EP0761448B1 - Procédé de formation d'une structure de buses pour tête d'impression à jet d'encre - Google Patents

Procédé de formation d'une structure de buses pour tête d'impression à jet d'encre Download PDF

Info

Publication number
EP0761448B1
EP0761448B1 EP19960306160 EP96306160A EP0761448B1 EP 0761448 B1 EP0761448 B1 EP 0761448B1 EP 19960306160 EP19960306160 EP 19960306160 EP 96306160 A EP96306160 A EP 96306160A EP 0761448 B1 EP0761448 B1 EP 0761448B1
Authority
EP
European Patent Office
Prior art keywords
layer
nozzle
sacrificial layer
adhesive layer
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960306160
Other languages
German (de)
English (en)
Other versions
EP0761448A3 (fr
EP0761448A2 (fr
Inventor
Tonya H. Jackson
Steven R. Komplin
Ashok Murthy
Gary R. Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lexmark International Inc
Original Assignee
Lexmark International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lexmark International Inc filed Critical Lexmark International Inc
Publication of EP0761448A2 publication Critical patent/EP0761448A2/fr
Publication of EP0761448A3 publication Critical patent/EP0761448A3/fr
Application granted granted Critical
Publication of EP0761448B1 publication Critical patent/EP0761448B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/162Manufacturing of the nozzle plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • B41J2/1634Manufacturing processes machining laser machining

Definitions

  • the present invention relates to inkjet printheads, and more particularly to an improved fabrication technique for the nozzle structures for inkjet printheads.
  • Printheads for inkjet printers are precisely manufactured so that the components cooperate with an integral ink reservoir to achieve a desired print quality.
  • the printheads containing the ink reservoir are disposed of when the ink supply in the reservoir is exhausted. Accordingly, the components of the assembly need to be relatively inexpensive so that the total per page printing cost, into which the life of the assembly is factored, can be kept competitive in the marketplace with other forms of printing.
  • the ink, and the materials used to fabricate the reservoir and the printhead are not the greatest portion of the cost of manufacturing the printhead assembly. Rather, it is the labor intensive steps of fabricating the printhead components themselves. Thus, efforts which lower the cost of producing the printhead have the greatest effect on the per page printing cost of the inkjet printer in which the printhead assembly is used.
  • One method for lowering the cost for production of printheads is to use manufacturing techniques which are highly automated. This saves the expense of paying highly skilled technicians to manually perform each of the manufacturing steps.
  • Another method for reducing production costs is to improve the overall yield of the automated manufacturing process. Using a higher percentage of the printheads produced reduces the price per printhead thus spreading out the cost of manufacture over a greater number of saleable pieces. Since process yields tend to increase as the number of process steps required to manufacture a part decrease, it is desirable to reduce the number of process steps required to manufacture the printhead, or replace complex, low yield process steps with simpler, higher yield process steps.
  • Inkjet printheads are often formed from two or three major components including, 1) a substrate containing resistance elements to energize a component in the ink, and 2) an integrated flow features/nozzle layer to direct the motion of the energized ink.
  • the flow features of the printhead may be contained in the nozzle layer or in a separate layer attached to the nozzle layer or substrate.
  • the individual features which must cooperate during the printing step are contained in the components, which are joined together before use.
  • an adhesive is used to join the components of the printhead into a unitary structure.
  • the adhesive layer may retain debris created during subsequent manufacturing steps. Often the debris is difficult to remove, and at the very least requires extra processing steps to remove, thus increasing the cost of the printhead. Additionally, if the debris is not completely removed the adhesive bond between the substrate and the nozzle layer may be impaired, resulting in a printhead which either functions improperly, or does not exhibit the expected utility lifetime. Therefore, the yield reduction caused by unremoved debris increases the cost of producing the printheads.
  • WO 93/22141 describes a method of forming an inkjet printhead nozzle member in which a removable backing is placed over an adhesive layer and subsequently peeled off after laser ablation.
  • a method for making an inkjet printhead nozzle member according to the present invention.
  • a composite structure containing a nozzle layer and an adhesive layer is provided, and the adhesive layer is coated with a polymeric sacrificial layer, with a maximum thickness of 5 microns.
  • the coated composite structure is then laser ablated to form one or more nozzles in the structure. After forming the nozzles, the sacrificial layer is removed.
  • the sacrificial layer is preferably a water soluble polymeric material, preferably polyvinyl alcohol, which may be removed by directing jets of water at the sacrificial layer until substantially all of the sacrificial layer has been removed from the adhesive layer.
  • the sacrificial layer is water soluble, it may readily be removed by a simple washing technique, and as a result of removal, will carry with it the debris adhered thereto. In this manner the nozzle structure is freed of the debris which may cause structural or operational problems without the use of elaborate cleaning processes.
  • the adhesive may be applied directly to the nozzle structure before the nozzles are created by laser ablation, thus simplifying the manufacturing process.
  • Fig. 1 a plan view representation of the major features of a nozzle layer 10 of a printhead composite structure.
  • the nozzle layer 10 is a polymeric material such as polyimide, polyester, fluorocarbon polymer, or polycarbonate, which is preferably about 15 to about 200 microns thick, and most preferably about 75 to about 125 microns thick.
  • the material from which the nozzle layer 10 is formed may be supplied in a continuous elongate strip of polymeric material from which many nozzle layers may be formed, one after another, in a continuous or semi-continuous process.
  • sprocket holes or apertures 12 may be provided in the strip.
  • an ink distribution channel 14 which receives ink from an ink reservoir (not shown) and supplies the ink to flow channels 16.
  • the flow channels 16 receive the ink from the ink distribution channel 14, and supply it to resistance elements (not shown) below the bubble chambers 18.
  • a component of the ink Upon energizing one or more resistance elements, a component of the ink is vaporized, imparting mechanical energy to a portion of the ink, thereby ejecting the ink through a corresponding nozzle 20 of the nozzle layer 10.
  • the ink exiting the nozzle 20 then impacts the print medium, yielding a pre-defined pattern of ink spots which become alpha-numeric characters and graphic images.
  • the strip of material in which the nozzle layer 10 is formed may be provided on a large reel 22 such as that schematically illustrated in Fig. 2.
  • a large reel 22 such as that schematically illustrated in Fig. 2.
  • Several manufacturers such as Ube (of Japan) and E.I. du Pont de Nemours & Co. of Wilmington, Delaware, commercially supply materials suitable for the manufacture of the nozzle layer, under the trademarks of UPILEX or KAPTON, respectively.
  • the preferred nozzle layer materials are formed from a polyimide tape, overlaid with an adhesive layer 24 as depicted in Fig. 3.
  • the adhesive layer 24 is preferably any B-stageable material which may include thermoplastic macromolecular materials.
  • B-stageable thermal cure resins include phenolic resins, resorcinol resins, urea resins, epoxy resins, ethylene-urea resins, furane resins, polyurethanes, and silicon resins.
  • Suitable macromolecular thermoplastic, or hot melt, materials include ethylene-vinyl acetate, ethylene ethylacrylate, polypropylene, polystyrene, polyamides, polyesters and polyurethanes.
  • the adhesive layer 24 is a phenolic butyral adhesive such as that used in the laminate RFLEX R1100 or RFLEX R1000, commercially available from Rogers of Chandler, Arizona.
  • the adhesive layer 24 is about 1 to about 25 microns in thickness.
  • the adhesive layer 24 is coated with a sacrificial layer 28 as depicted in Fig. 4.
  • the sacrificial layer 28 may be any polymeric material that is both coatable in thin layers and removable by a solvent that does not interact with the adhesive layer 24 or the nozzle layer 10.
  • the preferred solvent is water, and polyvinyl alcohol is just one example of a suitable water soluble sacrificial layer 28.
  • the sacrificial layer 28 is most preferably at least about 1 micron in thickness, and is preferably coated onto the adhesive layer 24, which is on the polyimide carrier sheet which forms the nozzle layer 10.
  • the sacrificial layer 28 may be coated onto the composite strip 26 such as by coating roller 34.
  • the composite strip 26 now has a cross-sectional dimension as depicted in Fig. 4, with the adhesive layer 24 disposed between the nozzle layer 10 and the sacrificial layer 28.
  • the features of the nozzle layer 10, such as distribution channel 14, flow channels 16, bubble chambers 18, and nozzles 20 as depicted in Fig. 1, are preferably formed by laser ablating the composite strip 26 in a predetermined pattern.
  • a laser beam 36 for creating flow features in the nozzle layer 10 may be generated by a laser 38, such as an F 2 , ArF, KrCl, KrF, or XeCl excimer or frequency multiplied YAG laser.
  • Laser ablation of the composite structure of Fig. 4 is accomplished at a power of from about 100 millijoules per cm 2 to about 5,000 millijoules per cm 2 , and preferably about 1,500 millijoules per cm 2 .
  • a laser beam with a wavelength of from about 150 nanometers to about 400 nanometers, and most preferably about 248 nanometers is applied in pulses lasting from about one nanosecond to about 200 nanoseconds, and most preferably about 20 nanoseconds.
  • Specific features of the nozzle layer 10 are formed by applying a predetermined number of pulses of the laser beam 36 through a mask 40 which is used for accurately positioning the flow features in the nozzle layer.
  • Many energy pulses may be required in those portions of the nozzle layer 10 from which a greater cross-sectional depth of material is removed, such as the nozzles 20, and fewer energy pulses may be required in those portions of the nozzle layer 10 which require that only a portion of the material be removed from the cross-sectional depth of the nozzle layer 10, such as the flow channels 16, as will be made more apparent hereafter.
  • the side boundaries of the features of the nozzle layer 10 are defined by the mask 40 which allows the laser beam 36 to pass through holes in the mask 40 in certain portions of the mask 40 and inhibits the laser beam 36 from reaching the composite strip 26 in other portions of the mask 40.
  • the portions of the mask 40 which allow the laser beam 36 to contact the strip 26 are disposed in a pattern which corresponds to the shape of the features desired to be formed in the nozzle layer 10.
  • slag and other debris 42 are formed. At least a portion of the debris 42 may land on and adhere to strip 26. In the present invention, since the top layer of the strip 26 contains the sacrificial layer 28, the debris 42 lands on and adheres to the sacrificial layer 28 rather than to the adhesive layer 24.
  • the debris 42 would land on and adhere to the adhesive layer 24. Once adhered to the adhesive layer 24, the debris 42 may be difficult to remove, requiring complicated cleaning procedures or resulting in unusable product.
  • the present invention not only makes removal of the debris 42 easier, but may also increase yield due to a reduction in non-usable product.
  • the strip 26 at position C has the cross-sectional configuration shown in Fig. 5, as taken through one of the bubble chambers 18.
  • the nozzle layer 10 still contains adhesive layer 24 which is protected by sacrificial layer 28.
  • Debris 42 is depicted on the exposed surface of the sacrificial layer 28.
  • the relative dimensions of the flow channel 16, bubble chamber 18, and nozzle 20 are also illustrated in Fig. 5.
  • the sacrificial layer 28 is a water soluble material
  • removal of the sacrificial layer 28 and debris 42 thereon is may be accomplished by directing water jets 44 toward the strip 26 from water sources 46.
  • the sacrificial layer 28 may be removed by soaking the strip 26 in water for a period of time sufficient to dissolve the sacrificial layer 28.
  • the temperature of the water used to remove the sacrificial layer 28 may range from about 20°C to about 90°C. Higher water temperatures tend to decrease the time required to dissolve a polyvinyl alcohol sacrificial layer 28.
  • the temperature and type of solvent used to dissolve the sacrificial layer 28 is preferably chosen to enhance the dissolution rate of the material chosen for use as the sacrificial layer 28.
  • the debris 42 and sacrificial layer 28 removed from the adhesive layer are contained in an aqueous waste stream 48 that is removed from the strip 26.
  • the adhesive coated composite structure at position D has a cross-sectional configuration illustrated in Fig. 6.
  • the structure contains the nozzle layer 10 and the adhesive layer 24, but the sacrificial layer 28 which previously coated the adhesive layer 24 has been removed.
  • Sections 50 of the nozzle layer 10 are separated one from another by cutting blades 56 and are then subsequently attached to silicon heater substrates.
  • the adhesive layer 24 is used to attach the nozzle layer 10 to the silicon substrate.
  • the adhesive layer 24 may be attached to the nozzle layer 10, rather than the substrate, prior to laser ablation, thus simplifying the printhead manufacturing process.
  • the silicon substrate Before attaching the nozzle layer 10 to the silicon substrate, it is preferred to coat the silicon substrate with an extremely thin layer of adhesion promoter.
  • the amount of adhesion promoter should be sufficient to interact with the adhesive of the nozzle layer 10 throughout the entire surface of the substrate, yet the amount of adhesion promoter should be less than an amount which would interfere with the function of the substrate's electrical components and the like.
  • the nozzle layer 10 is preferably adhered to the silicon substrate by placing the adhesive layer 24 against the silicon substrate, and pressing the nozzle layer 10 against the silicon substrate with a heated platen.
  • the adhesion promoter may be applied to the exposed surface of the adhesive layer 24 before application of the sacrificial layer 28, or after removal of the sacrificial layer 28.
  • Well known techniques such as spinning, spraying, roll coating, or brushing may be used to apply the adhesion promoter to the silicon substrate or the adhesive layer.
  • a particularly preferred adhesion promoter is a reactive silane composition, such as DOW CORNING Z6032 SILANE, available from Dow Corning of Midland, Michigan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Claims (20)

  1. Procédé de fabrication d'une plaque à buses pour tête d'impression à jet d'encre, comprenant :
    la préparation d'une structure composite contenant une couche de buses et une couche adhésive,
    le revêtement de la couche adhésive avec une couche éliminable,
    l'ablation au laser de la structure composite revêtue, pour former une ou plusieurs buses dans cette structure, et
    l'enlèvement de la couche éliminable de la structure composite,
    caractérisé en ce que la couche éliminable est un revêtement, ayant une épaisseur maximale de 5 µm, d'une couche sacrificielle de polymère qui est soluble et est enlevée par un solvant qui ne réagit pas avec la couche adhésive et la couche de buses et ne dissout pas ces dernières.
  2. Procédé selon la revendication 1, dans lequel la couche de buses est en une matière polymère.
  3. Procédé selon la revendication 2, dans lequel la couche de buses est choisie dans le groupe de matières constitué de polyimide, polyester, polymère fluorocarboné et polycarbonate.
  4. Procédé selon la revendication 1, dans lequel la couche de buses a une épaisseur de 15 µm à 200 µm.
  5. Procédé selon la revendication 1, dans lequel la couche adhésive est choisie dans le groupe comprenant : résines phénoliques, résorcinols, urées, époxy, éthylène-urées, furanes, polyuréthanes, silicones, éthylène-acétate de vinyle, éthylène éthylacrylate, polypropylène, polystyrène, polyamides, polyesters, polyuréthanes et résines acryliques.
  6. Procédé selon la revendication 5, dans lequel la couche adhésive est une résine phénolique butyral.
  7. Procédé selon une quelconque des revendications précédentes, dans lequel la couche sacrificielle est un polymère soluble dans l'eau.
  8. Procédé selon la revendication 7, dans lequel la couche sacrificielle est un alcool polyvinylique.
  9. Procédé selon la revendication 7 ou la revendication 8, comprenant en outre l'enlèvement de la couche sacrificielle du composite par trempage du composite dans l'eau pendant une durée suffisante pour dissoudre la couche sacrificielle.
  10. Procédé selon la revendication 7 ou la revendication 8, comprenant en outre l'enlèvement de la couche sacrificielle du composite par direction de jets d'eau sur la couche sacrificielle jusqu'à ce que la couche sacrificielle soit sensiblement enlevée de la couche adhésive.
  11. Procédé selon une quelconque des revendications précédentes, dans lequel la couche sacrificielle de polymère a une épaisseur de 1 µm à 5 µm.
  12. Procédé selon une quelconque des revendications précédentes, dans lequel l'ablation au laser est effectuée avec un laser excimère ou des lasers YAG à multiplication de fréquence.
  13. Procédé selon une quelconque des revendications précédentes, dans lequel l'ablation au laser est effectuée à une puissance comprise entre 100 millijoules par cm2 et 5000 millijoules par cm2.
  14. Procédé selon une quelconque des revendications précédentes, dans lequel l'ablation au laser est effectuée à une longueur d'onde comprise entre 150 nanomètres et 400 nanomètres.
  15. Procédé selon une quelconque des revendications précédentes, dans lequel l'ablation au laser est effectuée par application de l'énergie laser en impulsions d'une durée comprise entre une nanoseconde et 200 nanosecondes.
  16. Procédé selon une quelconque des revendications précédentes, dans lequel la couche de buses comprend des buses et des éléments d'écoulement.
  17. Procédé selon une quelconque des revendications précédentes, comprenant en outre l'application d'un agent favorisant l'adhérence à la couche adhésive avant le revêtement de la couche adhésive avec la couche sacrificielle.
  18. Procédé selon la revendication 17, dans lequel l'agent favorisant l'adhérence est une composition de silane réactive.
  19. Procédé de fixation d'une plaque à buses à un substrat de silicium, comprenant :
    l'exécution des étapes du procédé selon une quelconque des revendications précédentes,
    l'application d'un agent favorisant l'adhérence au substrat de silicium, et
    la fixation de la plaque à buses au substrat de silicium par application de la couche adhésive contre le substrat de silicium, et pression de la plaque à buses contre le substrat de silicium au moyen d'un plateau chauffé.
  20. Procédé selon la revendication 19, dans lequel l'agent favorisant l'adhérence est une composition de silane réactive.
EP19960306160 1995-08-28 1996-08-22 Procédé de formation d'une structure de buses pour tête d'impression à jet d'encre Expired - Lifetime EP0761448B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51990695A 1995-08-28 1995-08-28
US519906 1995-08-28

Publications (3)

Publication Number Publication Date
EP0761448A2 EP0761448A2 (fr) 1997-03-12
EP0761448A3 EP0761448A3 (fr) 1997-10-22
EP0761448B1 true EP0761448B1 (fr) 2002-11-27

Family

ID=24070327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960306160 Expired - Lifetime EP0761448B1 (fr) 1995-08-28 1996-08-22 Procédé de formation d'une structure de buses pour tête d'impression à jet d'encre

Country Status (3)

Country Link
EP (1) EP0761448B1 (fr)
JP (1) JP3899396B2 (fr)
DE (1) DE69625002T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893386B2 (en) 2003-11-14 2011-02-22 Hewlett-Packard Development Company, L.P. Laser micromachining and methods of same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183064B1 (en) 1995-08-28 2001-02-06 Lexmark International, Inc. Method for singulating and attaching nozzle plates to printheads
US6045214A (en) * 1997-03-28 2000-04-04 Lexmark International, Inc. Ink jet printer nozzle plate having improved flow feature design and method of making nozzle plates
US6158843A (en) * 1997-03-28 2000-12-12 Lexmark International, Inc. Ink jet printer nozzle plates with ink filtering projections
US6030071A (en) 1997-07-03 2000-02-29 Lexmark International, Inc. Printhead having heating element conductors arranged in a matrix
US6120135A (en) 1997-07-03 2000-09-19 Lexmark International, Inc. Printhead having heating element conductors arranged in spaced apart planes and including heating elements having a substantially constant cross-sectional area in the direction of current flow
JPH11135922A (ja) 1997-07-11 1999-05-21 Lexmark Internatl Inc Tab回路保護被覆
US6179413B1 (en) 1997-10-31 2001-01-30 Hewlett-Packard Company High durability polymide-containing printhead system and method for making the same
US6076910A (en) 1997-11-04 2000-06-20 Lexmark International, Inc. Ink jet printing apparatus having redundant nozzles
US5984455A (en) * 1997-11-04 1999-11-16 Lexmark International, Inc. Ink jet printing apparatus having primary and secondary nozzles
US6017112A (en) * 1997-11-04 2000-01-25 Lexmark International, Inc. Ink jet printing apparatus having a print cartridge with primary and secondary nozzles
JP3539472B2 (ja) * 1998-03-05 2004-07-07 セイコーエプソン株式会社 インクジェット式記録ヘッド
US6426481B1 (en) 1999-06-29 2002-07-30 Canon Kabushiki Kaisha Method for manufacturing discharge nozzle of liquid jet recording head and method for manufacturing the same head
JP2001010062A (ja) 1999-06-29 2001-01-16 Canon Inc 液体噴射記録ヘッドの吐出ノズル加工方法および液体噴射記録ヘッドの製造方法
JP2001010067A (ja) 1999-06-29 2001-01-16 Canon Inc 液体噴射記録ヘッドの吐出ノズル加工方法および液体噴射記録ヘッドの製造方法
US6283584B1 (en) 2000-04-18 2001-09-04 Lexmark International, Inc. Ink jet flow distribution system for ink jet printer
WO2002024396A1 (fr) * 2000-09-20 2002-03-28 Electro Scientific Industries, Inc. Decoupe par laser uv ou modification de la forme de matieres cassantes a temperature de fusion elevee telles que ceramiques ou verre
JP4078070B2 (ja) 2000-12-28 2008-04-23 キヤノン株式会社 インクジェットヘッドの製造方法
US7052117B2 (en) * 2002-07-03 2006-05-30 Dimatix, Inc. Printhead having a thin pre-fired piezoelectric layer
JP4161881B2 (ja) * 2003-11-13 2008-10-08 ソニー株式会社 液体吐出方法
US8960886B2 (en) 2009-06-29 2015-02-24 Videojet Technologies Inc. Thermal inkjet print head with solvent resistance
US8454149B2 (en) * 2009-06-29 2013-06-04 Videojet Technologies Inc Thermal inkjet print head with solvent resistance
US8303076B2 (en) * 2009-11-04 2012-11-06 Xerox Corporation Solid ink jet printhead having a polymer layer and processes therefor
JP5426333B2 (ja) * 2009-11-24 2014-02-26 信越化学工業株式会社 中空の構造体製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239954A (en) * 1978-12-11 1980-12-16 United Technologies Corporation Backer for electron beam hole drilling
JPS58110190A (ja) * 1981-12-23 1983-06-30 Toshiba Corp レ−ザ加工方法
US4948941A (en) * 1989-02-27 1990-08-14 Motorola, Inc. Method of laser drilling a substrate
GB2241186A (en) * 1990-02-24 1991-08-28 Rolls Royce Plc Anti-sputtercoating
US5703631A (en) * 1992-05-05 1997-12-30 Compaq Computer Corporation Method of forming an orifice array for a high density ink jet printhead
JP3196796B2 (ja) * 1992-06-24 2001-08-06 セイコーエプソン株式会社 インクジェット記録ヘッドのノズル形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893386B2 (en) 2003-11-14 2011-02-22 Hewlett-Packard Development Company, L.P. Laser micromachining and methods of same

Also Published As

Publication number Publication date
JPH09118017A (ja) 1997-05-06
JP3899396B2 (ja) 2007-03-28
EP0761448A3 (fr) 1997-10-22
EP0761448A2 (fr) 1997-03-12
DE69625002T2 (de) 2003-07-31
DE69625002D1 (de) 2003-01-09

Similar Documents

Publication Publication Date Title
EP0761448B1 (fr) Procédé de formation d'une structure de buses pour tête d'impression à jet d'encre
US6120131A (en) Method of forming an inkjet printhead nozzle structure
US6323456B1 (en) Method of forming an ink jet printhead structure
US6045214A (en) Ink jet printer nozzle plate having improved flow feature design and method of making nozzle plates
EP0471157B1 (fr) Composants obtenus par photo-ablation pour tête d'impression à jet d'encre
JP3386177B2 (ja) インクジェットプリントヘッド
CA2084390C (fr) Tuyere ablative pour tete d'impression a jet d'encre
US6158843A (en) Ink jet printer nozzle plates with ink filtering projections
KR100244830B1 (ko) 잉크 프린터에 사용하기 위한 장치와, 레이저 제거 가능한 재료로 제조되는 노즐부재와, 잉크 프린터용 노즐부재의 제조방법
JPH068472A (ja) インクジェットプリントヘッド
JPH0623997A (ja) ボンディング方法
US6283584B1 (en) Ink jet flow distribution system for ink jet printer
JP2000015820A (ja) オリフィスプレートおよび液体吐出ヘッドの製造方法
CA2059617C (fr) Methode de fabrication de tetes d'enregistrement a jet d'encre et tete d'enregistrement fabriquee selon cette methode
CA2084554C (fr) Buse comportant un circuit electrique incorpore, pour tete d'impression a jet d'encre
JP3554159B2 (ja) インクジェットヘッド及びインクジェットヘッドの製造方法
CN1250720A (zh) 形成单个喷嘴板并将喷嘴板连接到打印头上的方法
EP1008452B1 (fr) Tête d'impression à jet d'encre et sa méthode de fabrication
JP3253269B2 (ja) 記録ヘッドの製造方法および記録ヘッド
JPH07156410A (ja) ノズルプレートの製造方法
JP3647321B2 (ja) インクジェットヘッドの製造方法
JP2001010062A (ja) 液体噴射記録ヘッドの吐出ノズル加工方法および液体噴射記録ヘッドの製造方法
JP3436687B2 (ja) ノズルの加工方法
JP2006198828A (ja) 液体吐出ヘッド用オリフィスプレートおよびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980404

17Q First examination report despatched

Effective date: 19990122

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69625002

Country of ref document: DE

Date of ref document: 20030109

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030828

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20131128 AND 20131204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69625002

Country of ref document: DE

Representative=s name: ABITZ & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20131107

Ref country code: DE

Ref legal event code: R082

Ref document number: 69625002

Country of ref document: DE

Representative=s name: ABITZ & PARTNER, DE

Effective date: 20131107

Ref country code: DE

Ref legal event code: R081

Ref document number: 69625002

Country of ref document: DE

Owner name: FUNAI ELECTRIC CO., LTD, DAITO CITY, JP

Free format text: FORMER OWNER: LEXMARK INTERNATIONAL INC., GREENWICH, CONN., US

Effective date: 20131107

Ref country code: DE

Ref legal event code: R081

Ref document number: 69625002

Country of ref document: DE

Owner name: FUNAI ELECTRIC CO., LTD, JP

Free format text: FORMER OWNER: LEXMARK INTERNATIONAL INC., GREENWICH, US

Effective date: 20131107

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: FUNAI ELECTRIC CO LTD, JP

Effective date: 20140102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150819

Year of fee payment: 20

Ref country code: DE

Payment date: 20150818

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150629

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69625002

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160821