EP0750718B1 - Procede permettant de faire fonctionner une installation a turbines a gaz et a vapeur et installation fonctionnant selon ledit procede - Google Patents

Procede permettant de faire fonctionner une installation a turbines a gaz et a vapeur et installation fonctionnant selon ledit procede Download PDF

Info

Publication number
EP0750718B1
EP0750718B1 EP95910440A EP95910440A EP0750718B1 EP 0750718 B1 EP0750718 B1 EP 0750718B1 EP 95910440 A EP95910440 A EP 95910440A EP 95910440 A EP95910440 A EP 95910440A EP 0750718 B1 EP0750718 B1 EP 0750718B1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
gas
hydrogen
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95910440A
Other languages
German (de)
English (en)
Other versions
EP0750718A1 (fr
Inventor
Walter Vanselow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0750718A1 publication Critical patent/EP0750718A1/fr
Application granted granted Critical
Publication of EP0750718B1 publication Critical patent/EP0750718B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/005Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the working fluid being steam, created by combustion of hydrogen with oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Definitions

  • the invention relates to a method for operating a gas and steam turbine system in which the heat contained in the relaxed working fluid from the gas turbine is used to generate steam for the steam turbine connected in a water-steam cycle.
  • the working medium for the gas turbine is generated by burning a fuel with the supply of compressed air.
  • the invention is further directed to a gas and steam turbine plant operating according to this method.
  • the heat contained in the relaxed working fluid from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place in a steam generator or waste heat boiler downstream of the gas turbine, in which heating surfaces are arranged in the form of tubes or tube bundles. These in turn are connected to the steam turbine water-steam cycle.
  • the water-steam cycle comprises several, e.g. two, pressure levels, each pressure level having a preheating, an evaporator and a superheater heating surface.
  • a gas and steam turbine plant known from European Patent 0 148 973 achieves a thermodynamic efficiency of approximately 50% to 55% depending on the pressure conditions prevailing in the water-steam cycle of the steam turbine.
  • the invention has for its object to provide a method for operating such a gas and steam turbine system with which an increase in efficiency is achieved. In a suitable gas and steam turbine plant, this is to be achieved with particularly simple means.
  • this object is achieved in that the steam generated before it is introduced into the steam turbine is superheated by means of heat generated in a hydrogen-oxygen combustion, the hydrogen being generated by separating it from the fuel internally in the process.
  • the invention is based on the consideration of superheating the superheated steam generated in the actual gas and steam turbine process in a particularly effective manner to a temperature of approximately 800 to 1100 ° C. and using a hydrogen-oxygen steam generator known per se.
  • both the hydrogen required for the combustion and the oxygen are generated internally in the process.
  • the hydrogen for the hydrogen-oxygen combustion is expediently produced by processing the fuel supplied to the gas and steam turbine system.
  • this can be partial or pre-combustion (partial oxidation) or another suitable method.
  • the oxygen is expediently generated by decomposing air.
  • Compressed air from the compressor assigned to the gas turbine system is advantageously used.
  • such an air separation plant for generating the oxygen required for coal gasification is already available.
  • the hydrogen is already generated internally in the process.
  • the hydrogen-oxygen combustion is supplied with the steam which has been generated in the high-pressure stage of the water-steam cycle of the steam turbine and has already been overheated to about 500 to 550 ° C. there.
  • the fuel for the gas turbine is expediently burned in two stages.
  • the heat generated during the partial combustion of the fuel in the first stage is used to generate steam.
  • the steam generated in this way is advantageously mixed with the steam to be superheated by means of hydrogen-oxygen combustion.
  • the second combustion chamber is connected to the first combustion chamber via a fuel gas line connected via which the fuel prepared in the second combustion chamber is supplied as fuel gas to the first, actual gas turbine combustion chamber.
  • the second combustion chamber is connected to the hydrogen-oxygen burner via a hydrogen line.
  • a heat exchanger is expediently provided, which is connected on the primary side into the fuel gas line connected to the second combustion chamber and on the secondary side into the water-steam cycle.
  • feed water from the water-steam cycle is expediently fed to the heat exchanger, this feed water first being evaporated in the heat exchanger and then being overheated.
  • the heat exchanger is therefore designed as a waste heat boiler with a high-pressure evaporator and a high-pressure superheater.
  • a separation device is provided, which is connected to the hydrogen line opening into the hydrogen-oxygen burner.
  • the air required for the partial combustion of the fuel in the second combustion chamber is advantageously taken from the compressor connected to the first combustion chamber.
  • FIG. 1 An embodiment of the invention is explained in more detail with reference to a drawing.
  • the figure shows a gas and steam turbine system with a hydrogen-oxygen burner for overheating the generated steam.
  • the gas and steam turbine system 1 comprises a gas turbine system with a gas turbine 2 with coupled Air compressor 3 and a combustion chamber 4 upstream of the gas turbine 2, which is connected to a fresh air line 5 of the air compressor 3.
  • a fuel or fuel gas line 6 opens into the combustion chamber 4 of the gas turbine 2.
  • the gas turbine 2 and the air compressor 3 as well as a generator 7 sit on a common shaft 8.
  • the gas and steam turbine system 1 further comprises a steam turbine system with a steam turbine 10 with a coupled generator 11 and in a water-steam circuit 12 a condenser 13 connected downstream of the steam turbine 10 and a waste heat steam generator 14.
  • the steam turbine 10 consists of a high-pressure part 10a and a low-pressure part 10b, which drive the generator 11 via a common shaft 15.
  • An exhaust line 17 is connected to an inlet 14a of the heat recovery steam generator 14 in order to supply working medium A ′ or flue gas relaxed in the gas turbine 2 to the heat recovery steam generator 14.
  • the relaxed working medium A 'from the gas turbine 2 leaves the heat recovery steam generator 14 via its outlet 14b in the direction of a chimney (not shown).
  • the waste heat steam generator 14 comprises in a low-pressure stage of the water-steam circuit 12 as heating surfaces a preheater 20 and a low-pressure evaporator 22 and a low-pressure superheater 24. It further comprises in a high-pressure stage of the water-steam circuit 12 as Heating surfaces a high pressure evaporator 26 and a high pressure superheater 28.
  • the low pressure superheater 24 is connected via a steam line 30 to the low pressure part 10b of the steam turbine 10.
  • the high-pressure superheater 28 is connected to the high-pressure part 10 a of the steam turbine 10 via a steam line 31.
  • the low-pressure part 10b of the steam turbine 10 is connected on the output side to the condenser 13 via a steam line 32.
  • the water-steam circuit 12 shown in the figure is thus made up of two pressure stages. However, it can also be constructed from three pressure stages.
  • the waste heat steam generator 14 additionally has a medium-pressure evaporator and a medium-pressure superheater, which are connected to the water-steam circuit 12 and are connected to a medium-pressure part of the steam turbine 10.
  • the condenser 13 is connected to the preheater 20 via a condensate line 34, into which a condensate pump 36 is connected.
  • the condensate line 34 is also connected to a feed water tank 44 via a series connection of three heat exchangers 38, 40 and 42.
  • the preheater 20 is connected to the condensate line 34 via a line 46 between the heat exchangers 38 and 40.
  • the feed water container 44 is connected on the output side via a feed water line 48 to a water-steam separation vessel 50 of the low-pressure stage.
  • the low-pressure superheater 24 and the low-pressure evaporator 22 are connected to this vessel 50.
  • the feed water tank 44 is also connected on the output side to a water / steam separating vessel 54 of the high pressure stage via a feed water line 51, into which a high pressure pump 52 is connected.
  • the high-pressure superheater 28 and the high-pressure evaporator 26 are connected to the vessel 54.
  • a steam line 56 connected to the steam line 30 also opens into the feed water tank 44, which also functions as a degasser.
  • a hydrogen-oxygen burner 58 is connected between the waste heat steam generator 14 and the steam turbine 10 in the water-steam circuit 12.
  • the burner 58 is connected on the input side to the output of the high-pressure superheater 28 and on the output side to the input of the high-pressure part 10 a of the steam turbine 10.
  • the oxygen line 60 is connected to an air separation unit 64 via the heat exchangers 42 and 40.
  • a pump 66 and 68 are connected to the oxygen line 60.
  • a line 69 which is connected to the compressor 3 via the heat exchanger 38, opens into the air separation plant 64 for supplying compressed air L.
  • the hydrogen line 62 is connected to a further combustion chamber 76 via a pump 70 and a separation device 72 and via a waste heat boiler 74. This in turn is connected to the compressor 3 via a branch 78 of the fresh air line 5.
  • a fuel line 80 opens into the combustion chamber 76.
  • the combustion chamber 76 When the gas and steam turbine system is operating, the combustion chamber 76 is supplied with liquid, gaseous or solid fuel B, for example heating oil, natural gas or coal from a coal gasification system, not shown, via the fuel line 80.
  • the fuel B is partially burned in the combustion chamber 76 with the supply of compressed air L from the compressor 3 and is thereby processed with the aim that a hydrogen fraction is also generated in addition to a fuel gas B '.
  • the heat generated during the partial combustion is used in the waste heat boiler or heat exchanger 74 to generate steam.
  • the waste heat boiler 74 has an evaporator 84 and a superheater 86 as heating or heat exchange surfaces, which are connected to a water-steam separation vessel 88.
  • the water-steam separating vessel 88 is supplied with high-pressure feed water from the feed water container 44 via a feed water line 90, which is connected to the feed water line 51 on the pressure side of the high-pressure pump 52.
  • the steam generated in the evaporator 84 and subsequently overheated in the superheater 86 is, via a steam line 92, the steam flowing out of the high-pressure superheater 28 before it is introduced into the hydrogen-oxygen burner 58 added.
  • the pressure of this steam generated by heat exchange with the fuel gas B ′ corresponds to the pressure p H of the steam flowing out of the high-pressure superheater 28.
  • the hydrogen H 2 generated in the fuel processing in the combustion chamber 76 is separated from the cooled fuel gas B ′ and fed to the hydrogen-oxygen burner 58 via the hydrogen line 62.
  • the fuel gas B ' is fed to the combustion chamber 4 of the gas turbine 2 and burned there with compressed fresh air L from the air compressor 3.
  • the hot and high-pressure working medium A which arises during the combustion is expanded in the gas turbine 2 and drives it and the air compressor 3 as well as the generator 7.
  • the expanded flue gas or working fluid A 'emerging from the gas turbine 2 with a temperature T A' of approximately 600 ° C. is introduced into the waste heat steam generator 14 via the exhaust gas line 17 and is used there to generate steam for the steam turbine 10.
  • the flue gas stream and the water-steam circuit 12 are linked to one another in countercurrent.
  • steam is generated at different pressure levels, the enthalpy of which is used to generate electricity in the steam turbine 10.
  • steam can be generated with a pressure p N of approx. 7.5 bar and a temperature T N of 230 ° C.
  • steam can be generated with a pressure p H of 80 bar and a temperature T H of 530 ° C.
  • the oxygen O 2 is generated in the air separation unit 64.
  • the oxygen O 2 is separated from the fresh air L compressed by means of the compressor 3.
  • the proportion of oxygen O 2 which is not required for the combustion in the burner 58 and for the air separation in the air separation plant 64 generated nitrogen N 2 can for example be fed to the combustion chamber 4 of the gas turbine 2.
  • the superheated steam emerging from the high-pressure superheater 28 of the high-pressure stage is preferably heated to a temperature T ′ H greater than 600 ° C. before it is introduced into the steam turbine 10 by means of the heat generated during the combustion of the hydrogen H 2 and the oxygen O 2 of approx. 1100 ° C, highly overheated.
  • the steam supplied to the burner 58 cools the hot combustion gas generated during the hydrogen-oxygen combustion.
  • the pressure p ' H of the superheated steam is still approximately 80 bar.
  • the oxygen O 2 fed to the burner 58 is compressed in two stages by means of the pumps 68 and 66 from a pressure p 1 of approximately 2 bar to a pressure p 2 of approximately 20 bar and then to a pressure p 3 of approximately 80 bar .
  • the heat generated during the compression is advantageously used in a second and a third stage by means of the heat exchangers 40 and 42, respectively, for preheating the condensate K from the condenser 30 fed to the feed water tank 44.
  • the heat exchanger 38 in which the heat contained in the compressed fresh air L from the compressor 3 is transferred to the condensate K, is also used for preheating the condensate.
  • the hydrogen H 2 is also brought to a pressure p 4 of about 80 bar by the pump 70 before it is introduced into the burner 58.
  • a hydrogen-oxygen burner 58 for generating superheated steam in a gas and steam turbine plant with integrated coal gasification is particularly advantageous, since in such a plant both the hydrogen H 2 and the oxygen O 2 are usually already generated internally in the process.
  • By generating superheated steam using hydrogen-oxygen combustion a particularly high efficiency of the gas and steam turbine plant is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un procédé permettant de faire fonctionner une installation à turbines à gaz et à vapeur (1), selon lequel la chaleur contenue dans la substance de travail (A') détendue, provenant de la turbine à gaz (2), est utilisée pour produire de la vapeur pour la turbine à vapeur montée dans un circuit eau-vapeur (12). La substance de travail (A) de la turbine à gaz (2) est produite par combustion d'un combustible (B, B') sous apport d'air comprimé (L). Afin d'augmenter le rendement de l'installation, il est prévu, selon l'invention, de surchauffer la vapeur produite avant qu'elle ne soit introduite dans la turbine à vapeur (10), grâce à la chaleur produite au cours d'une combustion hydrogène-oxygène. L'installation (1) comprend un générateur de vapeur à chaleur perdue (14) monté en aval de la turbine à gaz (2), côté gaz évacués, dans lequel sont disposées un nombre de surfaces chauffantes (20 à 28) montées dans le circuit eau-vapeur (12) de la turbine à vapeur (10). Il est prévu un brûleur hydrogène-oxygène (58) monté dans le circuit eau-vapeur (12), entre le générateur de vapeur à chaleur perdue (14) et la turbine à vapeur (10).

Claims (10)

  1. Procédé pour faire fonctionner une installation à turbine à gaz et à turbine à vapeur, dans laquelle on utilise la chaleur contenue dans le moyen (A) de fonctionnement détendu sortant de la turbine (2) à gaz pour produire de la vapeur pour la turbine (10) à vapeur montée dans un circuit (12) eau-vapeur, le moyen (A) de fonctionnement pour la turbine (2) à gaz étant produit par combustion d'un combustible (B, B'), avec envoi d'air (L) comprimé, caractérisé en ce que, avant son introduction dans la turbine (10) à vapeur, l'on surchauffe la vapeur produite au moyen de chaleur obtenue lors d'une combustion hydrogène-oxygène, l'hydrogène (H2) étant produit de manière interne au processus en le séparant du combustible (B, B').
  2. Procédé suivant la revendication 1, caractérisé en ce que l'on produit l'oxygène (O2) en le séparant de manière interne au processus de l'air (L) comprimé.
  3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que l'on brûle le combustible (B, B') pour la turbine (2) à gaz en deux étapes (76, 4), la chaleur produite à la première étape (76) lors de la combustion partielle (oxydation partielle) étant utilisée de plus pour produire de la vapeur.
  4. Procédé suivant la revendication 3, caractérisé en ce que l'on mélange à la vapeur produite lors de la combustion partielle à la chaleur à surchauffer encore au moyen de la combustion hydrogène-oxygène.
  5. Procédé suivant l'une des revendications 1 à 4, comportant un circuit (12) eau-vapeur constitué d'un étage (20, 22, 24) de basse pression et d'un étage (26, 28) de haute pression, la vapeur produite à l'étage (26, 28) de haute pression étant surchauffée à une température (TH') supérieure à 600° C au moyen de la combustion hydrogène-oxygène.
  6. Installation à turbine à gaz et à turbine à vapeur comportant une première chambre (4) de combustion, montée en amont de la turbine (2) à gaz et reliée à un compresseur (3), ainsi qu'un générateur (14) de vapeur chauffé par chaleur perdue, qui est monté dans un circuit (12) eau-vapeur de la turbine (10) à vapeur et dans lequel sont disposées une pluralité de surfaces (20 à 28) chauffantes montées dans le circuit (12) eau-vapeur, caractérisée par un brûleur (58), qui est monté dans le circuit (12) eau-vapeur entre le générateur (14) de vapeur chauffé par chaleur perdue et la turbine (10) à vapeur et auquel on peut envoyer de l'hydrogène (H2) et de l'oxygène (O2), et par une deuxième chambre (76) de combustion, qui communique avec la première chambre (4) de combustion par l'intermédiaire d'une conduite (6) de gaz combustible et avec le brûleur (58) par l'intermédiaire d'une conduite (62) d'hydrogène.
  7. Installation suivant la revendication 6, caractérisée par un échangeur (74, 84, 86) de chaleur, qui est monté du côté primaire dans la conduite (6) de gaz combustible et, du côté secondaire, dans le circuit (12) eau-vapeur.
  8. Installation suivant la revendication 7, caractérisée en ce que l'échangeur (74) de chaleur est réalisé en chaudière chauffée par la chaleur perdue, qui comporte une pluralité de surfaces (84, 86) chauffantes pour produire de la vapeur surchauffée et sous haute pression (pH).
  9. Installation suivant l'une des revendications 6 à 8, caractérisée en ce qu'il est monté dans la conduite (6) de gaz combustible un dispositif (72) relié à la conduite (62) d'hydrogène, servant à séparer l'hydrogène (H2) du gaz (B') combustible envoyé de la première chambre (4) de combustion.
  10. Installation suivant l'une des revendications 6 à 9, caractérisée en ce que la deuxième chambre (76) de combustion est reliée au compresseur (3).
EP95910440A 1994-03-17 1995-03-03 Procede permettant de faire fonctionner une installation a turbines a gaz et a vapeur et installation fonctionnant selon ledit procede Expired - Lifetime EP0750718B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4409196A DE4409196A1 (de) 1994-03-17 1994-03-17 Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
DE4409196 1994-03-17
PCT/DE1995/000283 WO1995025219A1 (fr) 1994-03-17 1995-03-03 Procede permettant de faire fonctionner une installation a turbines a gaz et a vapeur et installation fonctionnant selon ledit procede

Publications (2)

Publication Number Publication Date
EP0750718A1 EP0750718A1 (fr) 1997-01-02
EP0750718B1 true EP0750718B1 (fr) 1997-09-03

Family

ID=6513109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95910440A Expired - Lifetime EP0750718B1 (fr) 1994-03-17 1995-03-03 Procede permettant de faire fonctionner une installation a turbines a gaz et a vapeur et installation fonctionnant selon ledit procede

Country Status (10)

Country Link
US (1) US5755089A (fr)
EP (1) EP0750718B1 (fr)
JP (1) JPH09510276A (fr)
KR (1) KR100363071B1 (fr)
CN (1) CN1143993A (fr)
CA (1) CA2185558A1 (fr)
DE (2) DE4409196A1 (fr)
DK (1) DK0750718T3 (fr)
ES (1) ES2107915T3 (fr)
WO (1) WO1995025219A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890104B2 (ja) * 1997-01-31 2007-03-07 株式会社東芝 コンバインドサイクル発電プラントおよびその冷却用蒸気供給方法
DE19829088C2 (de) * 1998-06-30 2002-12-05 Man Turbomasch Ag Ghh Borsig Stromerzeugung in einem Verbundkraftwerk mit einer Gas- und einer Dampfturbine
US6158221A (en) * 1999-01-13 2000-12-12 Abb Alstom Power Inc. Waste heat recovery technique
AU2002360505A1 (en) * 2001-12-03 2003-06-17 Clean Energy Systems, Inc. Coal and syngas fueled power generation systems featuring zero atmospheric emissions
DE10392525B4 (de) 2002-04-11 2012-08-09 Richard A. Haase Verfahren, Prozesse, Systeme und Vorrichtung mit Wasserverbrennungstechnologie zur Verbrennung von Wasserstoff und Sauerstoff
EP1388643B1 (fr) * 2002-08-09 2008-10-29 Hitachi, Ltd. Centrale combinée
US20050087987A1 (en) * 2003-10-23 2005-04-28 Mr. CHUN-MING KUO [household emergency power generator]
US7506685B2 (en) 2006-03-29 2009-03-24 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US9605522B2 (en) * 2006-03-29 2017-03-28 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US7735777B2 (en) * 2006-06-06 2010-06-15 Pioneer Astronautics Apparatus for generation and use of lift gas
US7654330B2 (en) * 2007-05-19 2010-02-02 Pioneer Energy, Inc. Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US8616294B2 (en) * 2007-05-20 2013-12-31 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US7650939B2 (en) * 2007-05-20 2010-01-26 Pioneer Energy, Inc. Portable and modular system for extracting petroleum and generating power
EP2074290A4 (fr) * 2007-09-06 2017-06-21 Korea Institute Of Machinery & Materials Centrale électrique ayant une chambre de combustion à oxygène pur
US8450536B2 (en) 2008-07-17 2013-05-28 Pioneer Energy, Inc. Methods of higher alcohol synthesis
EP2199547A1 (fr) * 2008-12-19 2010-06-23 Siemens Aktiengesellschaft Générateur de vapeur pour récupérer la chaleur et procédé de fonctionnement amélioré d'un générateur de vapeur pour récupérer la chaleur
US20110023491A1 (en) * 2009-07-30 2011-02-03 General Electric Company System and method for supplying fuel to a gas turbine
US7937948B2 (en) * 2009-09-23 2011-05-10 Pioneer Energy, Inc. Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
CN102597459B (zh) * 2010-06-03 2015-06-17 松下电器产业株式会社 燃气轮机系统
CN102855407B (zh) * 2012-09-17 2015-09-16 广东电网公司电力科学研究院 一种获取火电机组低压缸在湿蒸汽环境中的效率的方法
JP5896885B2 (ja) 2012-11-13 2016-03-30 三菱日立パワーシステムズ株式会社 発電システム及び発電システムの運転方法
WO2014146861A1 (fr) * 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Système de production d'énergie et procédé de fonctionnement
CA2932219A1 (fr) * 2013-12-02 2015-06-11 Alstom Technology Ltd Systeme a cycle combine
CN104481617B (zh) * 2014-11-03 2015-12-02 东南大学 基于氧化还原反应的储能装置及其储能方法和发电方法
ITBS20140188A1 (it) * 2014-11-05 2016-05-05 Westport Power Inc Metodo ed apparato per ridurre la pressione di un carburante gassoso
KR101664895B1 (ko) * 2016-03-23 2016-10-11 고등기술연구원연구조합 브레이튼 사이클 기반의 발전 시스템
JP6783160B2 (ja) 2017-02-03 2020-11-11 川崎重工業株式会社 水素酸素当量燃焼タービンシステム
KR102432774B1 (ko) * 2018-03-07 2022-08-17 대우조선해양 주식회사 해수의 전기분해모듈을 활용한 연계 시스템
DE102021203730A1 (de) 2021-04-15 2022-10-20 Siemens Energy Global GmbH & Co. KG Erzeugung von elektrischer Energie aus Wasserstoff und Sauerstoff
US11988114B2 (en) 2022-04-21 2024-05-21 Mitsubishi Power Americas, Inc. H2 boiler for steam system
JP2024027574A (ja) * 2022-08-18 2024-03-01 株式会社東芝 コンバインドサイクル発電設備
KR20240102569A (ko) * 2022-12-26 2024-07-03 이상천 이동식 수소/산소가스 생성 및 연소를 통한 발전장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148185A (en) * 1977-08-15 1979-04-10 Westinghouse Electric Corp. Double reheat hydrogen/oxygen combustion turbine system
GB2034412B (en) * 1978-09-20 1982-11-10 Chatwin F Combined gas and steam turbine engine
DE3319711A1 (de) * 1983-05-31 1984-12-06 Kraftwerk Union AG, 4330 Mülheim Kombinierte gasturbinen-dampfturbinen-anlage mit vorgeschalteter kohlevergasungsanlage
DE59205446D1 (de) * 1991-07-17 1996-04-04 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
CA2088947C (fr) * 1993-02-05 1996-07-16 Daniel A. Warkentin Turbine a gaz alimentee a l'hydrogene
US5644911A (en) * 1995-08-10 1997-07-08 Westinghouse Electric Corporation Hydrogen-fueled semi-closed steam turbine power plant

Also Published As

Publication number Publication date
US5755089A (en) 1998-05-26
CN1143993A (zh) 1997-02-26
ES2107915T3 (es) 1997-12-01
DK0750718T3 (da) 1998-04-27
EP0750718A1 (fr) 1997-01-02
DE4409196A1 (de) 1995-09-21
WO1995025219A1 (fr) 1995-09-21
CA2185558A1 (fr) 1995-09-21
KR100363071B1 (ko) 2003-02-26
KR970701823A (ko) 1997-04-12
JPH09510276A (ja) 1997-10-14
DE59500611D1 (de) 1997-10-09

Similar Documents

Publication Publication Date Title
EP0750718B1 (fr) Procede permettant de faire fonctionner une installation a turbines a gaz et a vapeur et installation fonctionnant selon ledit procede
EP0778397B1 (fr) Procédé d'opération d'une centrale combinée avec une chaudière de récuperation et un consommateur de vapeur
DE4212336C1 (fr)
DE4434526C1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
EP0523467B1 (fr) Procédé pour opérer une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
EP2368021B1 (fr) Générateur de vapeur à récupération de chaleur et procédé pour améliorer le fonctionnement d'un générateur de vapeur à récupération de chaleur
EP0846242B1 (fr) Générateur de vapeur et procédé de son exploitation
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
CH678987A5 (fr)
EP0918151B1 (fr) Dispositif et méthode pour préchauffer du carburant pour un dispositif de combustion
EP0586416B1 (fr) Procede et installation de production non polluante d'energie electrique
EP0586425B1 (fr) Procede de generation d'energie dans une centrale thermique combinee a gaz et a vapeur
DE4015104A1 (de) Kombinierte waermekraftanlage
WO1984000206A1 (fr) Procede de mise en action d'un four industriel
DE3815993A1 (de) Zweistoff-turbinenanlage
DE4409811C1 (de) Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
DE2733223A1 (de) Dampfkessel mit direkter waermeuebertragung fuer brennstoffe mit niederem energieinhalt und niederem aschegehalt
DE3509357C1 (de) Kombinierte Dampf-Gasturbinenanlage
DE19849740A1 (de) Gas- und Dampfturbinenanlage
EP0379108A1 (fr) Procédé de production d'énergie électrique dans un cycle combiné gaz-vapeur et installation de gazéification de combustible
EP1404947B1 (fr) Procede pour faire fonctionner une installation motrice a vapeur et installation motrice a vapeur pour mettre en oeuvre ce procede
EP4400703A1 (fr) Procédé de turbine à gaz avec préchauffage et chargement en vapeur de gaz combustible et turbine à gaz
DE2716292B2 (de) Verfahren zur Inbetriebnahme von mit Druckfeoerung betriebenen Dampferzeugern
DD292950A5 (de) Verfahren zur verlustarmen Erzeugung von Elektroenergie
DE3436060A1 (de) Kombination von wasser-dampf- und gasturbinenprozessen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970206

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970903

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59500611

Country of ref document: DE

Date of ref document: 19971009

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971105

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107915

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010614

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020305

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020308

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020312

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020321

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030304

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070521

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001