EP0759737A1 - Mikroemulsionen - Google Patents

Mikroemulsionen

Info

Publication number
EP0759737A1
EP0759737A1 EP95921741A EP95921741A EP0759737A1 EP 0759737 A1 EP0759737 A1 EP 0759737A1 EP 95921741 A EP95921741 A EP 95921741A EP 95921741 A EP95921741 A EP 95921741A EP 0759737 A1 EP0759737 A1 EP 0759737A1
Authority
EP
European Patent Office
Prior art keywords
water
fatty acid
oil phase
weight
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95921741A
Other languages
English (en)
French (fr)
Inventor
Thomas Förster
Marcus Claas
Werner Seipel
Bernhard Guckenbiehl
Armin Wadle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0759737A1 publication Critical patent/EP0759737A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/068Microemulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/604Alkylpolyglycosides; Derivatives thereof, e.g. esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds
    • C09K23/018Mixtures of two or more different organic oxygen-containing compounds

Definitions

  • the invention relates to microemulsions and a process for their preparation, in which a combination of an alkyl glycoside and a fatty acid polyol ester is used as the emulsifier.
  • Microemulsions are optically isotropic, thermodynamically stable systems which contain a water-insoluble oil component, emulsifiers and water.
  • the clear or transparent appearance of the microemulsions is a consequence of the small particle size of the dispersed emulsion droplets, which is essentially below 300 nm, fine particles in the range between 100 and 300 nm, brown-red in the view and bluish shimmer in the reflected light, and in the range optically clear microemulsions occur below 100 nm.
  • the droplet size of macroemulsions is essentially over 300 nm.
  • Microemulsions are frequently described in the literature, but their targeted production is associated with great difficulties, since the areas of existence of the microemulsion in the oil component, water The three-phase diagram formed by this and the emulators are usually very small and the location of these areas of existence is greatly influenced by structural features of all components and all other constituents of such systems.
  • microemulsions are of considerable importance in the formulation of cosmetic and pharmaceutical preparations. There is therefore a need for reliable methods of producing microemulsions.
  • the invention accordingly relates to a microemulsion of a water-insoluble oil phase (A) in water (C), the oil phase (A) being liquid at 20 ° C. and preferably excluding more than 70% by weight.
  • lent consists of hydrocarbons or dialkyl ethers, each with at least 10 carbon atoms or mixtures thereof, and a combination of as emulsifier (B)
  • (B2) a fatty acid-polyol partial ester with an HLB value below 11 consisting of a fatty acid with 10 to 18 carbon atoms and a polyol with 2-8 hydroxyl groups
  • Suitable oil components are preferably liquid hydrocarbons or dialkyl ethers with 10-32 carbon atoms. However, higher molecular or solid paraffins can also be used in a mixture with these as long as the mixture remains liquid at 20 ° C.
  • Suitable hydrocarbons are e.g. n-decane, n-dodecane, n-tetradecane, n-hexadecane, isohexadecane, l, 3-di- (2-ethylhexyl) cyclohexane, triisobutene, pentapropylene and other liquid oligo-olefins and their hydration products, paraffin oils and squalane .
  • Suitable dialkyl ethers are e.g. Lauryl butyl ether, myristyl methyl ether, cetyl hexyl ether, di-n-octyl ether, di-n-decyl ether, decyl octyl ether, di-n-lauryl ether.
  • the aliphatic dialkyl ethers * with 6-10 C atoms per alkyl group are particularly suitable.
  • oils in particular those used in cosmetics, for example esters, triglycerides or fatty alcohols, can also be used as oil components. However, their proportion should not exceed 25% by weight of the water-insoluble oil phase.
  • Alkyl glycosides (B1) their preparation and use as surface-active substances are known, for example, from DE 19 43 689 or from DE 3827 543. They are produced by reacting glucose or oligosaccharides with primary alcohols with 8 to 14 carbon atoms or by acetalizing starch with, for example, lower alcohols and re-acetalizing it with the C ⁇ -C ⁇ fatty alcohol.
  • glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically linked to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 3 are suitable.
  • Suitable alkyl glycosides for the preparation of the microemulsion according to the invention are those of the general formula R * 0 - (G) x , in which R 1 is an aliphatic radical of a primary fatty alcohol having 8 to 14 C atoms and (G) x is an oligoglucoside radical with a medium one Degree of oligomerization x is from 1 to 3.
  • Oligoglucosides of the aforementioned general formula are particularly preferred, in which R * denotes a linear alkyl group with 8 to 12 C atoms and (G) x denotes an oligoglucoside residue with an average degree of oligomerization x of 1 to 2. It can also be technical mixtures with small amounts of C j ö-alkyl glycosides.
  • the average degree of oligomerization results from the molar proportions of the individual oligomers by dividing the sum of the structural units by the sum of the molecules (cf. Principles of Polymer Chemistry, Paul J. Flory, Georgia University Press, Ithaca, New York 1953, page 35-36).
  • Fatty acid-polyol partial esters (B2) suitable as lipophilic co-emulsifiers are preferably the monoesters or the technical mixtures of monoesters, diesters and free polyol obtained by esterifying the polyols with 1-2 moles of fatty acid or by transesterifying the polyols with 1-2 moles of fatty acid methyl ester suitable.
  • suitable polyols are propylene glycol, glycerol, erythritol, triethylolpropane, pentaerythritol, sorbitol, diglycerol, aldoses such as glucose or mannose, ketoses such as fructose or disaccharides such as sucrose, maltose or lactose or alkylglycosides, for example methylglucoside, butylglucoside or laurylglucoside, with an average degree of oligomerization of 1-2.
  • Suitable fatty acid polyol partial esters are, for example, the technical ones Glycerol or sorbitan monoesters of lauric acid, myristic acid or of technical coconut fatty acid C8-Ci4 cuts. Sorbitan monolaurate and lauric acid onoglyceride are preferably used.
  • Other suitable fatty acid-polyol partial esters are, for example, triglycerol diisostearate, methylgucoside sesquistearate, laurylglucoside monolaurate.
  • L is the proportion of alkyl or acyl groups in% by weight of the molecular weight.
  • the emulsifier combination (B) is preferably used in an amount of 0.2-0.5 parts by weight per part by weight of the oil phase (A).
  • higher amounts of up to 1.5 parts by weight per part by weight of the oil component may be required.
  • the water content of the microemulsions according to the invention is preferably 0.5 to 2 parts by weight of H2O per part by weight of the oil phase. se.
  • the microemulsions according to the invention can be diluted with water without changing the particle size.
  • the area of existence of the microemulsions according to the invention can also be expanded by dissolving electrolyte salts in the water phase, which makes microemulsions with a particularly high water content accessible.
  • Suitable electrolyte salts are, in particular, the ammonium, alkali and alkaline earth halides and the ammonium, alkali and magnesium sulfates and hydrogen sulfates, preferably in an amount of 0.02 to 2% by weight of the water phase.
  • Suitable electrolytes are e.g. Sodium chloride, sodium sulfate, magnesium chloride, ammonium chloride and ammonium sulfate.
  • Ionic surfactants can also be incorporated into the microemulsions according to the invention without the transparency and the particle size being impaired.
  • Suitable anionic surfactants are e.g.
  • Cio-Ciö fatty alcohol sulfate salts fatty alcohol polyglycol ether sulfate salts, acyl isethionate salts, acyl acid salts, sulfosuccinic acid monoester salts, soaps, fatty acid oligopeptide condensates (amide soaps) and fatty acid monoglyceride surfactants, sulfate compatible and other skin compatible sulfate anionics preferably in the form of their water-soluble ammonium, alkanolammonium, alkali or magnesium salts.
  • amphoteric, zwitterionic and cationic surfactants are also suitable.
  • microemulsions according to the invention are suitable as carriers for a large number of cosmetic or pharmaceutical active ingredients, but, owing to the clearly solubilized oil component, also as skin care lotion or make-up removal lotion.
  • the microemulsions according to the invention are converted into cosmetic cleaning agents which are of interest from an application point of view, for example of the type of foam bath and shower bath preparations, liquid soaps and body cleaning solutions which, owing to the stable and clearly solubilized oil components, have a particularly good skin and have mucosal compatibility.
  • the microemulsions according to the invention are prepared by mixing the components and simply stirring, e.g. using conventional emulsifying and homogenizing devices.
  • the water-soluble components e.g. the alkylglycoside (B1) as a concentrated solution in part of the water and the oil-soluble components, e.g. the fatty acid-polyol partial glyceride (B2) dissolved in the oil phase and the phases mixed in the usual way.
  • Ionic surfactants and the remaining amount of water are then added with stirring.
  • the use of heat is not necessary here, at most heat must be added to accelerate the dissolution of solid components.
  • the microemulsions according to the invention can contain customary auxiliaries and additives, e.g. Contain dyes, preservatives, fragrances and buffer substances for pH adjustment without the microemulsion form being disturbed.
  • auxiliaries and additives e.g. Contain dyes, preservatives, fragrances and buffer substances for pH adjustment without the microemulsion form being disturbed.
  • the transparency was determined using a Mettler photometer, model 662.
  • the mean particle size was determined on the principle of quasi-elastic light scattering using a Zetasizer 3 (from Malvern). Examples
  • Plantaren 1200 (1) 10 3.3 2 1.0 1.0 Sorbitan ono1aurat 10 3.3 2 1.0 1.0 C ⁇ 2_i4 fatty alcohol + 2.5 E0 (narrow ranks ethoxylate) _ _ _ _ 1.8 fatty alcohol ether sulfate (3) - - - - 9.0 water (+ citric acid to pH - 6 45 81.7 89 94.5 83.7
  • the phases were heated to 40 ° C., then the oil phase was emulsified into the aqueous phase with stirring. Homogeneous, optically isotropic microemulsions were formed. Small proportions of coarser emulsion particles (100 - 300 nm) can cause a sharp decrease in transparency (measured as transmission at 650 nm).
  • Emulsions No. 13-15 were obtained by diluting emulsion No. 7 with water, emulsion No. 16 by diluting emulsion No. 7 with a shampoo.
  • Plantaren 1200 alkyl (Ci2-i6) oligo (1,4) glucoside
  • Plantaren 2000 alkyl (C8_i6) oligo (1,4) glucoside

Abstract

Mikroemulsionen einer flüssigen Ölphase (A), die zu mehr als 70 Gew.-%, bevorzugt ausschließlich aus Kohlenwasserstoffen oder Dialkylethern mit jeweils wenigstens 10 C-Atomen bestehen, lassen sich bevorzugt unter Verwendung einer Emulgatorkombination (B) aus (B1) einem Alkylglykosid der Formel R1O(G))x, in der R1 eine lineare Alkylgruppe mit 8 bis 14 C-Atomen, G ein Glykosid-Rest und x dessen mittlerer Oligomerisationsgrad eine Zahl von 1 bis 3 ist, und (B2) einem Fettsäure-Polyol-Partialester mit einem HLB-Wert unter 11 aus einer Fettsäure mit 10 - 18 C-Atomen und einem Polyol mit 2 - 8 Hydroxylgruppen herstellen. Bevorzugt eignen sich Oligoglucoside der genannten Formel, in der R1 eine C¿8?-C12-Alkylgruppe und (G)x ein Oligoglucosidrest mit einem mittleren Oligomerisationsgrad x von 1 bis 2 ist. Als Fettsäure-Polyol-Partialester sind die technischen Glycerin- oder Sorbitan-Monoester der Laurinsäure, Myristinsäure und von technischen C8-C14-Kokosfettsäure-Schnitten geeignet.

Description

"Mikroemulsionen"
Die Erfindung betrifft Mikroemulsionen und ein Verfahren zu ihrer Herstellung, bei welchem als Emulgator eine Kombination aus einem Alkylglykosid und einem Fettsäure-Polyolester zum Einsatz kommt.
Mikroemulsionen sind optisch isotrope, thermodynamisch stabile Sy¬ steme, die eine wasserunlösliche Ölkomponente, Emulgatoren und Was¬ ser enthalten. Das klare bzw. transparente Aussehen der Mikroemul¬ sionen ist eine Folge der geringen Teilchengröße der dispergierten Emulsionströpfchen, die im wesentlichen unter 300 nm liegt, wobei im Bereich zwischen 100 und 300 nm feinteilige, in der Durchsicht braunrot und im Auflicht bläulich schimmernde und im Bereich unter 100 nm optisch klare Mikroemulsionen auftreten. Die Tröpfchengröße von Makroemulsionen liegt im wesentlichen über 300 nm.
Mikroemulsionen sind in der Literatur häufig beschrieben, ihre ge¬ zielte Herstellung ist aber mit großen Schwierigkeiten verbunden, da die Existenzbereiche der Mikroemulsion in dem aus Ölkomponente, Was- ser und E ulgatoren gebildeten Dreiphasen-Diagramm meist sehr klein sind und die Lage dieser Existenzbereiche in hohem Maße von struk¬ turellen Merkmalen aller Komponenten und aller weiteren Inhaltsstof¬ fe solcher Systeme stark beeinflußt wird.
Mikroemulsionen haben wegen ihrer gegenüber Makroemulsionen höheren Stabilität, feineren Verteilung der inneren Phase, der meist höheren Effektivität und der besseren transdermalen Penetration der darin eingearbeiteten Wirkstoffe eine erhebliche Bedeutung bei der Formu¬ lierung kosmetischer und pharmazeutischer Zubereitungen. Es besteht daher ein Bedürfnis an zuverlässigen Verfahren zur Erzeugung von Mikroemulsionen.
In DE-A-40 33 928 sind Öl-in-Wasser-Emulsionen wasserunlöslicher Ölkomponenten beschrieben, die als Emulgator ein Alkylglucosid ent¬ halten. Mikroemulsionen von Kohlenwasserstoffen sind dort nicht of¬ fenbart.
Aus Langmuir 9 (1993), No. 11, Seiten 2921 - 2925 ist der Existenz¬ bereich für eine Mikroemulsion des Cyclohexans unter Verwendung von Alkylglucosid als Emulgatorko ponente und bei sehr niedrigen Emulga- torkonzentrationen bekannt.
Es wurde nun gefunden, daß höhermolekulare Kohlenwasserstoffe und Dialkylether mit wenigstens 10 C-Atomen in Mikroemulsionen mit einem breiten Existenzbereich überführt werden können, wenn man als Emul¬ gator eine Kombination aus einem kurzkettigen Alkylglykosid und einem Fettsäure-Polyol-Partialester mit einem HLB-Wert unter 11 ein¬ setzt.
Gegenstand der Erfindung ist demnach eine Mikroemulsion einer was¬ serunlöslichen Ölphase (A) in Wasser (C), wobei die Ölphase (A) bei 20°C flüssig ist und zu mehr als 70 Gew.-%, bevorzugt ausschließ- lieh, aus Kohlenwasserstoffen oder Dialkylethem mit jeweils wenig¬ stens 10 C-Atomen oder deren Mischungen besteht und als Emulgator (B) eine Kombination aus
(Bl) einem Alkylglykosid der Formel R^GJJx, in der R1 eine lineare Alkylgruppe mit 8 bis 14 C-Atomen, G ein Glykosid- Rest und x dessen mittlerer Oligomerisationsgrad eine Zahl von 1 bis 3 ist, und
(B2) einem Fettsäure-Polyol-Partialester mit einem HLB-Wert unter 11 aus einer Fettsäure mit 10 bis 18 C-Atomen und einem Polyol mit 2 - 8 Hydroxylgruppen
enthalten ist.
Als Olkomponenten eignen sich bevorzugt flüssige Kohlenwasserstoffe oder Dialkylether mit 10 - 32 C-Atomen. Es können aber auch höhermo¬ lekulare oder feste Paraffine im Gemisch mit diesen eingesetzt wer¬ den, solange das Gemisch bei 20°C flüssig bleibt. Geeignete Kohlen¬ wasserstoffe sind z.B. n-Decan, n-Dodecan, n-Tetradecan, n-Hexade- can, Isohexadecan, l,3-Di-(2-ethylhexyl)-cyclohexan, Triisobuten, Pentapropylen und andere flüssige Oligoolefine sowie deren Hydrie¬ rungsprodukte, Paraffinöle und Squalan.
Geeignete Dialkylether sind z.B. Lauryl-butylether, Myristyl-methyl- ether, Cetyl-hexylether, Di-n-octylether, Di-n-decylether, Decyl- octylether, Di-n-laurylether. Bevorzugt geeignet sind die aliphati- schen Dialkylether*mit jeweils 6 - 10 C-Atomen pro Alkylgruppe.
Als Olkomponenten können darüber hinaus auch andere, insbesondere in der Kosmetik gebräuchliche Öle, z.B. Ester, Triglyceride oder Fett¬ alkohole mitverwendet werden. Ihr Anteil sollte jedoch nicht mehr als 25 Gew.-% der wasserunlöslichen Ölphase ausmachen. Alkylglykoside (Bl), ihre Herstellung und Verwendung als oberflä¬ chenaktive Stoffe sind beispielsweise aus DE 19 43 689 oder aus DE 3827 543 bekannt. Ihre Herstellung erfolgt durch Umsetzung von Glucose oder von Oligosacchariden mit primären Alkoholen mit 8 bis 14 C-Atomen oder durch U acetalisierung von Stärke mit z.B. niederen Alkoholen und erneute Umacetalisierung mit dem Cß-C^-Fettalkohol.
Bezüglich des Glykosidrestes gilt, daß sowohl Monoglykoside, bei denen ein cyclischer Zuckerrest glykosidisch an den Fettalkohol ge¬ bunden ist, als auch oligomere Glykoside mit einem Oligomerisations¬ grad bis etwa 3 geeignet sind. Geeignete Alkylglykoside für die Herstellung der erfindungsgemäßen Mikroemulsion sind solche der allgemeinen Formel R*0 - (G)x, worin R1 einen aliphatischen Rest eines primären Fettalkohols mit 8 bis 14 C-Atomen und (G)x ein Oligoglucosid-Rest mit einem mittleren Oligomerisationsgrad x von 1 bis 3 ist. Speziell bevorzugt sind Oligoglucoside der vorgenannten allgemeinen Formel, worin R* eine lineare Alkylgruppe mit 8 bis 12 C-Atomen und (G)x einen Oligoglucosidrest mit einem mittleren Oli¬ gomerisationsgrad x von 1 bis 2 bedeutet. Es können auch technische Gemische mit geringen Anteilen an Cjö-Alkylglykosiden eingesetzt werden. Der mittlere Oligomerisationsgrad ergibt sich aus den mola¬ ren Anteilen der einzelnen Oligo eren durch Division der Summe der Struktureinheiten durch die Summe der Moleküle (vgl. Principles of Polymer Chemistry, Paul J. Flory, Cornell University Press, Ithaca, New York 1953, Seite 35 - 36).
Als lipophile Coemulgatoren geeignete Fettsäure-Polyol-Partialester (B2) sind bevorzugt die Monoester oder die bei der Veresterung der Polyole mit 1 - 2 Mol Fettsäure oder durch Umesterung der Polyole mit 1 - 2 Mol Fettsäuremethylester erhaltenen technischen Gemische aus Monoestern, Diestern und freiem Polyol geeignet. Als Polyole eignen sich z.B. Propylenglykol, Glycerin, Erythrit, Tri ethylolpro- pan, Pentaerythrit, Sorbit, Diglycerin, Aldosen wie z.B. Glucose oder Mannose, Ketosen wie z.B. Fructose oder Disaccharide wie Sac¬ charose, Maltose oder Lactose oder Alkylglycoside, z.B. Methylglu- cosid, Butylglucosid oder Laurylglucosid, mit einem mittleren Oligo¬ merisationsgrad von 1 - 2. Geeignete Fettsäure-Polyol-Partialester sind z.B. die technischen Glycerin- oder Sorbitan-Monoester von Laurinsäure, Myristinsäure oder von technischen Kokoksfettsäure- C8-Ci4-Schnitten. Bevorzugt werden Sorbitan-monolaurat und Laurin- säure onoglycerid verwendet. Andere geeignete Fettsäure-Polyol-Par¬ tialester sind z.B. Triglycerin-diisostearat, Methylgucosid-sesqui- stearat, Laurylglucosid-monolaurat.
Der HLB-Wert solcher Fettsäure-Polyol-Partialester kann dabei er¬ rechnet werden nach der Formel
HLB = ____________
wobei L der Anteil an Alkyl- oder Acylgruppen in Gew.-% der Molekül¬ masse ist.
Die Emulgatorkombination (B) wird bevorzugt in einer Menge von 0,2 - 0,5 Gewichtsteilen pro Gewichtsteil der Ölphase (A) eingesetzt. Für Mikroemulsionen, die ohne Änderung der Teilchengröße stark verdünn¬ bar sein sollen, können höhere Mengen von bis zu 1,5 Gewichtsteilen pro Gewichtsteil der Ölkomponente erforderlich sein.
Das Mengenverhältnis von Emulgator (Alkylglykosid) zu Coemulgator (Fettsäure-Polyol-Partialester) kann (Bl) : (B2) = 1 : (0,3 - 3) betragen.
Der Wassergehalt der erfindungsgemäßen Mikroemulsionen beträgt be¬ vorzugt 0,5 bis 2 Gewichtsteile H2O auf ein Gewichtsteil der Ölpha- se. Die erfindungsgemäßen Mikroemulsionen lassen sich jedoch mit Wasser ohne Änderung der Teilchengröße verdünnen.
Der Existenzbereich der erfindungsgemäßen Mikroemulsionen läßt sich auch dadurch erweitern, daß in der Wasserphase Elektrolytsalze ge¬ löst werden, wodurch Mikroemulsionen mit besonders hohem Wasserge¬ halt zugänglich sind. Geeignete Elektrolytsalze sind insbesondere die Ammonium-, Alkali- und Erdalkalihalogenide und die Ammonium-, Alkali- und Magnesium-Sulfate und Hydrogensulfate, bevorzugt in einer Menge von 0,02 bis 2 Gew.-% der Wasserphase. Geeignete Elek- trolyte sind z.B. Natriumchlorid, Natriumsulfat, Magnesiumchlorid, Ammoniumchlorid und Ammoniumsulfat.
Ebenso lassen sich auch ionische Tenside in die erfindungsgemäßen Mikroemulsionen einarbeiten, ohne daß die Transparenz und die Teil¬ chengröße beeinträchtigt werden. Bevorzugt eignen sich hierfür was¬ serlösliche, ionische Tenside in einer Menge bis zu etwa 0,2 Ge¬ wichtsteilen, bezogen auf 1 Gewichtsteil der Ölphase. Geeignete anionische Tenside sind z.B. Cio-Ciö-Fettalkoholsulfat-salze, Fett- alkoholpolyglykolethersulfat-salze, Acylisethionat-salze, Acyltau- rid-salze, Sulfobernsteinsäuremonoester-salze, Seifen, Fettsäure- Oligopeptid-Kondensate (Amidseifen) und Fettsäuremonoglycerid-sul- fate und andere hautverträgliche anionische Tenside, bevorzugt in Form ihrer wasserlöslichen Ammonium-, Alkanolammonium-, Alkali- oder Magnesiumsalze. Darüber hinaus eignen sich auch amphotere, zwitter¬ ionische und kationische Tenside.
Die erfindungsgemäßen Mikroemulsionen eignen sich als Träger für eine Vielzahl kosmetischer oder pharmazeutischer Wirkstoffe, aber aufgrund der klar solubilisierten Ölkomponente auch als Hautpflege¬ lotion oder Abschminklotion. Durch Einarbeitung der schaumstarken, anionischen Tenside werden die erfindungsgemäßen Mikroemulsionen in anwendungstechnisch interessan¬ te kosmetische Reinigungsmittel, z.B. vom Typ der Schaumbad- und Duschbadzubereitungen, der flüssigen Seifen und Körperreinigungslo¬ tionen überführt, die aufgrund der stabil und klar solubilisierten Olkomponenten eine besonders gute Haut- und Schleimhautverträglich¬ keit aufweisen.
Die Herstellung der erfindungsgemäßen Mikroemulsionen erfolgt durch Vermischen der Komponenten und einfaches Rühren, z.B. unter Einsatz von üblichen Emulgier- und Homogenisier-Vorrichtungen. Bevorzugt werden hierzu die wasserlöslichen Komponenten, z.B. das Alkylglyko¬ sid (Bl) als konzentrierte Lösung in einem Teil des Wassers und die öllöslichen Komponenten, z.B. das Fettsäure-Polyol-Partialglycerid (B2) in der Ölphase gelöst und die Phasen auf übliche Weise ver¬ mischt. Ionische Tenside und die Restwassermenge werden anschließend unter Rühren zugefügt. Die Anwendung von Wärme ist hierbei nicht erforderlich, allenfalls muß zur beschleunigten Auflösung fester Komponenten Wärme zugeführt werden.
Neben den genannten Bestandteilen können die erfindungsgemäßen Mi¬ kroemulsionen übliche Hilfs- und Zusatzstoffe, z.B. Farbstoffe, Kon¬ servierungsstoffe, Duftstoffe und Puffersubstanzen zur pH-Wert-Ein¬ stellung enthalten, ohne daß die Mikroemulsionsform gestört wird.
In den folgenden Beispielen wurde die Transparenz (optische Trans¬ mission) mit einem Mettler-Photometer, Modell 662 bestimmt.
Die mittlere Teilchengröße wurde nach dem Prinzip der quasielasti¬ schen Lichtstreuung unter Verwendung eines Zetasizer 3 (der Fa. Mal- vern) bestimmt. B e i s p i e l e
Nichtionische Mikroemulsionen
Tabelle I
n-Decan 45 n-Dodecan - 45 45 45 - n-Tetradecan - - - - - n-Hexadecan - - - - 45
Plantaren 1200 (1) 6 5 6 5 5
Sorbitan-monolaurat 4 5 - - 5
Glycerin-monolaurat - - 4 5 -
Wasser (+ Zitronensäure bis pH = 6 45 45 45 45 45
Transparenz (% bei 650 nm) 66 36 56 70 23 Tabelle II
8 10 11 12
l,3-Di-(2-ethylhexyl)-cyclohexan
» 45 35 32,3 45,9 16,72 19,0 23,7
Plantaren 1200 (1) 5 10 5,7 3,2 8,36 2,85 2,96 Sorbitanmonolaurat 5 10 10,9 5,6 12,0 - - Glycerin onolaurat - - - - - 5,75 7,10 Fettalkoholethersulfat (3) - - 1,9 0,8 2,79 3,50 4,44 Wasser (+ Zitronensäure bis pH = 6 45 45 - - - 68,9 61,8 Wasser + 1 Gew.-% NaCl - - 48,8 44,0 60,13 - -
Transparenz (% bei 650 nm) 42 42 81 14 59 12 12
Tabelle III
13 14 15 16
l,3-Di-(2-ethylhexyl)-cyclohexan 35 11,6 7 3,5 3,5
»
Plantaren 1200 (1) 10 3,3 2 1,0 1,0 Sorbitan ono1aurat 10 3,3 2 1,0 1,0 Cχ2_i4-Fettalkohol + 2,5 E0 (narrow ränge ethoxylate) _ _ _ _ 1,8 Fettalkoholethersulfat (3) - - - - 9,0 Wasser (+ Zitronensäure bis pH - 6 45 81,7 89 94,5 83,7
Transparenz (% bei 650 n ) 42 63
mittlere Teilchengröße (nm) 271 255 226 158 79
Tabelle VI
17 18 19 20 21 22 23
n-Hexadecan 45 l,3-Di-(2-ethylhexyl)-cyclohexan 35
Di-n-Octylether 32 30 35 35 35 n-Decyloleat 5
Parfümöl 3
Plantaren 1200 10 10
Sorbitanmonolaurat 10 10
Glycerinmonolaurat 10 10 10 10
Laurylglucosid-monolaurat zwitterionisches Tensid (4) kationisches Tensid (5)
Wasser 45 45 45 45 45 45 45
Transparenz (% bei 650 nm) 85 45 40 35,6 40 84,3 83,6
Herstellung der Mikroemulsionen
Olkomponenten und nichtionische Emulgatoren (Alkylglykosid, Fettsäu- re-Polyolester) wurden bei 40°C gemischt. Wasser, Zitronensäure (bis pH = 6) und ggf. Kochsalz sowie ggf. ionisches Tensid wurden eben¬ falls gemischt. Die Phasen wurden auf 40°C erwärmt, dann wurde die Ölphase unter Rühren in die wäßrige Phase einemulgiert. Es bildeten sich homogene, optisch isotrope Mikroemulsionen. Geringe Anteile an gröberen Emulsionsteilchen (100 - 300 nm) können eine starke Abnahme der Transparenz (gemessen als Transmission bei 650 nm) bedingen.
Die Emulsionen Nr. 13 - 15 wurden durch Verdünnung der Emulsion Nr. 7 mit Wasser, die Emulsion Nr. 16 durch Verdünnung der Emulsion Nr. 7 mit einem Shampoo erhalten.
Es wurden folgende Rohstoffe eingesetzt:
(1) Plantaren 1200 : Alkyl(Ci2-i6)-oligo(l,4)-glucosid
(2) Plantaren 2000 : Alkyl(C8_i6)-oligo(l,4)-glucosid
(3) Fettalkoholethersulfat: Alkyl(Ci2_i4)-poly(2)-glykolether- sulfat, Natrium-salz
(4) zwitterionisches Tensid: N-Cβ-iβ-Kokosamidopropyl-dimethyl- ammonium-acetobetain
(5) kationisches Tensid: Cetyl-trimethylarnmonium-chlorid
Die Zahlenangaben in den Tabellen beziehen sich auf Gew.-% wasser¬ freie Aktivsubstanz.

Claims

Patentansprüche
1. Mikroemulsion einer wasserunlöslichen Ölphase (A) in Wasser (C), dadurch gekennzeichnet, daß die Ölphase (A) bei 20°C flüssig ist und zu mehr als 70 Gew.-%, bevorzugt ausschließlich, aus Kohlen¬ wasserstoffen oder Dialkylethem mit jeweils wenigstens 10 C- Ato en oder deren Mischungen besteht und als Emulgator (B) eine Kombination aus
(Bl) einem Alkylglykosid der Formel Rlθ(G))x, in der R eine lineare Alkylgruppe mit 8 bis 14 C-Atomen, G ein Glykosid- Rest und x dessen mittlerer Oligomerisationsgrad eine Zahl von 1 bis 3 ist, und
(B2) einem Fettsäure-Polyol-Partialester mit einem HLB-Wert un¬ ter 11 aus einer Fettsäure mit 10 bis 18 C-Atomen und einem Polyol mit 2 - 8 Hydroxylgruppen
enthalten ist.
2. Mikroemulsion nach Anspruch 1, dadurch gekennzeichnet, daß die Wasserphase ein gelöstes Elektrolytsalz aus der Gruppe der Ammo¬ nium-, Alkali- und Erdalkalihalogenide und der Ammonium-, Alka¬ li- und Magnesiumsulfate und Hydrogensulfate in einer Menge von 0,02 - 2 Gew.-% der Wasserphase enthält.
3. Mikroemulsion nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zusätzlich ein wasserlösliches ionisches Tensid in einer Menge bis zu 0,2 Gewichtsteilen, bezogen auf 1 Gewichtsteil der Ölphase, enthalten ist.
4. Verfahren zur 'Herstellung einer Mikroemulsion gemäß einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß man die wasserlös¬ lichen Komponenten, z.B. das Alkylglykosid (Bl) in Wasser, die öllöslichen Komponenten, z.B. das Fettsäure-Polyol-Partialgly- cerid (B2), in der Ölphase löst und die Phasen intensiv ver¬ mischt.
EP95921741A 1994-05-19 1995-05-10 Mikroemulsionen Withdrawn EP0759737A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4417476 1994-05-19
DE4417476A DE4417476A1 (de) 1994-05-19 1994-05-19 Mikroemulsionen
PCT/EP1995/001765 WO1995031957A1 (de) 1994-05-19 1995-05-10 Mikroemulsionen

Publications (1)

Publication Number Publication Date
EP0759737A1 true EP0759737A1 (de) 1997-03-05

Family

ID=6518434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95921741A Withdrawn EP0759737A1 (de) 1994-05-19 1995-05-10 Mikroemulsionen

Country Status (3)

Country Link
EP (1) EP0759737A1 (de)
DE (1) DE4417476A1 (de)
WO (1) WO1995031957A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529907A1 (de) * 1995-08-15 1997-02-20 Henkel Kgaa Feinteilige Emulsionen enthaltend Zuckertenside
DE19539523A1 (de) * 1995-10-24 1997-04-30 Grace W R & Co Trennmittel für Walzen und Verfahren zur Verbesserung der Trenneigenschaften von Walzen
DE19547986C1 (de) * 1995-12-21 1997-07-10 Henkel Kgaa O/W-Mikroemulsionen
DE19615271A1 (de) * 1996-04-18 1997-10-23 Huels Chemische Werke Ag Tensidhaltige Reinigungsmittel in Form einer Mikroemulsion
DE19624051A1 (de) * 1996-06-17 1997-12-18 Henkel Kgaa Parfümölkonzentrate
DE19624455C2 (de) * 1996-06-20 1998-08-27 Henkel Kgaa Sonnenschutzmittel in Form von O/W-Mikroemulsionen
DE19641672A1 (de) * 1996-10-10 1998-04-16 Beiersdorf Ag Kosmetische oder dermatologische Zubereitungen auf der Basis von ethylenoxidfreien und propylenoxidfreien Emulgatoren zur Herstellung von Mikroemulsionsgelen
DE19751151A1 (de) * 1997-11-19 1999-05-20 Henkel Kgaa Klare Weichspüler mit mikroemulgierten Parfümölen
DE19755488A1 (de) * 1997-12-13 1999-06-24 Henkel Kgaa Mikroemulsionen
DE19852784A1 (de) * 1998-11-16 2000-05-18 Max Planck Gesellschaft Osmotische Stabilisierung von Mini- und Mikroemulsionen und deren Anwendung zur Herstellung von Nanohybridpartikeln
DE19929505B4 (de) * 1999-06-29 2004-08-26 Cognis Deutschland Gmbh & Co. Kg Kosmetische Emulsionen
SE523226C2 (sv) * 2000-05-25 2004-04-06 Akzo Nobel Nv En mikroemulsion innehållande en grenad alkylglykosid
CA2478982A1 (en) * 2002-03-26 2003-10-09 The Procter & Gamble Company Compositions containing sorbitan monoesters
BR0303286B1 (pt) 2003-08-29 2013-08-20 microemulsço cosmÉtica.
EP2505180A1 (de) * 2011-04-01 2012-10-03 Cognis IP Management GmbH Feinteilige Emulsionen enthaltend Mikroemulsionen
JP2014517810A (ja) * 2011-04-01 2014-07-24 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 毛髪ケア剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033928A1 (de) * 1990-10-25 1992-04-30 Henkel Kgaa Oel-in-wasser-emulsionen
DE4010393A1 (de) * 1990-03-30 1991-10-02 Henkel Kgaa Verfahren zur herstellung von oel-in-wasser-cremes
DE4022540A1 (de) * 1990-07-16 1992-01-23 Henkel Kgaa Oel-in-wasser-emulsionen
DE4110506A1 (de) * 1991-03-30 1992-10-01 Huels Chemische Werke Ag Emulgatoren zur herstellung von in der kosmetik oder medizin verwendbaren oel-in-wasser-emulsionen etherischer oele
EP0680314B1 (de) * 1993-01-23 1997-05-07 Henkel Kommanditgesellschaft auf Aktien Detergensgemische mit verbesserten avivageeigenschaften

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9531957A1 *

Also Published As

Publication number Publication date
DE4417476A1 (de) 1995-11-23
WO1995031957A1 (de) 1995-11-30

Similar Documents

Publication Publication Date Title
WO1995031957A1 (de) Mikroemulsionen
EP2550347B1 (de) Verwendung von reinigungsmitteln enthaltend wachshaltige mikroemulsionen
WO1994016668A1 (de) Schäumende emulsionen
DE102006004353A1 (de) Kaltherstellbare, niedrigviskose und langzeitstabile kosmetische Emulsionen
EP1715833A1 (de) Nanoemulsionen
EP0511466B1 (de) Wässrige Tensidzubereitungen mit erhöhter Viskosität
WO1995026707A1 (de) Dialkylether enthaltende mikroemulsionen
EP0845978B1 (de) Translucente antitranspirantien/deodorantien
EP2505180A1 (de) Feinteilige Emulsionen enthaltend Mikroemulsionen
EP1502644A2 (de) Emulgatorkombination, diese enthaltende Emulsion und Verfahren zu deren Herstellung
EP0804280B1 (de) Emulgatoren
EP0300379A2 (de) Alkanolamidfreies Perlglanzkonzentrat
DE19547986C1 (de) O/W-Mikroemulsionen
DE4318171A1 (de) Wäßrige tensidische Zubereitungen
DE19703087C2 (de) Verwendung von PIT-Emulsionen
DE19650473C1 (de) Kosmetische Zubereitungen
DE4435387C2 (de) Pumpfähige wäßrige Tensidkonzentrate
DE19529907A1 (de) Feinteilige Emulsionen enthaltend Zuckertenside
EP0792338B1 (de) Kationische wachsdispersionen
DE60110555T2 (de) Neue familie von zusammensetzungen aus alkylpolyglykosiden und dimerdiolen, insbesondere verwendbar für die herstellung von versprühbaren öl-in-wasser emulsionen
DE19542572C2 (de) Verwendung von Emulgatormischungen
DE19548345C2 (de) Verwendung von Mischungen spezieller Emulgatoren und Ölkörpern
EP0904050B1 (de) Verwendung von milchsäureestern
DE19537836A1 (de) Aerosolemulsionen
DE19612084C2 (de) Verfahren zur Herstellung multipler W/O/W-Emulsionen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19961111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19971006