EP0756289A1 - Conducteurs en aluminium ayant des propriétés de contact électrique améliorées et procédé pour l'obtenir - Google Patents

Conducteurs en aluminium ayant des propriétés de contact électrique améliorées et procédé pour l'obtenir Download PDF

Info

Publication number
EP0756289A1
EP0756289A1 EP96420254A EP96420254A EP0756289A1 EP 0756289 A1 EP0756289 A1 EP 0756289A1 EP 96420254 A EP96420254 A EP 96420254A EP 96420254 A EP96420254 A EP 96420254A EP 0756289 A1 EP0756289 A1 EP 0756289A1
Authority
EP
European Patent Office
Prior art keywords
conductor
treatment
bath
electrochemical treatment
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96420254A
Other languages
German (de)
English (en)
Other versions
EP0756289B1 (fr
Inventor
Richard Marsolais
Gabriel Colombier
Bernard Loreau
Didier Albert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of EP0756289A1 publication Critical patent/EP0756289A1/fr
Application granted granted Critical
Publication of EP0756289B1 publication Critical patent/EP0756289B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the invention relates to the field of electrical conductors in aluminum and more particularly electrical wires with a solid or wired core and the flats, and their aluminum connection devices.
  • the invention also relates to the surface treatments of these conductors.
  • the oxide layer whose electrical conductivity is low, prevents the passage of current at the place where the conductor is connected to the various devices or to the junctions of an electrical circuit.
  • the phenomenon is all the more annoying as the contact resistance can increase over time due to an evolution of the oxide layer under the effect of the passage of current, temperature or environmental conditions.
  • a commonly adopted solution consists in brushing the surfaces to be contacted and covering them with contact greases generally loaded with abrasive materials. This additional operation, most often manual and therefore expensive, hampers the development of aluminum as an electrical conductor.
  • the subject of the invention is an electrical conductor in aluminum alloy containing iron intermetallic phases, characterized in that its surface contains few particles of iron intermetallic phases with an equivalent diameter greater than 0.8 ⁇ m.
  • the electrical conductor in aluminum alloy according to the invention is characterized in that said alloy contains at least 98.5% of aluminum and between 0 and 1.5% of iron by weight, and in that less than 5% particles of intermetallic phases with iron at the surface of the conductor have an equivalent diameter greater than 0.8 ⁇ m. Preferably, less than 2% of said particles have an equivalent diameter greater than 0.8 ⁇ m.
  • the equivalent diameter corresponds to the diameter of a surface circle equivalent to the visible section of the particle.
  • the number and size of iron intermetallic phase particles can be measured by well known surface analysis techniques, such as low energy scanning electron microscopy (SEM) with atomic number contrast combined with a image analysis.
  • the particles of surface iron intermetallic phases include, as illustrated in FIG. 1, all the binary, ternary or other intermetallic particles, such as Al 3 Fe alone or in combination with Mn, Cu, Si, Ni, ..., which are not entirely immersed in the aluminum matrix or which, while being immersed in said matrix, approach within 0.2 ⁇ m of the surface of said matrix.
  • the proportion of iron by weight is between 0.05% and 1.0%.
  • An iron content of less than 0.05% leads to prohibitive manufacturing costs and generally reduces the mechanical characteristics of the conductor.
  • a proportion of iron greater than 1.0% leads to an electrical resistivity of the conductor which exceeds the tolerances normally allowed.
  • Said alloy optionally contains other elements in solid solution or precipitated in simple or intermetallic phase, such as Si, Cu, Mg, etc.
  • Said alloy is advantageously chosen from alloys of the AA1000 and AA6000 series, such as AA1110 (equivalent to AP 131050), AA1370, AA6101 and AA6201.
  • the conductor according to the invention can be obtained by spinning and / or drawing or molding according to known methods.
  • the conductors in the form of wires are preferably obtained by the CLC process (continuous casting and rolling) followed by wire drawing according to known methods.
  • the conductor can be in any metallurgical state compatible with the application.
  • the electrical resistivity of the conductor is preferably less than 3.5 ⁇ .cm, and more preferably less than 3.0 ⁇ .cm.
  • the conductor according to the invention is used in the form of a wire with a solid core, that is to say that it is formed of a single conductive strand possibly coated with an insulating sheath, or wired core, that is to say that it is formed by a set of elementary strands, generally twisted and possibly coated with an insulating sheath.
  • the conductor according to the invention is also advantageously used in electrical connection devices.
  • the conductor according to the invention is advantageously obtained by a method comprising a surface treatment according to the second object of the invention.
  • Said method optionally includes drawing operations which are carried out before and / or after the surface treatment.
  • the aluminum conductor is treated on parade or, in particular in the case of unit parts, by immersion in a succession of tanks.
  • FIG. 2a the most advantageous configuration for parade treatment is that of FIG. 2a.
  • FIG. 2b the two successive treatments are clearly separated as shown in FIG. 2b.
  • These two configurations correspond to a liquid outlet: current is transmitted by an electrode to the electrolyte which in turn transmits it to the conductor to be treated.
  • a direct current outlet which allows good control of the voltage applied to the conductor but poses problems of deterioration of the conductor.
  • Figures 3a and 3b represent two configurations in direct connection: the current is transmitted directly to the conductor to be treated by a mechanical contact.
  • the first treatment is carried out in a very alkaline medium with a pH> 8.
  • a very alkaline medium with a pH> 8.
  • Different electrolytes meeting this criterion can be used but, because of their low cost and their great chemical stability, it is particularly advantageous to use sodium hydroxide (NaOH ) or caustic potash (KOH), concentration between 10 and 100 g / l.
  • NaOH sodium hydroxide
  • KOH caustic potash
  • concentration 10 and 100 g / l.
  • the treatment is carried out at a temperature between 40 ° C and 100 ° C, under an applied voltage between 2 and 10 V. Below 2 V the running speeds are too low ( ⁇ 10 m / min). Above 10 V the treatment leaves a significant residual oxide layer (> 100 ⁇ ) and leads to excessively high contact resistances.
  • the second treatment is carried out in a weakly acidic medium (pH between 4 and 7).
  • a weakly acidic medium pH between 4 and 7
  • Different electrolytes may be suitable such as boric acid, phosphoric acid, tartaric acid.
  • This treatment is carried out at an ambient temperature which depends on the electrolyte, but which is generally between ambient and 60 ° C.
  • Tartaric acid combined with ammonia to give ammonium tartrate proves to be a particularly suitable electrolyte because it gives good results at room temperature.
  • the applied voltage is between 1V and 5V. Below 1V, the treatment gives a too thin layer and leads to poor behavior over time of the contact resistances and the corrosion resistance. Above 5V the oxide layer formed is thick and leads to high contact resistances.
  • the immersion times or the running speed and the various treatment parameters, in particular the applied voltage are adjusted.
  • detergents or emulsifiers can be added to the electrolyte, according to a known technique, intended to limit pollution of the bath, electrodes and mechanisms by greases.
  • a nitric acid neutralization tank can be added between the two electrochemical treatments which substantially improves the results obtained.
  • Figure 1 shows a schematic cross section of an aluminum conductor according to the invention.
  • the conductor is formed of a matrix (1), particles of intermetallic phases with iron (2, 3, 4), possibly particles of intermetallic phases without iron (5) and possibly elements in solid solution.
  • the particles on the surface include particles brushing on the surface (2) and particles immersed in the aluminum matrix and approaching the surface from a distance P less than 0.2 ⁇ m, such as the particle (3).
  • FIG. 2a represents the preferred configuration of the invention with a liquid current socket.
  • the conductor (10) circulates continuously in the treatment tanks (13, 14 and 15) using, in the case of a wire, an unwinder (11) and a reel (12).
  • an alternating voltage (18) induces an alternating current in the conductor (10) using the electrodes (19 and 20).
  • a direct voltage (17) induces a direct current in the conductor (10) using the electrodes (20 and 21), the conductor (10) being in anodic polarization in the tank (15).
  • Figure 2b shows another configuration with a liquid outlet.
  • a tank (16) and an electrode additional (22) have been added to separate the two treatments, while maintaining the principle of taking liquid current.
  • Figures 3a and 3b show two other configurations with direct connection to the conductor (30 and 31).
  • Figure 4 is a diagram of the contact resistance measurement method.
  • FIG. 5 is a diagram of the test loop for the thermal cycling test.
  • Six junction fittings (50) are joined together by the conductors under test (51), one of which is used as a reference (52).
  • the temperature of the reference conductor (52) is measured in the middle using a thermocouple (53).
  • Voltage drop measurement points (54) are arranged at a distance (L) on either side of the center of each junction connection (50).
  • Two voltage drop measurement points (55) separated by a distance (Lo) are also arranged on the reference conductor (52).
  • the test loop is connected to a power supply (60) which delivers either an alternating current, for thermal cycling, or a direct current for resistance measurements of the fittings and the reference conductor.
  • FIG. 6 shows the distribution of the sizes of particles of intermetallic phases with iron of a conductor of aluminum alloy AA 1370 according to the prior art (a, b) and according to the invention (c, d).
  • the ordinate gives the frequency of appearance of the particles.
  • the distributions a and c correspond to the equivalent diameter of the particles; the distributions b and d correspond to the maximum dimension.
  • FIG. 7 shows the distribution of the sizes of particles of intermetallic phases with iron of an aluminum alloy conductor AP 131050 according to the prior art (a, b) and according to the invention (c, d).
  • the ordinate gives the frequency of appearance of the particles.
  • the distributions a and c correspond to the diameter equivalent of particles; the distributions b and d correspond to the maximum dimension.
  • Examples 1 to 4 relate to conductors in the form of wires. In these examples, drivers have undergone the following tests:
  • the so-called crossed wire method was used, the principle of which is illustrated in FIG. 4.
  • Two wires were held and put under mechanical tension (T) by stirrups and then brought into contact gently .
  • a force F was applied to the contact which resulted in a deflection of the wires.
  • a current I was imposed on the circuit and the resulting voltage U was then measured.
  • the contact resistance was measured at a large number of points on the wire, namely about fifty points on three generators, i.e. 150 points in total and on three different samples.
  • the quality of the contact was expressed in terms of the mean value of the 10 best values, Rc.
  • the measurement was carried out under a force (F) of 5 newtons, for ⁇ 0.8 and 3 newtons for ⁇ 0.5, an intensity of 100 mA and a voltage in 20 mV open circuit.
  • the test loop was subjected to 200 thermal cycles by passing an overcurrent which brought the reference conductors to 120 ° C. Each cycle included a 15 minute warm up period and a 15 minute natural cool down period.
  • the evaluation of the contact resistance was carried out using the measurement of the junction resistance. For this we imposed an intensity (Io) in the loop and we measured the voltage drop (Uo) between two points each located at a distance (L) and on either side of the center of the fitting, the conductors being naked in these places.
  • the change in the junction resistance of all the fittings was given by the change in the ratio (K) between the start and the end of the test, which change was expressed as a percentage.
  • the distance (L) was 125 mm, the length (Lo) 254 mm and the intensity (Io) of 1A.
  • the wires treated according to the invention were exposed to a salt spray (5% NaCl) for 96 hours. At the end of this period, a new measurement of the contact resistance was carried out using the crossed wire method.
  • Lot A came from a spool of raw wire.
  • Lot B has undergone a surface treatment according to the invention, by scrolling in successive tanks: the AC treatment was carried out in a 60 ° C. bath containing 50 g / l of 98% pure NaOH and at a voltage of 5 V, the scrolling speed being 12 m / min ; the DC treatment was carried out in a bath containing 30 g / l of tartaric acid, the pH of which had been adjusted to 5 using ammonia, and at a voltage of 1 V.
  • Lot A came from a spool of raw wire.
  • Lot B underwent a surface treatment according to the invention, by scrolling through successive tanks, with an intermediate neutralization phase: the treatment with alternating current was carried out in a bath at 62 ° C.
  • the DC treatment was carried out in a bath containing 30 g / l of tartaric acid, the pH of which had been adjusted to 5 using ammonia, and at a voltage of 1 V; the intermediate neutralization treatment was carried out in a 69% nitric acid bath.
  • Lot A came from a coil of nickel-plated wire (obtained from the Tréfileries et Laminoirs de la M joserrateil (TLM), from the ALCATEL CABLE group).
  • Lot B came from a spool of raw, unshaven wire and was kept untreated.
  • Batches C, D and E come from a spool of wire having undergone a shaving phase during drawing. Lot C was kept without treatment.
  • Lot D underwent the anodization treatment of the prior art, in a bath containing 100 g / l of phosphoric acid, at an alternating voltage of 5 V, at a temperature of 75 ° C and at a running speed of 60 m / min.
  • Lot E underwent a surface treatment according to the invention, with an intermediate neutralization phase, by passing through successive tanks: the treatment with alternating current was carried out in a bath at 65 ° C. containing 50 g / l of NaOH 98% pure and at a voltage of 7.5 V, the running speed being 48 m / min; the DC treatment was carried out in a bath containing 30 g / l of tartaric acid, the pH of which had been adjusted to 5.5 with ammonia, and under a 1.5 V voltage; the intermediate neutralization treatment was carried out in a 69% nitric acid bath.
  • the corrosion pits observed on the wires of lot B are much less deep than those observed on the wires of lot A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

L'invention a pour objet un conducteur électrique en alliage d'aluminium contenant des phases intermétalliques au fer caractérisé en ce que sa surface contient peu de particules de phases intermétalliques au fer de diamètre supérieur à 0,8 µm. L'invention a pour deuxième objet un traitement de surface de fils électriques en aluminium permettant d'obtenir les conducteurs électriques selon l'invention et caractérisé en ce qu'il comporte successivement : un premier traitement électrochimique en courant alternatif dans un milieu très alcalin (pH > 8) ; éventuellement, un traitement chimique de neutralisation ; un deuxième traitement électrochimique en courant continu dans un milieu faiblement acide de pH entre 4 et 7. <IMAGE>

Description

    Domaine de l'invention
  • L'invention concerne le domaine des conducteurs électriques en aluminium et tout particulièrement les fils électriques à âme massive ou câblée et les méplats, et leurs dispositifs de raccordement en aluminium. L'invention concerne également les traitements de surface de ces conducteurs.
  • Le mot "aluminium" s'entend au sens large de l'aluminium et ses alliages. Il en sera ainsi dans toute la suite du texte.
  • Etat de la technique et problème posé
  • Le développement de l'aluminium dans les conducteurs électriques, où il est en compétition en particulier avec le cuivre, est souvent limité par ses propriétés de contact électrique. On attribue généralement aux caractéristiques mécaniques et aux propriétés de surface de l'aluminium, l'évolution des caractéristiques d'un contact électrique, telles que la résistance de contact, qui est observée dans certaines conditions avec les conducteurs en aluminium. En particulier, il est connu que les conducteurs en aluminium peuvent se déformer légèrement de manière plastique après la réalisation du contact électrique sous l'effet notamment des variations de température et des échauffements. D'autre part, il est connu que l'aluminium se recouvre naturellement d'une couche d'oxyde qui présente l'avantage de le protéger de la corrosion mais qui s'avère un inconvénient dans le cas des applications électriques. En effet la couche d'oxyde, dont la conductivité électrique est faible, s'oppose au passage du courant à l'endroit où le conducteur est raccordé aux différents appareils ou aux jonctions d'un circuit électrique. Le phénomène est d'autant plus gênant que la résistance de contact peut augmenter avec le temps à cause d'une évolution de la couche d'oxyde sous l'effet du passage du courant, de la température ou des conditions d'environnement.
  • On connaît plusieurs alliages d'aluminium qui offrent une bonne tenue dans le temps des propriétés de contact électrique, tels que le AA 1370, le AA 1310 ou le AA 6101. Cependant, il est bien connu que, pour certaines applications, les conducteurs en aluminium doivent subir un traitement de surface complémentaire afin de diminuer la résistance de contact et de mieux maîtriser son évolution dans le temps.
  • Une solution communément adoptée consiste à brosser les surfaces à mettre en contact et à les recouvrir de graisses de contact généralement chargées de matières abrasives. Cette opération supplémentaire, le plus souvent manuelle et donc coûteuse, est un frein au développement de l'aluminium comme conducteur électrique.
  • Il a également été suggéré de déposer sur les fils conducteurs en aluminium une couche de métal de qualité électrique. Les procédés de dépôt les plus connus consistent, après une préparation de la surface, à déposer une couche d'étain ou de nickel, généralement sur sous-couche cuivre par voie chimique ou électrochimique. On peut citer par exemple le procédé décrit par le brevet est-allemand DD 150084. Le dépôt de métal a un effet bénéfique sur le plan de la résistance de contact mais présente deux inconvénients : d'une part le traitement est coûteux, d'autre part la tenue à la corrosion galvanique dans les environnements agressifs est insuffisante. Ceci explique le faible développement de ces procédés qui sont réservés à des applications très particulières comme l'aéronautique.
  • Il a également été suggéré d'effectuer une anodisation. Selon le procédé du brevet français FR 2298619, le conducteur est soumis à l'action d'un courant alternatif dans une solution aqueuse contenant de l'acide phosphorique. Ce procédé, vieux maintenant de plus de 20 ans, n'a eu aucun développement industriel, car les tests de laboratoire décrits dans ce brevet, qui faisaient état de faibles résistances de contact obtenues grâce à ce procédé, se sont avérés non représentatifs de la situation industrielle.
  • En effet, la demanderesse a constaté que, pour présenter un intérêt sur le plan industriel, les conducteurs en aluminium doivent, sur le plan des propriétés d'usage, présenter simultanément une résistance de contact faible et uniforme pour de faibles forces de contact, une grande stabilité dans le temps des raccordements électriques avec et sans passage de courant électrique et une tenue à la corrosion satisfaisante.
  • Ainsi, sur la base de tests représentatifs des conditions d'utilisation, la demanderesse a recherché des conducteurs en aluminium qui possèdent les propriétés d'usage recherchées et qui puissent être produits à des coûts compétitifs.
  • Objet de l'invention
  • L'invention a pour objet un conducteur électrique en alliage d'aluminium contenant des phases intermétalliques au fer caractérisé en ce que sa surface contient peu de particules de phases intermétalliques au fer de diamètre équivalent supérieur à 0,8 µm.
  • L'invention a pour deuxième objet un traitement de surface de conducteurs électriques en aluminium permettant d'obtenir les conducteurs électriques selon l'invention et caractérisé en ce qu'il comporte successivement :
    • un premier traitement électrochimique en courant alternatif dans un milieu très alcalin (pH > 8);
    • éventuellement, un traitement chimique de neutralisation ;
    • un deuxième traitement électrochimique en courant continu dans un milieu faiblement acide de pH entre 4 et 7.
    Description de l'invention
  • Le conducteur électrique en alliage d'aluminium selon l'invention est caractérisé en ce que ledit alliage contient au moins 98,5 % d'aluminium et entre 0 et 1,5 % de fer en poids, et en ce que moins de 5 % des particules de phases intermétalliques au fer en surface du conducteur ont un diamètre équivalent supérieur à 0,8 µm. De préférence, moins de 2% des dites particules ont un diamètre équivalent supérieur à 0,8 µm.
  • Le diamètre équivalent correspond au diamètre d'un cercle de surface équivalente à la section visible de la particule. Le nombre et la taille des particules de phases intermétalliques au fer peuvent être mesurés par des techniques d'analyse de surface bien connues, telles que la microscopie électronique à balayage (MEB) à basse énergie avec contraste de numéro atomique combinée à un dispositif d'analyse d'image.
  • Les particules de phases intermétalliques au fer en surface incluent, tel qu'illustré à la figure 1, toutes les particules intermétalliques binaires, ternaires ou autres, telles que l'Al3Fe seul ou en combinaison avec Mn, Cu, Si, Ni, ..., qui ne sont pas entièrement immergées dans la matrice aluminium ou qui, tout en étant immergées dans ladite matrice, s'approchent à moins de 0,2 µm de la surface de ladite matrice.
  • De préférence, la proportion de fer en poids se situe entre 0,05% et 1,0%. Une proportion de fer inférieure à 0,05 % entraîne des coûts de fabrication prohibitifs et réduit généralement les caractéristiques mécaniques du conducteur. Une proportion de fer supérieure à 1,0% entraîne une résistivité électrique du conducteur qui excède les marges de tolérances normalement admises.
  • Ledit alliage contient éventuellement d'autres éléments en solution solide ou précipités en phase simple ou intermétallique, tels que Si, Cu, Mg, ... Ledit alliage est avantageusement choisi parmi les alliages des séries AA1000 et AA6000, tels que AA1110 (équivalent au AP 131050), AA1370, AA6101 et AA6201.
  • Le conducteur selon l'invention peut être obtenu par filage et/ou tréfilage ou moulage selon des procédés connus. Les conducteurs sous forme de fils sont obtenus de préférence par le procédé CLC (coulée et laminage en continu) suivi d'un tréfilage selon les procédés connus.
  • Le conducteur peut être dans tout état métallurgique compatible avec l'application.
  • La résistivité électrique du conducteur est de préférence inférieure à 3,5 µΩ.cm, et de préférence encore inférieure à 3,0 µΩ.cm.
  • Selon un mode de réalisation, le conducteur selon l'invention est utilisé sous forme de fil à âme massive, c'est-à-dire qu'il est formé d'un seul brin conducteur éventuellement revêtu d'une gaine isolante, ou à âme câblée, c'est-à-dire qu'il est formé d'un ensemble de brins élémentaires, généralement torsadés et éventuellement revêtus d'une gaine isolante. Le conducteur selon l'invention est aussi avantageusement utilisé dans les dispositifs de raccordement électrique.
  • Le conducteur selon l'invention est avantageusement obtenu par un procédé comportant un traitement de surface selon le deuxième objet de l'invention. Ledit procédé comprend éventuellement des opérations de tréfilage qui sont effectuées avant et/ou après le traitement de surface.
  • Selon le traitement de surface du deuxième objet de l'invention, le conducteur en aluminium est traité au défilé ou, notamment dans le cas des pièces unitaires, par immersion dans une succession de cuves.
  • Dans le cas des fils, la configuration la plus avantageuse pour le traitement au défilé est celle de la figure 2a. Mais il est possible également d'utiliser une configuration où les deux traitements successifs sont nettement séparés comme représenté à la figure 2b. Ces deux configurations correspondent à une prise de courant liquide : le courant est transmis par une électrode à l'électrolyte qui le transmet à son tour au conducteur à traiter. On peut également utiliser une prise de courant directe qui permet de bien contrôler la tension appliquée au conducteur mais pose des problèmes de détérioration du conducteur. Les figures 3a et 3b représentent deux configurations en prise directe : le courant est transmis directement au conducteur à traiter par un contact mécanique.
  • Le premier traitement est effectué dans un milieu très alcalin de pH > 8. Différents électrolytes répondant à ce critère peuvent être utilisés mais, du fait de leur faible coût et de leur grande stabilité chimique, il est particulièrement avantageux d'utiliser la soude (NaOH) ou la potasse (KOH) caustiques, de concentration entre 10 et 100 g/l. Le traitement est effectué à une température comprise entre 40°C et 100°C, sous une tension appliquée comprise entre 2 et 10 V. En dessous de 2 V les vitesses de défilement sont trop faibles (< 10 m/min). Au-dessus de 10 V le traitement laisse une couche d'oxyde résiduelle importante (> 100 Å) et conduit à des résistances de contact trop élevées.
  • Le deuxième traitement est effectué dans un milieu faiblement acide (pH entre 4 et 7). Différents électrolytes peuvent convenir comme l'acide borique, l'acide phosphorique, l'acide tartrique. Ce traitement est effectué à une température ambiante qui dépend de l'électrolyte, mais qui se situe généralement entre l'ambiante et 60°C. L'acide tartrique combiné à l'ammoniaque pour donner du tartrate d'ammonium s'avère un électrolyte particulièrement approprié car il donne de bons résultats à la température ambiante. La tension appliquée est comprise entre 1V et 5V. En-dessous de 1V le traitement donne une couche trop mince et conduit à un mauvais comportement dans le temps des résistances de contact et de la tenue à la corrosion. Au-dessus de 5V la couche d'oxyde formée est épaisse et conduit à des résistances de contact élevées.
  • En fonction de l'alliage et des dimensions du conducteur à traiter, on ajuste les temps d'immersion ou la vitesse de défilement et les différents paramètres des traitements, en particulier la tension appliquée.
  • Dans chacune des cuves de traitement, on peut ajouter à l'électrolyte, suivant une technique connue, des agents détergents ou émulsifiants destinés à limiter la pollution du bain, des électrodes et des mécanismes par les graisses.
  • Dans une variante avantageuse de l'invention, on peut ajouter entre les deux traitements électrochimiques une cuve de neutralisation à l'acide nitrique qui améliore sensiblement les résultats obtenus.
  • Il est également avantageux de faire subir au conducteur à traiter un rasage mécanique préalable.
  • Les résultats obtenus dans les tests de résistance de contact se sont avérés nettement meilleurs pour les conducteurs de l'invention que pour les conducteurs de l'art antérieur.
  • FIGURES
  • La figure 1 présente une coupe transversale schématique d'un conducteur en aluminium selon l'invention. Le conducteur est formé d'une matrice (1), de particules de phases intermétalliques au fer (2, 3, 4), éventuellement de particules de phases intermétalliques sans fer (5) et éventuellement d'éléments en solution solide. Les particules en surface incluent les particules effleurant à la surface (2) et les particules immergées dans la matrice aluminium et s'approchant de la surface d'une distance P inférieure à 0,2 µm, telles que la particule (3).
  • La figure 2a représente la configuration préférée de l'invention avec prise de courant liquide. Le conducteur (10) circule en continu dans les cuves de traitement (13,14 et 15) à l'aide, dans le cas d'un fil, d'un dérouleur (11) et d'un enrouleur (12). Dans les cuves (13 et 14) une tension alternative (18) induit un courant alternatif dans le conducteur (10) à l'aide des électrodes (19 et 20). Dans la cuve (15) une tension continue (17) induit un courant continu dans le conducteur (10) à l'aide des électrodes (20 et 21), le conducteur (10) étant en polarisation anodique dans la cuve (15).
  • La figure 2b représente une autre configuration avec prise de courant liquide. Par rapport à la configuration de la figure la, une cuve (16) et une électrode supplémentaire (22) ont été ajoutées afin de séparer les deux traitements, tout en maintenant le principe de la prise de courant liquide.
  • Les figures 3a et 3b représentent deux autres configurations avec prise directe sur le conducteur (30 et 31).
  • La figure 4 est un schéma de la méthode de mesure de la résistance de contact.
  • La figure 5 est un schéma de la boucle d'essai du test de cyclage thermique. Six raccords de jonction (50) sont réunis entre eux par les conducteurs soumis à l'essai (51), dont l'un est utilisé comme référence (52). La température du conducteur de référence (52) est mesurée en son milieu à l'aide d'un thermocouple (53). Des points de mesure de la chute de tension (54) sont aménagés à une distance (L) de part et d'autre du centre de chaque raccord de jonction (50). Deux points de mesure de la chute de tension (55) séparés d'une distance (Lo), sont également aménagés sur le conducteur de référence (52). La boucle d'essai est raccordée à une alimentation électrique (60) qui délivre soit un courant alternatif, pour le cyclage thermique, soit un courant continu pour les mesures de résistance des raccords et du conducteur de référence.
  • La figure 6 montre le distribution des tailles de particules de phases intermétalliques au fer d'un conducteur en alliage d'aluminium AA 1370 selon l'art antérieur (a,b) et selon l'invention (c,d). L'ordonnée donne la fréquence d'apparition des particules. Les distributions a et c correspondent au diamètre équivalent des particules; les distributions b et d correspondent à la dimension maximale.
  • La figure 7 montre le distribution des tailles de particules de phases intermétalliques au fer d'un conducteur en alliage d'aluminium AP 131050 selon l'art antérieur (a,b) et selon l'invention (c,d). L'ordonnée donne la fréquence d'apparition des particules. Les distributions a et c correspondent au diamètre équivalent des particules ; les distributions b et d correspondent à la dimension maximale.
  • EXEMPLES
  • Les exemples 1 à 4 portent sur des conducteurs sous forme de fils. Dans ces exemples, les conducteurs ont subi les tests suivants :
  • Pour évaluer la résistance de contact et sa dispersion, on a utilisé la méthode dite des fils croisés, dont le principe est illustré à la figure 4. Deux fils étaient maintenus et mis sous tension mécanique (T) par des étriers puis mis en contact délicatement. Une force F était appliquée au contact ce qui entraînait une flèche des fils. Une intensité I était imposée au circuit et la tension résultante U était alors mesurée. La résistance de contact était évaluée suivant l'expression Rc = U/I. Afin d'obtenir une évaluation fiable de la qualité du contact électrique, la résistance de contact a été mesurée en un grand nombre de points sur le fil, à savoir une cinquantaine de points sur trois génératrices, c'est-à-dire 150 points au total et sur trois échantillons différents.
  • Comme les valeurs de résistance de contact étaient dispersées et n'étaient pas distribuées selon une loi normale, la qualité du contact a été exprimée en terme de la valeur moyenne des 10 meilleures valeurs, Rc. Pour tous les cas cités dans les exemples ci-dessous, la mesure a été effectuée sous une force (F) de 5 newtons, pour ⌀ 0,8 et 3 newtons pour ⌀ 0,5, une intensité de 100 mA et une tension en circuit ouvert de 20 mV.
  • Pour évaluer la pérennité dans le temps de la résistance de contact, on a utilisé un test de cyclage thermique par passage de courant selon une procédure dérivée de la norme NFC 63-061. Le test a consisté à former une boucle à l'aide de 6 raccords et de 7 conducteurs. Les raccords de jonction utilisés étaient des raccords en laiton à serrage sous pied de vis. Des câbles ont été formés en torsadant des brins ensemble et en les insérant dans une gaine isolante. Le nombre de brins était fonction du diamètre du fil. Un des conducteurs était utilisé comme référence en ce sens que la température de celui-ci, de même que la résistance RL d'un tronçon de longueur Lo de celui-ci, ont été considérées comme représentatives de l'ensemble des conducteurs de la boucle d'essai (figure 5). La température était mesurée à l'aide d'un thermocouple de faible diamètre (0,2 mm). La boucle d'essai était soumise à 200 cycles thermiques par passage d'une surintensité qui a porté les conducteurs de référence à 120°C. Chaque cycle comprenait une période d'échauffement de 15 minutes et une période de refroidissement naturel de 15 minutes. L'évaluation de la résistance de contact a été réalisée à l'aide de la mesure de la résistance de jonction. Pour cela on a imposé une intensité (Io) dans la boucle et on a mesuré la chute de tension (Uo) entre deux points situés chacun à une distance (L) et de part et d'autre du centre du raccord, les conducteurs étant dénudés à ces endroits. La résistance de jonction était donnée par l'expression Rj = Uo/Io. La résistance de jonction a été mesurée, pour chaque raccord, en début d'essai avant le premier cycle et en fin d'essai après le 200° cycle. La qualité du contact a été évaluée à l'aide du rapport (K) entre la moyenne des six résistances de jonction initiale (Ro) et la résistance (RL) mesurée sur le conducteur de référence (K = Ro/RL). L'évolution de la résistance de jonction de l'ensemble des raccords était donnée par l'évolution du rapport (K) entre le début et la fin de l'essai, laquelle évolution était exprimée en pourcentage. Dans ces mesures, la distance (L) était de 125 mm, la longueur (Lo) de 254 mm et l'intensité (Io) de 1A.
  • Pour évaluer la tenue à la corrosion, les fils traités suivant l'invention ont été exposés à un brouillard salin (5% NaCl) pendant 96 heures. A la fin de cette période, on a procédé à une nouvelle mesure de la résistance de contact à l'aide de la méthode des fils croisés.
  • Exemple 1
  • Les essais ont été réalisés sur du fil en aluminium AA 1370 de diamètre 0,8 mm de l'art antérieur (lot A) et selon l'invention (lot B). Le lot A provenait d'une bobine de fil brut. Le lot B a subi un traitement de surface suivant l'invention, par défilement dans des cuves successives : le traitement en courant alternatif a été effectué dans un bain à 60 °C contenant 50 g/l de NaOH pur à 98% et sous une tension de 5 V, la vitesse de défilement étant de 12 m/min ; le traitement en courant continu a été effectué dans un bain contenant 30 g/l d'acide tartrique, dont le pH avait été ajusté à 5 à l'aide d'ammoniaque, et sous une tension de 1 V.
  • Des mesures de la distribution des tailles des particules de phases intermétalliques au fer ont été effectuées sur des échantillons issus des lots A et B. Les résultats sont regroupés dans le Tableau 1. Par convention, De désigne le diamètre équivalent et Dm la dimension maximale. Les valeurs indiquées correspondent au pourcentage des particules de diamètre De ou Dm supérieur au seuil indiqué (0,5 µm ou 0,8 µm).
    Figure imgb0001
  • Un échantillonnage des deux lots a été soumis aux trois tests décrits précédemment. Dans les essais de cyclage thermique, sept brins ont été utilisés pour réaliser les câbles. Les résultats sont rassemblés dans le tableau 2.
    Figure imgb0002
  • Les résultats obtenus sur les fils suivants l'invention sont nettement meilleurs que ceux obtenus sur les fils de l'art antérieur.
  • Exemple 2
  • Une deuxième série d'essais a été réalisée sur du fil aluminium AP131050 de diamètre 0,5 mm de l'art antérieur (A) et selon l'invention (B). Le lot A provenait d'une bobine de fil brut. Le lot B a subi un traitement de surface selon l'invention, par défilement dans des cuves successives, avec une phase de neutralisation intermédiaire : le traitement en courant alternatif a été effectué dans un bain à 62 °C contenant 50 g/l de NaOH pur à 98% et sous une tension de 6 V, la vitesse de défilement étant de 24 m/min ; le traitement en courant continu a été effectué dans un bain contenant 30 g/l d'acide tartrique, dont le pH avait été ajusté à 5 à l'aide d'ammoniaque, et sous une tension de 1 V ; le traitement de neutralisation intermédiaire a été effectué dans un bain d'acide nitrique à 69 %.
  • Des mesures de la distribution des tailles des particules de phases intermétalliques au fer ont été effectuées sur des échantillons issus des lots A et B. Les résultats sont regroupés au Tableau 3. La conversion est la même qu'au Tableau 1.
    Figure imgb0003
  • Un échantillonnage des deux lots a été soumi aux trois tests décrits précédemment. Dans les tests de cyclage thermique, neuf brins ont été utilisés pour réaliser les câbles.
  • Les résultats sont regroupés au Tableau 4.
    Figure imgb0004
  • Les résultats obtenus sur les fils suivant l'invention sont nettement meilleurs que ceux obtenus sur les fils de l'art antérieur.
  • Exemple 3
  • Une série d'essais a été réalisée sur cinq lots de fils en aluminium AP 131050 de diamètre 0,8 mm.
  • Le lot A provenait d'une bobine de fil nickelé (obtenu auprès de la Société Tréfileries et Laminoirs de la Méditerranée (TLM), du groupe ALCATEL CÂBLE). Le lot B provenait d'une bobine de fil brut, non rasé, et a été conservé sans traitement. Les lots C,D et E sont issus d'une bobine de fil ayant subi une phase de rasage en cours de tréfilage. Le lot C a été conservé sans traitement. Le lot D a subi le traitement d'anodisation de l'art antérieur, dans un bain contenant 100 g/l d'acide phosphorique, sous une tension alternative de 5 V, à une température de 75 °C et à une vitesse de défilement de 60 m/min. Le lot E a subi un traitement de surface selon l'invention, avec une phase de neutralisation intermédiaire, par défilement dans des cuves successives : le traitement en courant alternatif a été effectué dans un bain à 65 °C contenant 50 g/l de NaOH pur à 98 % et sous une tension de 7,5 V, la vitesse de défilement étant de 48 m/min ; le traitement en courant continu a été effectué dans un bain contenant 30 g/l d'acide tartrique, dont le pH avait été ajusté à 5,5 à l'aide d'ammoniaque, et sous une tension de 1,5 V ; le traitement de neutralisation intermédiaire a été effectué dans un bain d'acide nitrique à 69 %.
  • Un échantillonnage des cinq lots a été soumis aux trois tests décrits précédemment. Dans les tests de cyclage thermique, sept brins ont été utilisés pour réaliser les câbles. Les résultats sont rassemblés dans le Tableau 5.
    Figure imgb0005
  • Les fils selon l'invention donnent des résultats satisfaisants à l'ensemble des trois tests.
  • Exemple 4
  • Des essais de tenue à la corrosion ont été effectués sur deux lots de fils en AA6101 d'un diamètre de 0,8 mm. Le lot A correspond à des fils de l'art antérieur. Le lot B a subi un traitement selon l'invention, dans des conditions comparables à l'exemple 3.
  • Les piqûres de corrosion observées sur les fils du lot B sont nettement moins profondes que celles observées sur les fils du lot A.

Claims (17)

  1. Conducteur électrique en alliage d'aluminium caractérisé en ce que ledit alliage contient au moins 98,5 % d'aluminium et entre 0 et 1,5 % de fer en poids, et en ce que moins de 5% des particules de phases intermétalliques au fer en surface dudit conducteur ont un diamètre équivalent supérieur à 0,8 µm.
  2. Conducteur selon la revendication 1, caractérisé en ce que moins de 2% desdites particules ont un diamètre équivalent supérieur à 0,8 µm.
  3. Conducteur selon la revendication 1 ou 2, caractérisé en ce que la proportion de fer en poids se situe entre 0,05 et 1,0%.
  4. Conducteur selon l'une des revendications 1 à 3, caractérisé en ce que ledit alliage est choisi parmi les alliages des séries AA1000 et AA6000.
  5. Conducteur selon l'une des revendications 1 à 4, caractérisé en ce qu'il a une résistivité électrique inférieure à 3,5 µΩ.cm.
  6. Procédé permettant d'obtenir le conducteur selon l'une des revendications 1 à 5, caractérisé en ce qu'il comprend un traitement de surface comportant successivement un premier traitement électrochimique en courant alternatif dans un milieu très alcalin de pH supérieur à 8 et un deuxième traitement électrochimique en courant continu dans un milieu faiblement acide de pH entre 4 et 7.
  7. Procédé selon la revendication 6, caractérisé en ce que ledit traitement de surface comporte, à la suite du traitement électrochimique en courant alternatif, un traitement chimique de neutralisation dans un bain contenant de l'acide nitrique.
  8. Procédé suivant l'une des revendications 6 et 7, caractérisé en ce que le bain du traitement électrochimique en courant alternatif est constitué de soude ou de potasse caustique et ce que la teneur en soude du bain du premier traitement est comprise entre 10 g/l et 100 g/l.
  9. Procédé suivant l'une des revendications 6 à 8, caractérisé en ce que le traitement électrochimique en courant alternatif s'effectue sous une tension comprise entre 2 et 10V et en ce que le bain du premier traitement est maintenu à une température comprise entre 40°C et 100°C.
  10. Procédé suivant l'une des revendications 6 à 9, caractérisé en ce que le bain du traitement électrochimique en courant continu est constitué de tartrate d'ammonium.
  11. Procédé suivant l'une des revendications 6 à 10, caractérisé en ce que le traitement électrochimique en courant continu s'effectue sous une tension entre 1 et 5V.
  12. Procédé suivant l'une des revendications 6 à 11, caractérisé en ce que le conducteur à traiter subit préalablement une opération de rasage mécanique.
  13. Procédé selon la revendication 6, caractérisé en ce qu'il comprend une étape coulée et laminage en continu suivi d'un tréfilage par tout moyen connu.
  14. Procédé selon la revendication 6, caractérisé en ce qu'il comprend une étape de filage.
  15. Fil à âme massive nue ou revêtue d'une gaine isolante, caractérisé en ce qu'il comprend un conducteur selon l'une des revendications 1 à 5.
  16. Fil à âme câblée nue ou revêtue d'une gaine isolante, caractérisé en ce qu'il comprend des conducteurs selon l'une des revendications 1 à 5.
  17. Dispositif de raccordement caractérisé en ce qu'il comprend un conducteur selon l'une des revendications 1 à 5.
EP19960420254 1995-07-27 1996-07-25 Conducteurs en aluminium ayant des propriétés de contact électrique améliorées et procédé pour l'obtenir Expired - Lifetime EP0756289B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9509382 1995-07-27
FR9509382A FR2737336B1 (fr) 1995-07-27 1995-07-27 Procede de traitement de surface de fils electriques en aluminium

Publications (2)

Publication Number Publication Date
EP0756289A1 true EP0756289A1 (fr) 1997-01-29
EP0756289B1 EP0756289B1 (fr) 1999-03-24

Family

ID=9481622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960420254 Expired - Lifetime EP0756289B1 (fr) 1995-07-27 1996-07-25 Conducteurs en aluminium ayant des propriétés de contact électrique améliorées et procédé pour l'obtenir

Country Status (3)

Country Link
EP (1) EP0756289B1 (fr)
DE (1) DE69601837T2 (fr)
FR (1) FR2737336B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859038B2 (en) 2012-08-10 2018-01-02 General Cable Technologies Corporation Surface modified overhead conductor
US10726975B2 (en) 2015-07-21 2020-07-28 General Cable Technologies Corporation Electrical accessories for power transmission systems and methods for preparing such electrical accessories
US10957468B2 (en) 2013-02-26 2021-03-23 General Cable Technologies Corporation Coated overhead conductors and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2179515A1 (en) * 1972-04-11 1973-11-23 Pechiney Aluminium Aluminium-based electrical conductor - by drawing and heat treating alloy contg magnesium, silicon and iron
US3827917A (en) * 1969-06-18 1974-08-06 Kaiser Aluminium Chem Corp Aluminum electrical conductor and process for making the same
FR2298619A1 (fr) * 1975-01-22 1976-08-20 Pechiney Aluminium Procede et traitement superficiel d'un fil en aluminium a usage electrique
GB2099017A (en) * 1981-05-18 1982-12-01 Pirelli Brasil Aluminium alloy, and production of electrical conductors therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827917A (en) * 1969-06-18 1974-08-06 Kaiser Aluminium Chem Corp Aluminum electrical conductor and process for making the same
FR2179515A1 (en) * 1972-04-11 1973-11-23 Pechiney Aluminium Aluminium-based electrical conductor - by drawing and heat treating alloy contg magnesium, silicon and iron
FR2298619A1 (fr) * 1975-01-22 1976-08-20 Pechiney Aluminium Procede et traitement superficiel d'un fil en aluminium a usage electrique
GB2099017A (en) * 1981-05-18 1982-12-01 Pirelli Brasil Aluminium alloy, and production of electrical conductors therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859038B2 (en) 2012-08-10 2018-01-02 General Cable Technologies Corporation Surface modified overhead conductor
US10586633B2 (en) 2012-08-10 2020-03-10 General Cable Technologies Corporation Surface modified overhead conductor
US10957468B2 (en) 2013-02-26 2021-03-23 General Cable Technologies Corporation Coated overhead conductors and methods
US10726975B2 (en) 2015-07-21 2020-07-28 General Cable Technologies Corporation Electrical accessories for power transmission systems and methods for preparing such electrical accessories

Also Published As

Publication number Publication date
FR2737336B1 (fr) 1997-09-05
FR2737336A1 (fr) 1997-01-31
DE69601837T2 (de) 1999-08-12
DE69601837D1 (de) 1999-04-29
EP0756289B1 (fr) 1999-03-24

Similar Documents

Publication Publication Date Title
EP1647996B1 (fr) Cable toronne en aluminium cuivre, et procede pour sa fabrication
JP4783954B2 (ja) 複合めっき材およびその製造方法
EP0093681B1 (fr) Procédé et dispositif pour revêtir une grande longueur de métal d&#39;une couche métallique
FR2796656A1 (fr) Procede de nickelage en continu d&#39;un conducteur en aluminium et dispositif correspondant
FR2508708A1 (fr) Procede electrolytique d&#39;elimination des courts-circuits et des shunts dans les cellules solaires
EP2313894B1 (fr) Matériau solide composite électriquement conducteur et procédé d&#39;obtention d&#39;un tel matériau
EP0756289B1 (fr) Conducteurs en aluminium ayant des propriétés de contact électrique améliorées et procédé pour l&#39;obtenir
JP2007254876A (ja) 複合めっき材およびその製造方法
FR2703461A1 (fr) Procédés et appareils de mesure, d&#39;uniformisation, de réglage, de nettoyage, de fabrication et de polissage.
EP2922987B1 (fr) Procédé de revêtement de la surface d&#39;un matériau organique ou métallique par des composés organiques particuliers par réduction électrochimique des ions diazonium desdits composés organiques, en courant pulsé
CA2886818C (fr) Poudre et pate pour ameliorer la conductance des connexions electriques
JP4936114B2 (ja) 複合めっき材およびその製造方法
CH634436A5 (fr) Procede d&#39;etirage d&#39;un conducteur.
JP6399494B2 (ja) 金属皮膜形成品の製造方法
WO1992010010A1 (fr) Element de contact de connecteur electrique
FR3009126A1 (fr) Conducteur electrique multibrin en cuivre et aluminium argentes
EP0354132B1 (fr) Procédé d&#39;émaillage en continu de fils en alliage d&#39;aluminium destinés à la confection de bobinages électriques
FR2658537A1 (fr) Methode pour former une couche electriquement isolante tenace sur la surface d&#39;un materiau en cuivre par anodisation dans un bain acide d&#39;un complexe d&#39;hexacyano-fer.
FR2624885A1 (fr) Ensemble electrodes-electrolyte polymere solide utilisable par exemple pour l&#39;electrolyse de l&#39;eau, et son procede de fabrication
EP3109948B1 (fr) Procede de fabrication de contact electrique, et contact electrique
CH633905A5 (fr) Procede de fabrication de fils electriques isoles.
FR3110765A1 (fr) câble présentant une résistance à la corrosion améliorée
EP0277886B1 (fr) Dispositif de contrôle au défilé de la continuité d&#39;un revêtement métallique sur un fil métallique de nature différente
EP4050129A1 (fr) Câble électrique protégé contre la corrosion
BE394772A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

17P Request for examination filed

Effective date: 19970213

17Q First examination report despatched

Effective date: 19980212

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19990324

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990324

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990324

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ALBERT, DIDIER

Inventor name: LOREAU, BERNARD

Inventor name: COLOMBIER, GABRIEL

Inventor name: MARSOLAIS, RICHARD

REF Corresponds to:

Ref document number: 69601837

Country of ref document: DE

Date of ref document: 19990429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990324

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: ALUMINIUM PECHINEY

Effective date: 19990731

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090717

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090729

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69601837

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802