EP0753444B1 - Error detection method for multi-section axle counting - Google Patents

Error detection method for multi-section axle counting Download PDF

Info

Publication number
EP0753444B1
EP0753444B1 EP96250151A EP96250151A EP0753444B1 EP 0753444 B1 EP0753444 B1 EP 0753444B1 EP 96250151 A EP96250151 A EP 96250151A EP 96250151 A EP96250151 A EP 96250151A EP 0753444 B1 EP0753444 B1 EP 0753444B1
Authority
EP
European Patent Office
Prior art keywords
section
determined
axles
counting devices
expected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96250151A
Other languages
German (de)
French (fr)
Other versions
EP0753444A1 (en
Inventor
Dietrich Ennulat
Christoph Wehmann
Achim Gottschalk
Wolfgang Dr. Talke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0753444A1 publication Critical patent/EP0753444A1/en
Application granted granted Critical
Publication of EP0753444B1 publication Critical patent/EP0753444B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or vehicle train, e.g. pedals
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/162Devices for counting axles; Devices for counting vehicles characterised by the error correction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L17/00Switching systems for classification yards

Definitions

  • the invention is in the field of axle counting, in particular with automated train resolution in drainage systems and relates to a method for recognizing a false report a segmental axle count in a drain system, in a vehicle or group of vehicles consecutive Sections happened through when crossing signaling counters are separated.
  • a switch-free or busy signal is issued in drainage systems depending on the counting results of individual axle counting circles.
  • the track sections of the drainage system by spaced counters in successive sections delimited by two counters separated.
  • the counting devices can Contacts include that of the axes of the expiring Vehicles or groups of vehicles can be operated. However, it can (e.g. due to drooping load parts) occasionally a contact come without actually having a vehicle axle the respective counting device has passed; this will in the context of the present invention as a false report or Called phantom pulse.
  • the object of the invention is to create a Process that also with comparatively little effort a multiple malfunction of the counting devices and occupied sections reliable detection of an error message enables.
  • An essential aspect of the present invention is in the knowledge that all running on a drain system Vehicles a certain, estimated maximum acceleration within the distribution zone. By taking into account the average speed of the previous one The section will advantageously previous history of the vehicles is taken into account and thereby a due to the acceleration forecast Uncertainty area significantly reduced. By contemplation (Plausibility check) of the determined duration or Speed in the second section compared to that in the process predetermined minimum expected throughput time or maximum speed an error message is always reliable recognized.
  • maximum vehicle acceleration is determined from the ratio or Average of the respective throughput times of the at least two axes through the first and second section one to expected maximum speed or minimum lead time of the axes determined by the second section.
  • Basically can be used to detect an error message Axial prognosis also from a consideration of the (medium) accelerations can be obtained.
  • Embodiment of the invention further increase that by evaluating changes in the respectively determined mean Speeds and the respective transit times Values for the maximum vehicle accelerations to be assumed in each case be updated.
  • Section of a drain system ABL comprises three consecutive Sections A12, A23, A34.
  • the sections are through Axially operated counting devices K1, K2, K3, K4 limited.
  • the Counting devices are designed as track contacts that when passing an axis a, b of a vehicle FZ one Deliver counting pulse.
  • the counters are known Distances s12, s23, s34 arranged to each other. In the situation (a) axis a passes counter K1, see above that this emits a signaling pulse 1a at time tk1a.
  • the following vehicle axis b causes in a corresponding manner a signaling pulse 1b at time tk1b (shown only in Situation (b)), where between the times tk1a and tk1b a characteristic of the wheelbase and vehicle speed Time difference ⁇ tab is.
  • the vehicle FZ with its axis a has the counting device K2 reached so that this one signal pulse 2a at the time tk2a outputs.
  • axis b also passes over the Counting device K2, which then sends the signaling pulse 2b Outputs time tk2b (see situation (c)).
  • each section A12, A23, A34 is assigned a maximum vehicle acceleration bmax12, bmax23, bmax34, which depends on the topology (in particular the gradient) of the respective section A12, A23, A34.
  • the vehicle acceleration bmax23 is used for the second section A23 in the direction of travel FR.
  • values of approx. 0.4 m / s 2 to 1 m / s 2 are to be used for the maximum vehicle acceleration bmax.
  • ⁇ akt23b s 23 ⁇ t 23 b in section A23 equal to or less than vmax23a or vmax23b. In this case, a correct axle count is recognized.
  • the phantom pulse 3f ′′ should occur at a point in time tk3f ′′ which is immediately before the point in time at which the axis a actually passes over the counting device K3.
  • the resulting throughput time ⁇ t23a '' for the axis a in this case is greater than the expected minimum throughput time ⁇ tmin23a.
  • the signal pulse 3a following at time tk3a, which is actually caused by the axis a, is interpreted as a signal pulse (3b ') of the axis b since the phantom pulse 3f''was incorrectly interpreted as a signal pulse 3a' of the axis a.
  • a numerical example for situation (d) could be:
  • the currently determined vehicle acceleration can be compared bakt23 'immediately with the maximum vehicle acceleration bmax' that is associated (here portion A23) of each section.

Abstract

The method involves determining the transition times of the vehicle (FZ) axles between the counter devices from the times of signal generation of the individual counter devices. An average speed is determined from the transition times of at least two axles between the counter devices (k1,k2) bounding a first section (A12) in the direction of travel and the distance between the counter devices. The maximum speed or minimum transition time between the counter devices in the next section (A23) is derived from the average speed and a maximum acceleration value. A fault is signalled if the maximum speed is exceeded or if the transition time is less than the minimum time.

Description

Die Erfindung liegt auf dem Gebiet der Achszählung, insbesondere bei der automatisierten Zugauflösung in Ablaufanlagen und betrifft ein Verfahren zum Erkennen einer Fehlmeldung bei einer abschnittsweisen Achszählung in einer Ablaufanlage, in der ein Fahrzeug oder eine Fahrzeuggruppe mehrere aufeinanderfolgende Abschnitte passiert, die durch bei Überfahrt signalgebende Zähleinrichtungen separiert sind.The invention is in the field of axle counting, in particular with automated train resolution in drainage systems and relates to a method for recognizing a false report a segmental axle count in a drain system, in a vehicle or group of vehicles consecutive Sections happened through when crossing signaling counters are separated.

In Ablaufanlagen erfolgt eine Weichenfrei- oder Besetztmeldung in Abhängigkeit von den Zählergebnissen einzelner Achszählkreise. Dazu sind die Gleisstrecken der Ablaufanlage durch beabstandet angeordnete Zähleinrichtungen in aufeinanderfolgende von jeweils zwei Zähleinrichtungen begrenzte Abschnitte separiert. Die Zähleinrichtungen können bekanntermaßen Kontakte umfassen, die von den Achsen der ablaufenden Fahrzeuge oder Fahrzeuggruppen betätigbar sind. Es kann jedoch (z. B. durch herabhängende Ladungsteile) gelegentlich zu einer Kontaktgabe kommen, ohne daß tatsächlich eine Fahrzeugachse die jeweilige Zähleinrichtung passiert hat; dies wird im Rahmen der vorliegenden Erfindung als Fehlmeldung oder Phantomimpuls bezeichnet.A switch-free or busy signal is issued in drainage systems depending on the counting results of individual axle counting circles. For this purpose are the track sections of the drainage system by spaced counters in successive sections delimited by two counters separated. As is known, the counting devices can Contacts include that of the axes of the expiring Vehicles or groups of vehicles can be operated. However, it can (e.g. due to drooping load parts) occasionally a contact come without actually having a vehicle axle the respective counting device has passed; this will in the context of the present invention as a false report or Called phantom pulse.

Bislang können derartige Fehlmeldungen nur erkannt werden, wenn diese nicht im Zusammenhang mit einer Fahrzeugbewegung auftreten. Aus dem Aufsatz "Verfahren zur Korrektur von Achszählkreisen auf Basis des Mehrabschnitts-Achszählers", SIGNAL + DRAHT, 87 (1995) 5, Seiten 156 - 162 ist ein kombiniertes Verfahren zur Erkennung und Korrektur von Zählpunktausfällen und Fehlmeldungen (Phantomimpulsen) bekannt. Das bekannte Verfahren basiert auf der Auswertung benachbarter Zählabschnitte, um Zählfehler und Korrekturbedigungen erkennen zu können. Das Verfahren erfordert jedoch einerseits freie Gleisabschnitte und birgt bei mehreren fehlerhaften Zähleinrichtungen durch die im Rahmen der Korrektur vorgenommene Gleisfreimeldung erhebliches Gefahrenpotential.So far, such false reports can only be recognized if if this is not in connection with a vehicle movement occur. From the essay "Procedure for the correction of axle counting circles based on the multi-section axle counter ", SIGNAL + DRAHT, 87 (1995) 5, pages 156-162 is a combined one Procedure for the detection and correction of point of delivery failures and error messages (phantom pulses) are known. The known method is based on the evaluation of neighboring ones Counting sections, counting errors and correction conditions to be able to recognize. On the one hand, the procedure requires free track sections and hides several faulty ones Counting devices by those made as part of the correction Track vacancy detection considerable risk potential.

Aus der DE 32 36 367 C2 ist es prinzipiell bekannt, Achszähleinrichtungen zur Geschwindigkeitsmessung heranzuziehen, wozu die Längen der durch die Achszählpunkte begrenzten Gleisabschnitte bekannt sein müssen.From DE 32 36 367 C2 it is known in principle axle counting devices to use for speed measurement, what for the lengths of those limited by the axle counting points Track sections must be known.

Die Aufgabe der Erfindung besteht in der Schaffung eines Verfahrens, das mit vergleichsweise geringem Aufwand auch bei einer mehrfachen Störung der Zähleinrichtungen und bei besetzten Abschnitten eine zuverlässige Erkennung einer Fehlmeldung ermöglicht.The object of the invention is to create a Process that also with comparatively little effort a multiple malfunction of the counting devices and occupied sections reliable detection of an error message enables.

Diese Aufgabe wird gemäß einer ersten Variante der Erfindung bei einem Verfahren der eingangs genannten Art dadurch gelöst,

  • daß aus den Zeitpunkten der zähleinrichtungsindividuellen Signalabgabe die Fahrzeugachsenlaufzeiten zwischen den Zähleinrichtungen ermittelt werden,
  • daß aus den Laufzeiten zumindest zweier Fahrzeugachsen zwischen den Zähleinrichtungen, die einen in Fahrtrichtung ersten Abschnitt begrenzen, und dem Abstand der Zähleinrichtungen eine mittlere Geschwindigkeit bestimmt wird,
  • daß von der mittleren Geschwindigkeit ausgehend unter Annahme einer von der Topologie eines in Fahrtrichtung zweiten Abschnitts abhängigen maximalen Fahrzeugbeschleunigung aus der gemessenen Laufzeit der mindestens zwei Achsen zwischen den Zähleinrichtungen, die den zweiten Abschnitt begrenzen, eine zu erwartende Maximalgeschwindigkeit oder eine zu erwartende Mindestdurchlaufzeit der Achsen bestimmt wird und
  • daß auf eine Fehlmeldung erkannt wird, wenn eine aus der für den zweiten Abschnitt gemessenen Laufzeit ermittelte Geschwindigkeit einer der Achsen die zu erwartende Maximalgeschwindigkeit überschreitet oder diese für den zweiten Abschnitt gemessene Laufzeit die zu erwartende Mindestdurchlaufzeit unterschreitet.
According to a first variant of the invention, this object is achieved in a method of the type mentioned at the outset by
  • that the vehicle axis running times between the counting devices are determined from the times of the counting device-specific signal delivery,
  • that an average speed is determined from the running times of at least two vehicle axles between the counting devices, which delimit a first section in the direction of travel, and the distance between the counting devices,
  • that starting from the average speed, assuming a maximum vehicle acceleration dependent on the topology of a second section in the direction of travel, determines an expected maximum speed or an expected minimum running time of the axles from the measured running time of the at least two axles between the counting devices which delimit the second section will and
  • that an error message is recognized if a speed of one of the axes determined from the running time measured for the second section exceeds the maximum speed to be expected or this running time measured for the second section falls below the expected minimum throughput time.

Ein wesentlicher Aspekt der vorliegenden Erfindung besteht in der Erkenntnis, daß alle auf einer Ablaufanlage laufende Fahrzeuge eine bestimmte, abschätzbare maximale Beschleunigung innerhalb der Verteilzone nicht überschreiten. Durch die Berücksichtigung der mittleren Geschwindigkeit des vorhergehenden Abschnitts wird in vorteilhafter Weise die bisherige Ablaufhistorie der Fahrzeuge berücksichtigt und dadurch ein durch die Beschleunigungsprognose bedingter Unsicherheitsbereich erheblich reduziert. Durch die Betrachtung (Plausibilitätsprüfung) der ermittelten Laufzeit oder Geschwindigkeit in dem zweiten Abschnitt im Vergleich zu der im Verfahren vorab bestimmten zu erwartenden Mindestdurchlaufzeit oder Maximalgeschwindigkeit wird in jedem Fall eine Fehlmeldung zuverlässig erkannt.An essential aspect of the present invention is in the knowledge that all running on a drain system Vehicles a certain, estimated maximum acceleration within the distribution zone. By taking into account the average speed of the previous one The section will advantageously previous history of the vehicles is taken into account and thereby a due to the acceleration forecast Uncertainty area significantly reduced. By contemplation (Plausibility check) of the determined duration or Speed in the second section compared to that in the process predetermined minimum expected throughput time or maximum speed an error message is always reliable recognized.

Bei sehr stark unterschiedlichen Längen aufeinanderfolgender Abschnitte kann insbesondere bei einem relativ kurzen zweiten Abschnitt die mittlere Geschwindigkeit des ersten Abschnitts unerwünscht stark dominieren, so daß die Gewichtung der maximalen Fahrzeugbeschleunigung infolge der relativ kurzen Durchlaufzeiten der Achsen durch den zweiten Abschnitt für Grenzfälle zu gering ausfallen könnte. Im Hinblick auf derartige, besonders separierte Ablaufanlagen ist eine alternative Verfahrensausgestaltung gemäß Patentanspruch 2 vorgesehen. Bei dieser Variante werden ebenfalls abschnittsindividuell die Durchlaufzeiten von mindestens zwei Achsen ermittelt und in Kenntnis der jeweiligen Abschnittslängen die jeweilige mittlere Geschwindigkeit der Achsen in den interessierenden Abschnitten bestimmt. Bei der Bestimmung der zu erwartenden Mindestdurchlaufzeit oder Maximalgeschwindigkeit wird jedoch über die betrachteten, benachbarten Abschnitte ein gewichteter Wert (Verhältniswert) gebildet. Als Verhältniswert wird bevorzugt der Mittelwert der Durchlaufzeiten in den betrachteten Abschnitten verwendet.If the lengths are very different, consecutively Sections can be particularly short at a second Section the average speed of the first section dominate undesirably strong, so that the weighting of the maximum vehicle acceleration due to the relatively short Passage times of the axes through the second section for Borderline cases could be too small. With regard such, particularly separate drainage systems is one alternative process design according to claim 2 intended. This variant will also the lead times of at least two for each section Axes determined and knowing the respective section lengths the respective average speed of the axes in the sections of interest. When determining the expected minimum throughput time or maximum speed however, the neighboring sections a weighted value (ratio value) educated. As The ratio value is preferably the mean of Throughput times used in the sections considered.

Unter Annahme einer dem zweiten Abschnitt zugeordneten maximalen Fahrzeugbeschleunigung wird aus dem Verhältnis- bzw. Mittelwert der jeweiligen Durchlaufzeiten der mindestens zwei Achsen durch den ersten bzw. zweiten Abschnitt eine zu erwartende Maximalgeschwindigkeit oder Mindestdurchlaufzeit der Achsen durch den zweiten Abschnitt bestimmt. Grundsätzlich können die zur Erkennung einer Fehlmeldung dienenden Prognosen des Achslaufs auch aus einer Betrachtung der (mittleren) Beschleunigungen gewonnen werden.Assuming one assigned to the second section maximum vehicle acceleration is determined from the ratio or Average of the respective throughput times of the at least two axes through the first and second section one to expected maximum speed or minimum lead time of the axes determined by the second section. Basically can be used to detect an error message Axial prognosis also from a consideration of the (medium) accelerations can be obtained.

Die Verfahrensgenauigkeit läßt sich nach einer vorteilhaften Ausgestaltung der Erfindung dadurch weiter steigern, daß durch Auswertung von Änderungen der jeweils ermittelten mittleren Geschwindigkeiten und der jeweiligen Laufzeiten die Werte für die jeweils anzunehmenden maximalen Fahrzeugbeschleunigungen aktualisiert werden.The process accuracy can be advantageous Embodiment of the invention further increase that by evaluating changes in the respectively determined mean Speeds and the respective transit times Values for the maximum vehicle accelerations to be assumed in each case be updated.

Die Erfindung wird nachfolgend beispielhaft anhand einer Zeichnung weiter erläutert, die verschiedene Zustände auf einem Ausschnitt einer automatisierten Ablaufanlage und zugehörige Zähleinrichtungsmeldungen zeigt.The invention is illustrated below using an example Drawing further explains the different states on one Section of an automated drainage system and associated Displays meter messages.

Der in verschiedenen Situationen (a) bis (e) dargestellte Ausschnitt einer Ablaufanlage ABL umfaßt drei aufeinanderfolgende Abschnitte A12, A23, A34. Die Abschnitte sind durch achsbetätigte Zähleinrichtungen K1, K2, K3, K4 begrenzt. Die Zähleinrichtungen sind als Gleiskontakte ausgebildet, die beim Passieren einer Achse a, b eines Fahrzeugs FZ einen Zählimpuls abgeben. Die Zähleinrichtungen sind mit bekannten Entfernungen s12, s23, s34 zueinander angeordnet. In der Situation (a) passiert die Achse a die Zähleinrichtung K1, so daß diese einen Meldeimpuls 1a zum Zeitpunkt tk1a abgibt. Die nachfolgende Fahrzeugachse b bewirkt in entsprechender Weise einen Meldeimpuls 1b zum Zeitpunkt tk1b (dargestellt erst in Situation (b)), wobei zwischen den Zeitpunkten tk1a und tk1b eine für den Achsabstand und die Fahrzeuggeschwindigkeit charakteristische Zeitdifferenz Δtab liegt. In der Situation (b) hat das Fahrzeug FZ mit seiner Achse a die Zähleinrichtung K2 erreicht, so daß diese einen Meldeimpuls 2a zum Zeitpunkt tk2a ausgibt. Anschließend überfährt auch die Achse b die Zähleinrichtung K2, die daraufhin den Meldeimpuls 2b zum Zeitpunkt tk2b (vgl. Situation (c)) ausgibt.The one shown in different situations (a) to (e) Section of a drain system ABL comprises three consecutive Sections A12, A23, A34. The sections are through Axially operated counting devices K1, K2, K3, K4 limited. The Counting devices are designed as track contacts that when passing an axis a, b of a vehicle FZ one Deliver counting pulse. The counters are known Distances s12, s23, s34 arranged to each other. In the situation (a) axis a passes counter K1, see above that this emits a signaling pulse 1a at time tk1a. The following vehicle axis b causes in a corresponding manner a signaling pulse 1b at time tk1b (shown only in Situation (b)), where between the times tk1a and tk1b a characteristic of the wheelbase and vehicle speed Time difference Δtab is. In situation (b) the vehicle FZ with its axis a has the counting device K2 reached so that this one signal pulse 2a at the time tk2a outputs. Then axis b also passes over the Counting device K2, which then sends the signaling pulse 2b Outputs time tk2b (see situation (c)).

Wie die Situation (c) weiter zeigt, ergibt sich damit für die jeweilige Fahrzeugachse a, b jeweils eine Laufzeit Δt12a bzw. Δt12b für die Passage der Entfernung s12 zwischen den Zähleinrichtungen K1 und K2. Aus dem Abstand s12 zwischen den Zähleinrichtungen K1, K2 und den ermittelten Laufzeiten wird eine aktuelle mittlere Achsgeschwindigkeit ν akt12a bzw. ν akt12b der Achsen a, b gemäß der Gleichung ν akt12a = Δs Δt = s12 tk2a-tk1a = s12Δt12a ν akt12b = Δs Δt = s12 tk2b-tk1b = s12Δt12b bestimmt. As situation (c) further shows, this results in a transit time Δt12a or Δt12b for the respective vehicle axis a, b for the passage of the distance s12 between the counting devices K1 and K2. The distance s12 between the counting devices K1, K2 and the determined transit times becomes a current average axis speed ν akt12a or ν akt12b of axes a, b according to the equation ν act12a = Δ s Δ t = s 12th tk 2nd a - tk 1 a = s 12th Δ t 12th a ν akt12b = Δ s Δ t = s 12th tk 2nd b - tk 1 b = s 12th Δ t 12th b certainly.

Jedem Abschnitt A12, A23, A34 wird aus Erfahrungswerten eine maximale Fahrzeugbeschleunigung bmax12, bmax23, bmax34 zugeordnet, die von der Topologie (insbesondere dem Gefälle) des jeweiligen Abschnitts A12, A23, A34 abhängt. Im vorliegenden Beispiel wird die Fahrzeugbeschleunigung bmax23 für den in Fahrtrichtung FR zweiten Abschnitt A23 herangezogen. Je nach Streckentopologie sind Werte von ca. 0,4 m/s2 bis 1 m/s2 für die maximale Fahrzeugbeschleunigung bmax anzusetzen. Aus den Zeitpunkten der von der Zähleinrichtung K3 gelieferten Meldesignale 3a, 3b (Situationen (d) bzw. (e)) beim Überfahren durch die Achsen a, b wird die Laufzeit Δt23a = tk3a - tk2a bzw. Δt23b = tk3b - tk2b bestimmt. Daraus läßt sich ausgehend von der mittleren Achsgeschwindigkeit ν akt12a bzw. ν akt12b und der maximalen Fahrzeugbeschleunigung bmax23 eine zu erwartende Maximalgeschwindigkeit vmax23a bzw. vmax 23b für die Achsen a, b im Abschnitt A23 vmax23a = ν akt12a + bmax23.Δt23a, vmax23b = ν akt12b + bmax23.Δt23b berechnen. Based on empirical values, each section A12, A23, A34 is assigned a maximum vehicle acceleration bmax12, bmax23, bmax34, which depends on the topology (in particular the gradient) of the respective section A12, A23, A34. In the present example, the vehicle acceleration bmax23 is used for the second section A23 in the direction of travel FR. Depending on the route topology, values of approx. 0.4 m / s 2 to 1 m / s 2 are to be used for the maximum vehicle acceleration bmax. The running time becomes from the times of the signaling signals 3a, 3b (situations (d) and (e)) supplied by the counting device K3 when passing over the axes a, b Δt23a = tk3a - tk2a respectively. Δt23b = tk3b - tk2b certainly. This can be based on the average axis speed ν akt12a or ν akt12b and the maximum vehicle acceleration bmax23 an expected maximum speed vmax23a or vmax 23b for the axles a, b in section A23 vmax23a = ν akt12a + bmax23.Δt23a, vmax23b = ν Calculate akt12b + bmax23.Δt23b.

In Kenntnis des Abstands s23 ergibt sich eine Mindestdurchlaufzeit Δtmin23a bzw. Δtmin23b Δtmin23a = s23 νmax23a = s23 νakt12a+bmax23*Δt23a Δtmin23b = s23 νmax23b = s23 νakt12b+bmax23*Δt23b Knowing the distance s23 results in a minimum throughput time Δtmin23a or Δtmin23b Δtmin23a = s 23 ν max23 a = s 23 ν act 12th a + b max23 * Δ t 23 a Δtmin23b = s 23 ν max23 b = s 23 ν act 12th b + b max23 * Δ t 23 b

Solange die Zähleinrichtungen fehlerfrei arbeiten, sind die ermittelten Laufzeiten Δt23a(=tk3a - tk2a); Δt23b(=tk3b - tk2b) gemäß Situation (d) gleich oder länger als die im Verfahren vorher bestimmte Mindestdurchlaufzeit Δtmin23a; Δtmin23b bzw. die tatsächliche mittlere Geschwindigkeit ν akt23a = s23Δt23a bzw. ν akt23b = s23Δt23b im Abschnitt A23 gleich oder kleiner als vmax23a bzw. vmax23b. In diesem Fall wird auf eine korrekte Achszählung erkannt.As long as the counting devices work correctly, the runtimes are ascertained Δt23a (= tk3a - tk2a) ; Δt23b (= tk3b - tk2b) according to situation (d) the same or longer than the minimum throughput time Δtmin23a determined in the process; Δtmin23b or the actual average speed ν act23a = s 23 Δ t 23 a respectively. ν akt23b = s 23 Δ t 23 b in section A23 equal to or less than vmax23a or vmax23b. In this case, a correct axle count is recognized.

Nachfolgend soll eine fehlerhafte Funktion der Zähleinrichtungen beschrieben werden: Wie in den Situationen (c) und (d) gestrichelt angedeutet, soll zur weiteren Erläuterung angenommen werden, daß die Zähleinrichtung K3 ohne Beeinflussung durch das Fahrzeug FZ eine Fehlmeldung (Phantomimpuls) 3f zum Zeitpunkt tk3f abgibt. Je nach Zeitpunkt tk3f des Phantomimpulses sind zwei Situationen zu unterscheiden: In der Situation (c) bzw. (d) wird davon ausgegangen, daß der Phantomimpuls 3f nach einer Zeit Δt23a' nach dem Meldeimpuls 2a auftritt. Die Zeitspanne Δt23a' ist geringer als die im Verfahren vorher bestimmte Mindestdurchlaufzeit Δtmin23a. Da der Phantomimpuls 3f fälschlicherweise für einen durch die Fahrzeugachse a hervorgerufenen Meldeimpuls (3a') gehalten wird, wird eine Laufzeit Δt23a' für die Achse a zwischen den Zähleinrichtungen K2, K3 bestimmt, die geringer als die zuvor berechnete Mindestdurchlaufzeit Δtmin23a ist. Demgemäß wird auf eine Fehlmeldung erkannt.Below is a malfunction of the counting devices are described: As in situations (c) and (d) indicated by dashed lines, is intended for further explanation be that the counter K3 without interference by the vehicle FZ an error message (phantom pulse) 3f for Issues time tk3f. Depending on the time tk3f of the phantom pulse There are two different situations: In the situation (c) and (d) it is assumed that the phantom pulse 3f occurs after a time Δt23a 'after the signal pulse 2a. The time period Δt23a 'is shorter than that previously determined in the method Minimum throughput time Δtmin23a. Because the phantom pulse 3f erroneously for one caused by the vehicle axis a Message pulse (3a ') is held, a term Δt23a 'for the axis a between the counters K2, K3 determines the less than the previously calculated minimum throughput time Δtmin23a. Accordingly, an error message is issued recognized.

In der Situation (e) soll der Phantomimpuls 3f'' zu einem Zeitpunkt tk3f'' auftreten, der unmittelbar vor dem Zeitpunkt liegt, zu dem die Achse a tatsächlich die Zähleinrichtung K3 überfährt. Die sich daraus für die Achse a scheinbar ergebende Durchlaufzeit Δt23a'' ist in diesem Fall größer als die zu erwartende Mindestdurchlaufzeit Δtmin23a. Der zum Zeitpunkt tk3a nachfolgende, tatsächlich durch die Achse a hervorgerufene Meldeimpuls 3a wird jedoch - da der Phantomimpuls 3f'' fälschlicherweise als Meldeimpuls 3a' der Achse a interpretiert worden ist - als Meldeimpuls (3b') der Achse b interpretiert. Die damit bestimmte scheinbare Laufzeit Δt23b' der Achse b liegt dadurch unterhalb der Mindestdurchlaufzeit Δtmin23b. Dadurch wird auch in diesem Fall eine Fehlmeldung erkannt. Nach dem gleichen Prinzip könnte auch jeweils ein Vergleich der zu erwartenden Maximalgeschwindigkeit (vgl. Gleichung (2)) mit den in Kenntnis der Entfernung s23 achsenindividuell bestimmbaren Geschwindigkeiten ν akt23a bzw. ν akt23b der Achsen a, b zur Erkennung von Fehlmeldungen erfolgen.In situation (e), the phantom pulse 3f ″ should occur at a point in time tk3f ″ which is immediately before the point in time at which the axis a actually passes over the counting device K3. The resulting throughput time Δt23a '' for the axis a in this case is greater than the expected minimum throughput time Δtmin23a. The signal pulse 3a following at time tk3a, which is actually caused by the axis a, is interpreted as a signal pulse (3b ') of the axis b since the phantom pulse 3f''was incorrectly interpreted as a signal pulse 3a' of the axis a. The apparent transit time Δt23b 'of the axis b thus determined is therefore below the minimum transit time Δtmin23b. As a result, an error message is also recognized in this case. According to the same principle, a comparison of the maximum speed to be expected (cf. equation (2)) with the speeds that can be determined individually on the basis of the distance s23 could also be performed ν act23a or ν act23b of axes a, b to detect incorrect messages.

Ein Zahlenbeispiel für die Situation (d) könnte lauten:A numerical example for situation (d) could be:

Ermittelte aktuelle mittlere Geschwindigkeit im Abschnitt A12 ν akt12 = s12Δt12 = 18m 3s = 6 m/s; angenommene maximale Beschleunigung für den Abschnitt A23 bmax23 = 0,9 m/s2; Laufzeit Δt23a = 1s; s23 = 12 m; vmax23 = 6 m/s + 0,9 m/s2 . 1 s = 6,9 m/s ν akt23 = s23Δt23a = 12 m/s; ν akt23 > vmax23, bzw. Δtmin23 = s23 νmax23 = 12m.s 6,9m = 1,74s ⇒ Δt23a = 1s < Δtmin23 = 1,74s. Current average speed determined in section A12 ν act12 = s 12th Δ t 12th = 18th m 3rd s = 6 m / s; assumed maximum acceleration for section A23 bmax23 = 0.9 m / s 2 ; Running time Δt23a = 1s; s23 = 12 m; vmax23 = 6 m / s + 0.9 m / s 2 . 1 s = 6.9 m / s ν act23 = s 23 Δ t 23 a = 12 m / s; ν akt23> vmax23, or Δtmin23 = s 23 ν max23 = 12th ms 6.9 m = 1.74s ⇒ Δt23a = 1s <Δtmin23 = 1.74s.

Die aus den jeweils tatsächlich gemessenen Laufzeiten und den bekannten Abständen s12, s23, s34 berechneten mittleren Geschwindigkeiten ν akt können zur Nachführung der angenommenen Werte für die maximalen Beschleunigungen herangezogen werden. Dazu werden die jeweiligen Änderungen der mittleren Geschwindigkeiten in bezug auf die Laufzeiten gemäß der Gleichung b = Δ νakt Δt = νakt23- νakt12Δt23 herangezogen.The average speeds calculated from the respectively actually measured transit times and the known distances s12, s23, s34 ν act can be used to track the assumed values for the maximum accelerations. To do this, the respective changes in the average speeds with respect to the transit times according to the equation b = Δ ν act Δ t = ν act 23- ν act 12th Δ t 23 used.

Obwohl das bisher beschriebene Verfahren z.B. für die vorgenannten praktischen Wertebeispiele ausgezeichnete Ergebnisse liefert, ist für Anlagen mit sehr unterschiedlichen Abschnittslängen eine vorteilhafte alternative Verfahrensvariante vorgesehen. Zur Erläuterung dieser Variante sei angenommen, daß entgegen der expliziten zeichnerischen Darstellung der Abschnitt A12 wesentlich länger als der Abschnitt A23 sei. In diesem Fall werden ebenfalls die mittleren Geschwindigkeiten vakt12 = Δs Δt = s12Δt12 vakt23 = Δs Δt = s23Δt23 ermittelt. Although the process described so far provides excellent results, for example for the aforementioned practical examples of values, an advantageous alternative process variant is provided for systems with very different section lengths. To explain this variant, assume that, contrary to the explicit drawing, section A12 is considerably longer than section A23. In this case also the average speeds v act12 = Δ s Δ t = s 12th Δ t 12th v act23 = Δ s Δ t = s 23 Δ t 23 determined.

Zur Vereinfachung werden die Indizes für die Achsen a, b fortgelassen, da die Gleichungen für beide Achsen analog sind. For simplification, the indices for axes a, b omitted because the equations for both axes are analog are.

Unter Zugrundelegung einer Geschwindigkeitsauswertung oder Beobachtung jeweils im geometrisch mittleren Bereich jedes Abschnitts - jeweils durch einen Pfeil B12 und B23 in der Figur (a) angedeutet - ergibt sich jeweils eine aktuelle Beschleunigung bakt23' zwischen den Punkten B12, B23: bakt23'=Δν Δt = ν23-ν12 Δt12+Δt232 =(ν23-ν12)·2Δt13 =(ν23-ν12)·2(tK3-tK1) bmax23' On the basis of a speed evaluation or observation in each case in the geometrically central region of each section - indicated by an arrow B12 and B23 in FIG. (A) - there is a current acceleration bakt23 ' between points B12, B23: bakt 23 '= Δ ν Δ t = ν 23- ν 12th Δ t 12 + Δ t 23 2nd = ( ν 23- ν 12) · 2 Δ t 13 = ( ν 23- ν 12) · 2 ( tK 3- tK 1) b max23 '

Zur Auswertung kann die aktuell bestimmte Fahrzeugbeschleunigung bakt23' unmittelbar mit der maximalen Fahrzeugbeschleunigung bmax' verglichen werden, die dem jeweiligen Abschnitt (hier Abschnitt A23) zugeordnet ist.For evaluation, the currently determined vehicle acceleration can be compared bakt23 'immediately with the maximum vehicle acceleration bmax' that is associated (here portion A23) of each section.

Es läßt sich aber auch die zu erwartende Mindestdurchlaufzeit Δtmin23' Δtmin23 = s23 νmax23' = s23 νakt12+bmax23'*(Δt13/2) takt23' und/oder die zu erwartende Maximaldurchlaufgeschwindigkeit vmax23' im Abschnitt A23 vmax23' = ν akt12+bmax23'·Δt132 vakt23' ermitteln und in der vorbeschriebenen Weise zur Erkennung einer Fehlmeldung heranziehen.However, the expected minimum throughput time Δtmin23 ' Δtmin23 = s 23 ν max23 ' = s 23 ν act 12+ b max23 '* (Δ t 13/2) clock 23 ' and / or the expected maximum throughput speed vmax23 ' in section A23 vmax23 '= ν act 12+ b max23 ' Δ t 13 2nd vakt 23 ' determine and use it in the manner described above to identify an error message.

Claims (4)

  1. Method for detecting a false signal in a multi-section axle count in a gravity incline installation (ABL) in which a vehicle (FZ) or a group of vehicles passes a number of successive sections (A12, A23, A34) which are separated by counting devices (K1 to K4) which generate signals when driven over, characterized
    in that the vehicle axle running times (Δt12a, Δt12b) between the counting devices (K1, K2) are determined from the times (tk1a, tk1b; tk2a, tk2b) of the counting-device-individual signal output,
    in that an average speed ( ν akt12) is determined from the running times (Δt12a, Δt12b) of at least two vehicle axles (a, b) between the counting devices (K1, K2), which delimit a first section (A12) in the direction of travel (FR), and the distance (s12) between the counting devices (K1, K2),
    in that, on the basis of the average speed ( ν akt12) and assuming a maximum vehicle acceleration (bmax23) associated with a subsequent second section (A23) and dependent on its topology, a maximum speed (vmax23) to be expected or a minimum transit time (Δtmin23) to be expected of the axles (a, b) is determined from the measured running time (Δt23a, Δt23b) of the at least two axles (a, b) between the counting devices (K2, K3) which delimit the second section (A23), and
    in that a false signal (3f) is detected if a speed ( ν akt23), determined from the running time (Δt23) measured for the second section, of one of the axles (a, b) exceeds the maximum speed (vmax23) to be expected or this running time (Δt23) measured for the second section drops below the minimum transit time (Δtmin23) to be expected.
  2. Method for detecting a false signal in a multi-section axle count in a gravity incline installation (ABL), in which a vehicle (FZ) or a group of vehicles passes a number of successive sections (A12, A23, A34) which are separated by counting devices (K1 to K4) which output a signal when driven over, characterized
    in that the vehicle axle running times (Δt12a, Δt12b) between the counting devices (K1, K2) are determined from the times (tk1a, tk1b; tk2a, tk2b) of the counting-device-individual signal output,
    in that an average speed ( ν akt12) is determined from the running times (Δt12a, Δt12b) of at least two vehicle axles (a, b) between the counting devices (K1, K2), which delimit a first section (A12) in the direction of travel (FR), and the distance (s12) between the counting devices (K1, K2),
    in that, on the basis of the average speed (νakt12) and assuming a maximum vehicle acceleration (bmax23) associated with a subsequent second section (A23), a maximum speed (vmax23) to be expected or a minimum transit time (Δtmin23) to be expected of the axles (a, b) is determined from a weighted value (Δt13/2) determined with the respective measured transit time (Δt12; Δt23) of the at least two axles (a, b) between the counting devices (K1, K2 and, respectively, K2, K3) which delimit the first section (A12) and, respectively, the second section (A23), and
    in that a false signal (3f) is detected if a speed ( ν akt23), determined from the running time (Δt23) measured for the second section, of one of the axles (a, b) exceeds the maximum speed (vmax23) to be expected or this running time (Δt23) measured for the second section drops below the minimum transit time (Δtmin23) to be expected.
  3. Method according to Claim 2, characterized in that the weighted value is the mean value (Δt13/2) of the respective transit times ((Δt12; Δt23) of the axles (a, b) between the counting devices (K1, K2 and, respectively, K2, K3) which delimit the first section (A12) and, respectively, the second section (A23).
  4. Method according to one of the preceding claims, characterized in that the values for the maximum vehicle accelerations (bmax12, bmax23, bmax34) to be assumed in each case are updated by evaluating changes of the average speeds ( ν akt) determined in each case and of the respective running times (Δt).
EP96250151A 1995-07-12 1996-07-10 Error detection method for multi-section axle counting Expired - Lifetime EP0753444B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19526816 1995-07-12
DE19526816A DE19526816C2 (en) 1995-07-12 1995-07-12 Method for recognizing an incorrect message in a section-by-section axle counting

Publications (2)

Publication Number Publication Date
EP0753444A1 EP0753444A1 (en) 1997-01-15
EP0753444B1 true EP0753444B1 (en) 1999-04-14

Family

ID=7767531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96250151A Expired - Lifetime EP0753444B1 (en) 1995-07-12 1996-07-10 Error detection method for multi-section axle counting

Country Status (3)

Country Link
EP (1) EP0753444B1 (en)
AT (1) ATE178848T1 (en)
DE (2) DE19526816C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19736711C1 (en) * 1997-08-18 1998-11-12 Siemens Ag Measurement method for axle speed vehicle axle
DE19743995C1 (en) * 1997-09-26 1999-04-22 Siemens Ag Method for generating a signal which identifies a track section as occupied
DE19946226C1 (en) * 1999-09-22 2001-03-29 Siemens Ag Method for determining vehicle wheels that have passed a point of delivery
DE102011079419A1 (en) * 2011-07-19 2013-01-24 Siemens Aktiengesellschaft Method and control device for determining the length of at least one track section
DE102015217535B3 (en) 2015-09-14 2016-12-22 Thales Deutschland Gmbh Method for determining the speed of a rail-bound vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3236367C2 (en) * 1982-10-01 1985-12-12 Standard Elektrik Lorenz Ag, 7000 Stuttgart Equipment for track vacancy detection, train location and speed measurement
DE4214541A1 (en) * 1992-04-29 1993-11-04 Siemens Ag METHOD FOR DETERMINING THE ROLLING RESISTANCE OF RAILWAY VEHICLES

Also Published As

Publication number Publication date
ATE178848T1 (en) 1999-04-15
DE19526816C2 (en) 1998-04-09
EP0753444A1 (en) 1997-01-15
DE59601644D1 (en) 1999-05-20
DE19526816A1 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
DE102010034129B4 (en) Method for operating a tire pressure monitoring unit
EP2478346A1 (en) Method and device for monitoring the driving behavior of a railway vehicle
DE19961504A1 (en) Rotational speed signal error detection method for anti-slip or anti-lock regulation system of vehicle, involves detecting speed change based on specific condition involving pulse width of falling pulses of measurement signal
EP3046816A1 (en) Method for monitoring a transmission link
EP0740280A2 (en) Disturbance detection method for road traffic
EP3390967B1 (en) Method for monitoring at least two redundant sensors
WO2008083731A1 (en) Method for determining a driver state using a markov model
EP3282399A1 (en) Method for the improved detection of process anomalies of a technical installation and corresponding diagnostic system
EP3792150B1 (en) Detection of hands-off situations based on swarm data
EP3789215B1 (en) Method for determining a tread depth of a vehicle tyre
EP3552920A1 (en) Detection and suppression of sliding and slipping in rail vehicles
EP0753444B1 (en) Error detection method for multi-section axle counting
DE4227789B4 (en) Method for determining the center distances of railway vehicles
EP0392182B1 (en) Method and circuit for monitoring a continuous flow of time markings
DE19917154B4 (en) Method for detecting congestion situations on roads and vehicle equipment with a unit for carrying out the method
EP1883565B1 (en) Method and device for detecting wheel shapes of rail wheels
DE102014108685A1 (en) Method and device for derailment detection
DE3206611C1 (en) Rail contact
DE10020520A1 (en) Method and device for monitoring the driving properties of a rail vehicle
DE102017005671A1 (en) Method for determining misdetections of a sensor system of a motor vehicle
DE102015217535B3 (en) Method for determining the speed of a rail-bound vehicle
CH697821B1 (en) Method of determining the traffic situation on a section of a road network and traffic management center for implementing the method.
EP0638877A2 (en) Data acquisition system for vehicles
DE102016225276A1 (en) Method for calibrating a wheel sensor and corresponding wheel sensor
DE3300429A1 (en) Device for measuring the length of a train

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE IT LI NL

17P Request for examination filed

Effective date: 19970206

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980622

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE IT LI NL

REF Corresponds to:

Ref document number: 178848

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59601644

Country of ref document: DE

Date of ref document: 19990520

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050710

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130918

Year of fee payment: 18

Ref country code: AT

Payment date: 20130607

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131010

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59601644

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 178848

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59601644

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140710