Publication number Publication date
TW332856B (en) 1998-06-01
ZA969797B (en) 1997-06-10
MX9605785A (es) 1998-05-31
CA2191161A1 (fr) 1997-05-26
EP0775881A3 (fr) 1997-08-20
DE19543953C1 (de) 1996-12-19
US5749246A (en) 1998-05-12
EP0775881A2 (fr) 1997-05-28
JPH09170874A (ja) 1997-06-30
KR970028406A (ko) 1997-06-24
DE59605238D1 (de) 2000-06-21
BR9605678A (pt) 1998-08-18

Similar Documents

Publication Publication Date Title
EP1067345B1 (fr) Procédé et dispositif pour la séparation cryogénique des constituants de l'air
DE19529681C2 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
DE69205424T2 (de) Verfahren und Vorrichtung für die Luftzerlegung durch Rektifikation.
DE69404106T2 (de) Lufttrennungsschemas für die Koproduktion von Sauerstoff und Stickstoff als Gas- und/oder Flüssigprodukt
EP0955509B1 (fr) Procédé et appareil pour la production d'oxygène à haute pureté
DE3874731T2 (de) Kryogene luftspaltung mit einem aufkocher mit totalkondensation durch kompression/expansion.
EP0948730B1 (fr) Procede et dispositif de production d'azote comprime
DE69619062T2 (de) Lufttrennungsverfahren und Vorrichtung zur Herstellung von Stickstoff
EP1031804B1 (fr) Procédé de séparation des gaz de l'air avec recyclage d'azote
EP1284404A1 (fr) Procédé et dispositif pour la production d'un produit sous pression par séparation cryogénique de l'air
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1074805B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression
DE19909744A1 (de) Zweisäulensystem zur Tieftemperaturzerlegung von Luft
DE19954593A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1146301A1 (fr) Procédé et dispositif de production d'azote à haute pression par séparation d'air
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0363861B1 (fr) Procédé d'obtention d'argon impur
EP1006326B1 (fr) Procédé et dispositif pour la production d'oxygène sous pression et de krypton/xenon par séparation cryogénique d'air
DE60007686T2 (de) Tieftemperaturrektifikationsystem zur Luftzerleggung
EP0775881B1 (fr) Procédé et dispositif pour la récupération d'oxygène et d'azote à pression superatmosphérique
EP1134524B1 (fr) Procédé de production d'azote gazeux
EP0878677A1 (fr) Procédé et dispositif pour la production d'azote par séparation cryogénique d'air
EP1284403B1 (fr) Procédé et appareil de production d'oxygène par séparation d'air cryogénique
EP1050728B1 (fr) Procedé et installation de séparation des gaz de l'air à une seule colonne
EP1209431B1 (fr) Procédé et dispositif de production d'oxygène et d'azote

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19970805

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990715

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20000517

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000517

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000517

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000517

REF Corresponds to:

Ref document number: 59605238

Country of ref document: DE

Date of ref document: 20000621

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20000517

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801