EP0750602B1 - Procede de fabrication d'alcools et/ou d'aldehydes - Google Patents

Procede de fabrication d'alcools et/ou d'aldehydes Download PDF

Info

Publication number
EP0750602B1
EP0750602B1 EP95912212A EP95912212A EP0750602B1 EP 0750602 B1 EP0750602 B1 EP 0750602B1 EP 95912212 A EP95912212 A EP 95912212A EP 95912212 A EP95912212 A EP 95912212A EP 0750602 B1 EP0750602 B1 EP 0750602B1
Authority
EP
European Patent Office
Prior art keywords
hydroformylation
stage
rhodium
precarbonylation
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95912212A
Other languages
German (de)
English (en)
Other versions
EP0750602A1 (fr
Inventor
Heinz-Josef Kneuper
Maik Aron
Frank-Michael Korgitzsch
Michael Nilles
Wolfgang Harder
Michael Röper
Rocco Paciello
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0750602A1 publication Critical patent/EP0750602A1/fr
Application granted granted Critical
Publication of EP0750602B1 publication Critical patent/EP0750602B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/4038Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals
    • B01J31/4046Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals containing rhodium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for manufacturing of alcohols and / or aldehydes by the hydroformylation of Olefins with more than 3 'carbon atoms, including the step the hydroformylation by means of a homogeneous in the reaction medium dissolved rhodium catalyst, the separation of the rhodium catalyst from the discharge of the hydroformylation reaction and the recycling of the rhodium separated off from the hydroformylation output in the hydroformylation stage.
  • this hydroformylation method is for hydroformylation of olefins with more than 7 carbon atoms is not economical.
  • the noble metal-containing catalyst cannot reusable form.
  • internal and internal, branched olefins can advantageously be hydroformylated with so-called "bare" rhodium, ie with rhodium compounds which are homogeneously dissolved in the hydroformylation medium and are not modified with phosphorus-containing ligands such as phosphines or phosphites.
  • rhodium catalysts not modified with phosphines or phosphites and their suitability as a catalyst for the hydroformylation of the aforementioned classes of olefins are known (see Falbe, p. 38 ff).
  • bare rhodium or "bare rhodium catalysts” are used in this application for rhodium hydroformylation catalysts which, in contrast to conventional rhodium hydroformylation catalysts, do not use ligands under the conditions of hydroformylation, especially not phosphorus-containing ligands such as phosphine or Phosphite ligands are modified. In this sense, carbonyl or hydrido ligands are not understood as ligands. It is assumed in the specialist literature (see Falbe, p.
  • the "bare rhodium catalysts" are formed under the conditions of the hydroformylation reaction from rhodium compounds, for example rhodium salts such as rhodium (III) chloride, rhodium (III) nitrate, rhodium (III) acetate, rhodium (II) acetate, rhodium (III ) sulfate or rhodium (III) ammonium chloride, from rhodium chalcogenides, such as rhodium (III) oxide or rhodium (III) sulfide, from salts of rhodium oxygen acids, for example the rhodates, from rhodium carbonyl compounds, such as Rh 4 (CO) 12 and Rh 6 (CO) 16 or from organo-rhodium compounds such as rhodium dicarbonylacetonylacetonate, cyclooctadiene rhodium acetate or chlor
  • thermolabile rhodium catalyst (cf. US-A 4 400 547) due to the thermal load in the Partial distillation of the hydroformylation product decomposes to metallic rhodium, which is on the walls of the reactor and the pipes.
  • the fancy Rhodium metal cannot get back into the hydroformylation reaction be recycled as it is under the hydroformylation conditions not converted to the catalytically active rhodium compound can be.
  • Rhodium catalysts "have resulted in rhodium losses so far prevents a larger industrial application of this method.
  • WO 82/03856 relates to a method for the thermal stabilization of unmodified, ie "bare rhodium catalysts" in which the Discharge from the hydroformylation reaction with an oxygen-containing Gas is treated, whereby the aldehydes formed in part. are oxidized to the corresponding carboxylic acids, which with the rhodium catalyst in the working up by distillation Form thermostable rhodium carboxylates, which again act as catalysts can be used for hydroformylation.
  • Disadvantageous as a result of this process is the reduction in yield the partial oxidation of the product aldehydes to carboxylic acids.
  • this process is based on such hydroformylations limited, in which distillable products are formed: For example, the rhodium catalyst not separated from the hydroformylation product of polyisobutene will.
  • Bott (Fette, Seifen, Anstrichstoff, 76, 443 (1974)) describes the synthesis of internal aldehydes from ⁇ -olefins by their isomerization using cobalt octacarbonyl (Co 2 (CO) 8 ) under a carbon monoxide atmosphere at 190 ° C or on one Sodium on alumina catalyst and the subsequent hydroformylation of the internal olefins using rhodium triphenylphosphine homogeneous catalysts.
  • the disadvantage here is the use of two different catalysts for the individual reaction steps.
  • internal olefins react too slowly with the rhodium triphenylphosphine catalyst for technical purposes.
  • octene-1 becomes internal olefins at a cold pressure of Rh 2 O 3 under 200 bar (CO / H 2 (1/1)) and at 150 ° C in hexane produced catalyst, which has been freed of hydrogen by pressing carbon monoxide several times, isomerized at 100 bar carbon monoxide pressure and 190 ° C.
  • the present invention was therefore based on the object Process for the preparation of aldehydes from long-chain and / or branched olefins with the help of "naked rhodium catalysts" find, on the one hand, the problems of metal deposition Rhodium in the working up of the hydroformylation product by distillation and the rhodium catalyst separation of satisfactory solution of non-distillable product aldehydes can be.
  • a hydroformylation process are sought in which there are complex ligands reversible and depending on the pressure of the carbon monoxide-hydrogen gas mixture coordinated with the rhodium catalyst bind so that this stabilizes during an extractive workup and becomes extractable.
  • the complexes thus formed should be used under the Reaction pressure in the presence of the carbon monoxide-hydrogen gas mixture reversibly decomplex and the released Rhodium compound again the catalytic properties of the accept "bare rhodium".
  • the goal was one in particular Damage to the complex ligand in the course of the hydroformylation reaction to avoid the loss of rhodium during the extraction to minimize and design the process so that the hydroformylation of internal olefins is economical and in high space-time yields can be carried out.
  • the hydroformylation product After the extractive separation of the in the hydroformylation discharge contained rhodium catalyst in the form of a water-soluble complex with the used according to the invention Complexing agent, the hydroformylation product on itself be worked up in the usual way, for example by using the Hydroformylation product from the organic extract by distillation isolated or by adding more volatile organic components of the hydroformylation output from the more volatile or optionally even undistillable hydroformylation product distilled off.
  • the aqueous extract of the hydroformylation discharge which is now the nitrogenous complexing agent Contains complexed rhodium catalyst is a processing stage fed in the complexed rhodium catalyst in the presence of an essentially water-insoluble, organic Liquid and in the presence of carbon monoxide, synthesis gas or a gas mixture containing carbon monoxide at one pressure from generally 50 to 1000 bar, preferably from 70 to 500 bar and particularly preferably from 100 to 400 bar and at one Temperature from 50 to 180 ° C, preferably from 70 to 160 ° C, in particular from 90 to 140 ° C, is carbonylated.
  • the discharge from the precarbonylation stage can easily, e.g. in a phase separator into a form the main part of the rhodium an organic phase containing rhodium carbonyl compound and in an aqueous containing the main part of the complexing agent Phase.
  • the organic phase then becomes Hydroformylation stage supplied in which in this Catalyst solution contained "bare" rhodium hydroformylation of the olefin to be hydroformylated.
  • the the Most of the aqueous phase containing the complexing agent can be used otherwise are used, for example advantageously for extraction of the rhodium catalyst from the hydroformylation discharge.
  • the precarbonylation can be carried out using carbon monoxide, synthesis gas or a gas mixture containing carbon monoxide.
  • Synthesis gas means CO / H 2 gas mixtures in which carbon monoxide and hydrogen are generally present in a molar ratio of 1: 5 to 5: 1, preferably 4: 6 to 6: 4.
  • carbon monoxide-containing gas mixtures are understood to mean other gas mixtures containing carbon monoxide that do not fall under the term “synthesis gas”, for example CO / H 2 mixtures with a composition different from synthesis gas or mixtures of carbon monoxide with others which are inert under the reaction conditions
  • Gases such as nitrogen, noble gases or lower hydrocarbons such as methane, ethane, propane or butane.
  • the precarbonylation stage and the hydroformylation stage are inert Liquids are used, where "inert” means that these liquids do not interfere with the precarbonylation or affect the hydroformylation.
  • organic liquids examples are hydrocarbons be used. But preferably Aldehydes or alcohols or mixtures of aldehydes and alcohols used. For example, part of the raw Discharge from the hydroformylation stage can be used there but can also those formed in the hydroformylation stage and subsequently isolated aldehydes or alcohols or mixtures thereof be used. It exists regarding the type of as water-insoluble, organic liquid in the precarbonylation stage Aldehydes used practically no restriction. However, such aldehydes or alcohols are preferably used as in the hydroformylation of the olefin to be hydroformylated arise.
  • high boilers in the precarbonylation stage As an essentially water-insoluble, organic liquid so-called high boilers in the precarbonylation stage be used. These are high-boiling condensation products of aldehydes, which are by-products in the course of hydroformylation arise. Naturally, this is generally the case about multi-component mixtures. In US-A 4 148 830 the chemical The nature of such high boiler mixes is exemplary explained. Such high boiler mixes are also commercially available, for example under the name Texanol® from Eastman company.
  • Olefins are particularly preferred in the process according to the invention as an essentially water-insoluble, organic liquid in the precarbonylation stage used.
  • the type of olefin used in the precarbonylation in principle there is no limitation, such olefins are preferred used as in the subsequent hydroformylation stage be used.
  • Synthesis gas used as a carbonylation agent can supplied olefin depending on the conditions selected in the precarbonylation be hydroformylated even in small amounts.
  • Carbonylationsagens used, so can acyl complexes form carbonylated rhodium with the olefin, creating an additional Stabilization of the homogeneously dissolved rhodium achieved can be.
  • ⁇ -olefins compared to internal olefins are available in larger quantities on the market than internal ones Olefins, ⁇ -olefins are also available cheaper than internal olefins and branched aldehydes and branched alcohols wanted intermediates for the production of branched carboxylic acids, Alcohols and amines are, which in turn, on a large scale e.g. as additives for detergents and cleaning agents and for Production of biodegradable surfactants can be used.
  • the ⁇ -olefin feed is sent through the precarbonylation stage.
  • the precarbonylation and simultaneously the isomerization of the ⁇ -olefin to the internal olefin is generally at Temperatures from 100 to 180 ° C, preferably at 120 to 160 ° C, particularly preferably at 130 to 150 ° C and at a pressure of 50 up to 1000 bar, preferably 70 to 500 bar and particularly preferred carried out at 100 to 400 bar.
  • the one for complete isomerization of the ⁇ -olefin required residence time of the ⁇ -olefin in the precarbonylation stage is generally one of those used therein Depending on the reaction conditions and is expedient determined by a preliminary test.
  • ⁇ -olefins can also be hydroformylated to give n-aldehydes, for example by removing the ⁇ -olefin bypassing the precarbonylation step introduces into the hydroformylation reactor or by the reaction conditions in the precarbonylation stage chooses that the ⁇ -olefin fed to the precarbonylation step isomerized to a significant extent.
  • the precarbonylation stage can consist of one or more, in parallel or reactors connected in series.
  • a discontinuous mode of operation can conventional Stirred autoclaves and in a continuous mode of operation
  • Cascade stirred autoclaves or tubular reactors used for mixing contain suitable devices of the reaction material used will.
  • the discharge from the precarbonylation stage is carried out in a suitable Device, e.g. a phase separator, in an aqueous and separated an organic phase.
  • a suitable Device e.g. a phase separator
  • the phase separation can under pressure, for example under the operating pressure of the precarbonylation stage or at atmospheric pressure, according to the previous one
  • the discharge from the precarbonylation is released.
  • the phase separation is advantageous also under pressure.
  • the hydroformylation using the in the pre-carbonylation stage generated "bare" rhodium catalyst is in the presence carried out by synthesis gas. If necessary, the hydroformylation step added the olefin to be hydroformylated, if this is not already the hydroformylation stage fed to the organic phase from the precarbonylation discharge has been.
  • the hydroformylation is generally carried out at temperatures of 60 to 180 ° C, preferably 80 to 140 ° C and particularly preferably at 90 to 130 ° C and at a pressure of generally 50 to 1000 bar, preferably at 70 to 500 bar, in particular at 100 up to 400 bar. Otherwise the hydroformylation takes place under conditions that are customary in hydroformylations with "bare” rhodium and how they are used for example in the literature cited at the beginning, regarding hydroformylation with "bare” rhodium.
  • the alcohol / aldehyde product ratio in the hydroformylation output can be influenced.
  • the alcohol / aldehyde product ratio in the hydroformylation output can be influenced in the hydroformylation of trimer propylene with the same synthesis gas compositions in each case - CO / H 2 molar ratio 50/50, 40/60 or 60/40 - at 130 ° C and a pressure of 280 bar.
  • the aldehyde / alcohol molar ratio in the hydroformylation output changes depending on the synthesis gas composition - CO / H 2 molar ratio 50/50, 40/60 or 60/40 - to 76 / 24, 67/33 and 82/18.
  • the hydroformylation can take place in the presence or absence of organic Solvents are carried out. Particularly advantageous is the use of organic solvents, especially for the hydroformylation of long-chain or polymeric olefins.
  • organic solvents especially for the hydroformylation of long-chain or polymeric olefins.
  • Solvents can usually be used in the hydroformylation process used solvents are used, for example high-boiling aromatic and aliphatic hydrocarbons or also high-boiling aldehyde condensation products, which in the course of Hydroformylation reaction as a by-product as a result of the condensation the product aldehydes arise.
  • the discharge from the hydroformylation stage is before its extraction with the aqueous solution of the nitrogen-containing complexing agent expediently relaxed.
  • Extraction of the hydroformylation output is generally at temperatures of 80 up to 140 °, preferably from 90 to 130 ° C, especially 100 to 120 ° C and at a pressure of generally 1 to 20 bar, preferably 1 to 10 bar and particularly preferably 1 to 5 bar carried out.
  • the extraction can be in the air or under a Inert gas atmosphere can be carried out, for example one Nitrogen, hydrogen or argon atmosphere, but it can also be advantageous, the inert gas used in addition carbon monoxide or admixing synthesis gas or the extraction in the presence of carbon monoxide.
  • aqueous phase containing complexing agents is used for this purpose is returned to the extraction stage.
  • the extraction generally results in an aqueous / organic volume ratio Phase of generally 0.2 to 2, preferably from 0.3 to 1.
  • the molar ratio nitrogenous Complexing agent / rhodium generally amounts to the extraction 5: 1 to 10000: 1, preferably 10: 1 to 5000: 1, in particular 50: 1 up to 1000: 1.
  • the solution of the complexing agent is practically all liquid-liquid extraction devices suitable, for example mixer-settler equipment, Bubble columns or countercurrent or cocurrent extraction columns, these with additional internals for better Mix the aqueous and organic phases can be, for example with sieve trays, packing or static Mixers.
  • the extraction of the rhodium catalyst from the Hydroformylation discharge can be carried out in one step, preferably a multi-stage extraction is used, for example a two- or three-stage extraction, the aqueous, phase containing the complexing agent in direct current or, especially preferred, performed in countercurrent with respect to the organic phase can be.
  • the rhodium catalyst can be removed Hydroformylation discharge in a conventional manner, for example, by distillation to isolate the contained therein Products of value - alcohols and or aldehydes - are processed.
  • the process according to the invention comprises the process steps of Hydroformylation, a two-stage countercurrent extraction of the hydroformylation output using mixer-settler equipment and the precarbonylation step. It goes without saying that Place the mixer-settler apparatus also other of the above Extractors can be used.
  • inert gas not shown
  • the complexing agent solution can be fresh Complexing agent solution over a not shown in Fig Inlet e.g. can be fed to the mixer 3. That contained in the mixer 3 Extraction mixture is in settler 4 in a first organic and a first aqueous phase is separated.
  • the first watery Phase is fed via line 8 into the precarbonylation reactor, whereas the first organic phase via line 5 of the extraction stage C is supplied.
  • the first aqueous phase is still suitable Mixers over the inlets 9 and 10 with an in essential water-insoluble, organic liquid, for example raw hydroformylation discharge, Texanol® or preferably the olefin to be hydroformylated and the carbonylation agent, So carbon monoxide, synthesis gas or a suitable one Carbon monoxide-containing gas mixture, preferably with carbon monoxide or synthesis gas, mixed.
  • the feed materials supplied via lines 9 and 10 directly initiate in the precarbonylation reactor 11.
  • phase separation B In the pre-carbonylation reactor 10 is the nitrogenous complexing agent bound rhodium in the aqueous phase under the specified conditions carbonylated and the forming, lipophilic "bare" rhodium catalyst migrates into the organic phase.
  • the discharge from the precarbonylation reactor 11 is via line 12, preferably without prior relaxation, passed into the phase separator 13 and there into a second organic and a second aqueous phase separated (phase separation B).
  • the hydroformylation reactor is fed via line 15 Synthesis gas fed, which alternatively can also be passed directly into hydroformylation reactor 1 can.
  • Was used as a water-insoluble, organic liquid does not use an olefin, so it can be hydroformylated Olefin either directly via line 16 in the Hydroformylation reactor 1 are initiated or previously an inlet not shown in Fig.
  • the current in line 14 are added.
  • the second aqueous phase from phase deposition B which is that of rhodium depleted solution of the nitrogenous complexing agent contains, is via line 17 to the mixer after prior relaxation 6 fed.
  • extraction stage C comprising the mixer 6 and Settler 7, the first organic phase from the extraction stage A with the second aqueous phase from phase separation B extracted again to remove residual amounts of rhodium from the first organic Remove phase.
  • the extraction mixture contained in the mixer 6 is in the settler 7 in a third organic and a third aqueous phase separated.
  • the one now freed from rhodium third organic phase is via line 18 for further Processing for the isolation of the valuable products - alcohol and / or aldehyde - discharged.
  • the third aqueous phase from extraction C is passed via line 19 into the extraction stage A, which closes the cycle.
  • the initial filling of the reactor with rhodium can be done by introduction a solution or suspension of the rhodium catalyst or a the suitable for the production of the rhodium catalyst, initially mentioned precursor compounds, for example in the precarbonylation reactor 11 or in the hydroformylation reactor 1.
  • precursor compounds for example in the precarbonylation reactor 11 or in the hydroformylation reactor 1.
  • Rhodium via line 20 or other, not shown in Fig Inlets, for example via an inlet on line 8, in to start the plant.
  • sulfonated, nitrogen-containing Complexing agents such as sulfonated pyridines or sulfonated Quinolines and / or water soluble carboxylated pyridines or Quinolines.
  • 2,2'-bipyridine sulfonates are particularly preferred, 2,2'-bichinoline sulfonates, 1,10-phenanthroline sulfonates, 2,2 ', 6', 2 "-terpyridine sulfonates or porphine sulfonates.
  • multi-toothed in particular the use of bidentate, tridentate or tetradentate, carboxylated, nitrogen-containing complexing agent in the process according to the invention particularly preferred, in particular the use of 2,2'-bipyridine carboxylates, 1,10-phenanthroline carboxylates, 2,2'-bichinoline carboxylates, 2,2 ', 6', 2 "terpyridine carboxylates and porphine carboxylates.
  • the complexing agents can be one or more Contain carboxylate and / or sulfonate groups per molecule, where the number of carboxylate and / or sulfonate groups in the molecule of course also on the molecular size of the complexing agent and its reactivity with sulfonation reagents is.
  • monosulfonates are usually used Pyridines and 2,2'-bipyridines are used as complexing agents, whereas the sulfonated porphins, for example, up to four sulfonate groups can contain in the molecule.
  • carboxylate groups bearing nitrogenous complexing agents advantageous through the Oxidation of the corresponding alkyl preferably methyl substituted Complexing agents can be produced according to conventional chemical processes are easily accessible the carboxylated complexing agents 1 to 6 depending on the molecular size, preferably 1 to 4 and particularly preferably 1 to 3 carboxyl groups carry.
  • the number of carboxyl and / or sulfonic acid groups in the complexing agent molecule affects water solubility this complexing agent.
  • nitrogen-containing complexing agents are used, both carboxyl groups and sulfonic acid groups contain as substituents or mixtures of sulfonated and complexing agents containing carboxyl groups can be used.
  • the sulfonate and carboxylate groups are in the invention applied complexing agents preferably in salt form, especially in the form of water-soluble salts, particularly preferred in the form of their onium, alkali metal and / or alkaline earth metal salts.
  • the type of onium salt used is general not critical. For example, Ammonium, phosphonium or arsonium salts of the carboxylic or sulfonic acids concerned will. To avoid misunderstandings at this point expressly pointed out that the usable according to the invention nitrogen-containing complexing agent sulfonates or Carboxylate the sulfonate or carboxylate groups as substituents wear and not salt-like with any sulfonate or Carboxylate anions are connected.
  • the complexing agents mentioned can additionally be substituted with substituents which are inert under the reaction conditions, such as halogen atoms, in particular fluorine, chlorine or bromine atoms, alkyl groups, in particular C 1 - to C 4 -alkyl groups, aryl groups, in particular C 6 - to C 10 -aryl groups, C 7 - to C 12 aralkyl groups, the nitro group, the hydroxy group, the cyano group, alkoxy groups, in particular C 1 to C 4 alkoxy groups and C 1 to C 10 alkyl sulfonate groups.
  • substituents which are inert under the reaction conditions, such as halogen atoms, in particular fluorine, chlorine or bromine atoms, alkyl groups, in particular C 1 - to C 4 -alkyl groups, aryl groups, in particular C 6 - to C 10 -aryl groups, C 7 - to C 12 aralkyl groups, the nitro group, the hydroxy group,
  • Substitution with alkyl, aryl or aralkyl groups can in particular then be of advantage if the nitrogen-containing complexing agent is slow to react and only under drastic conditions can be sulfonated.
  • the sulfonated nitrogen-containing complexing agents can be obtained from the corresponding, non-sulfonated parent compounds by conventional sulfonation processes, such as the reaction with concentrated sulfuric acid or oleum, optionally in the presence of catalysts, such as mercury sulfate, or by the reaction of these compounds with halogen sulfonic acids, preferably with chlorosulfonic acid and subsequent Hydrolysis of the sulfonic acid halides formed to the sulfonic acid salts.
  • catalysts such as mercury sulfate
  • Alkanesulfonate - substituted complexing agents such as pyridine-4-ethanesulfonate
  • sulfochlorination of the corresponding parent compounds in the case given above by way of example, 4-ethylpyridine, using sulfuryl chloride and the subsequent alkaline hydrolysis of the sulfochloride formed.
  • 2,2'-bipyridine-5-sulfonic acid can be obtained by sulfonating 2,2'-bipyridine by the method of Herrmann et al., Chem. Ber. 123 , 1953 (1990). 1,10-phenanthroline can be sulfonated in an analogous manner. Further bipyridines substituted with sulfonic acid groups can be obtained according to Campa et al., An. Quim., Ser. C 84 , 128 (1988). The terpyridines, which can be prepared, for example, by the methods given by Kröhnke in Synthesis 1 (1976), can also be converted into the sulfonates in question by the methods given by Ferri.
  • a number of nitrogen-containing complexing agents are mentioned below by way of example which, after sulfonation, can be used in the process according to the invention in accordance with the methods stated above and converted into their salts: pyridine, the picolines, other alkyl pyridines, quinoline , 5,6-benzoquinoline, 2,2'-bipyridine, 2,2'-biquinoline of the formula I.
  • the carboxyl group-containing complexing agents can be prepared from 1 to 6 times, preferably 1 to 4 times and particularly preferably 1 to 3 times methyl-substituted compounds I to IX by oxidation of the methyl groups, for example by means of potassium permanganate.
  • the compounds I to IX substituted or benzanellated with methyl groups can be prepared, for example, by the methods described by Kröhnke et al., Synthesis 1 (1976); Sasse et al., J. Chem. Soc. 616 (1956); Sasse et al., J. Heterocycl. Chem. 8 , 483 (1971); Bos et al., Synth. Commun.
  • the process according to the invention is particularly suitable for the hydroformylation of olefins having more than 3, preferably more than 7, carbon atoms, in particular for the hydroformylation of C 7 -C 20 -olefins, which can be straight-chain or branched and the ⁇ -olefinic and / or internal May contain double bonds, for example octene-1, dodecene-1, trimer and tetramer propylene, or dimer, trimer and tetramer butylene. Unsaturated oligomers of other olefins can also be hydroformylated. Likewise, cooligomers from various olefins.
  • the aldehydes formed from these olefins serve, for example, as precursors for the production of plasticizer alcohols and surfactants, which can be produced therefrom in a conventional manner by hydrogenation.
  • the olefins used for the hydroformylation can be obtained, for example, by acid-catalyzed elimination of water from the corresponding fatty alcohols or by a large number of other technical processes, as described, for example, in Weissermel, Arpe: Industrielle Organische Chemie, pp. 67-86, Verlag Chemie, Weinheim, 1978 , can be obtained.
  • ⁇ -olefins are used in the process according to the invention, these can optionally be hydroformylated by direct entry in the hydroformylation stage to give the corresponding n-aldehydes or by their entry in the precarbonylation stage, after their isomerization to internal olefins to give isoaldehydes, their use has already been pointed out has been.
  • the method according to the invention is also particularly well suited for the hydroformylation of polymeric olefins, for example low molecular weight polyisobutene, low molecular weight polybutadiene or low molecular weight 1,3-butadiene-isobutene or butene copolymers.
  • Low molecular weight polymers includes in particular polymers understood with molecular weights of 500 to 5000 daltons. It can also hydroformylate higher molecular weight, unsaturated polymers will. The only requirement for this is that this are soluble in the hydroformylation medium.
  • hydroformylation products these polymeric olefins, especially those of low molecular weight Polyisobutens can, for example, by the method EP-A 244 616 by reductive amination into the corresponding Amines are converted to use as a fuel additive Find.
  • Low molecular weight polyisobutene is, for example - obtainable by the process of EP-A 145 235, low molecular weight Isobutene-1,3-butadiene copolymers can e.g. after the procedure the German patent application P 4306384.5 can be obtained.
  • the method according to the invention is practically suitable for production of all aldehydes which are hydroformylated by Olefins are available.
  • substituted olefins which in general 1 to 2, preferably a substituent, can carry the process of the invention can be hydroformylated.
  • unsaturated, aliphatic carboxylic acid esters, acetals, alcohols, Ethers, aldehydes, ketones and amines and amides are hydroformylated.
  • substituted starting olefins e.g.
  • Methacrylic acid ester Dicyclopentadiene, vinyl and allyl ethers, in particular correspondingly substituted derivatives of unsaturated fatty acids of interest, for example the esters of oil, linoleic, Linolenic, ricinoleic or erucic acid.
  • Those from these olefinic Aldehydes obtainable by hydroformylation are raw materials also raw materials for making biologically light degradable, wash-active substances.
  • Another embodiment of the present invention relates Process for the preparation of branched carboxylic acids, alcohols or Amines from ⁇ -olefins, the ⁇ -olefins according to the invention Precarbonylation process to internal olefins isomerized, then hydroformylated to isoaldehydes and the isoaldehydes thus obtained in a conventional manner oxidized to branched carboxylic acids, to branched alcohols reduced or branched amines are reductively aminated.
  • the oxidation of the isoaldehydes obtained from ⁇ -olefins according to the invention or isoaldehyde / n-aldehyde mixtures can be conventional per se Way, for example by the oxidation of Aldehydes with atmospheric oxygen or oxygen according to the procedures, such as in Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, vol. A5, p. 239, VCH publishing company, Weinheim, 1986 are shown.
  • the catalytic hydrogenation of the process according to the invention isoaldehydes or isoaldehyde obtainable from ⁇ -olefins / n-Aldehyde mixtures to branched alcohols can be known per se Way, for example according to the Ullmann's method Encyclopedia of Industrial Chemistry, 5th ed., Vol. A1, p. 279, VCH publishing company, Weinheim, 1985 or G.H. Ludwig, hydrocarbon Processing, March 1993, p. 67.
  • isoaldehydes or isoaldehyde / n-aldehyde mixtures obtainable from ⁇ -olefins can in a manner known per se, for example according to the processes of Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., Vol. A2, p. 1, VCH Verlagsgesellschaft, Weinheim, 1985 respectively.
  • As a starting material for the production of amines both ammonia, primary C1 to C20 amines or secondary C2 to C20 amines can be used.
  • bipyridine stands for Sodium salt of 2,2'-bipyridine-5-sulfonic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (27)

  1. Procédé de préparation d'aldéhydes par hydroformylation d'oléfines avec plus de 3 atomes de carbone, comprenant l'étape de l'hydroformylation au moyen d'un catalyseur au rhodium mis en solution homogène dans le milieu réactionnel, la séparation du catalyseur au rhodium de l'effluent de la réaction d'hydroformylation et le réacheminement du rhodium séparé de l'effluent d'hydroformylation dans l'étape d'hydroformylation, caractérisé en ce qu'on extrait le catalyseur au rhodium de l'effluent d'hydroformylation au moyen d'une solution aqueuse d'un agent complexant contenant de l'azote choisi dans le groupe des pyridines sulfonées, des quinolines sulfonées, des 2,2'-bipyridines, des 1,10-phénanthrolines, des 2,2'-biquinolines, des 2,2',6',2"-terpyridines et des porphines éventuellement substituées, sulfonées ou portant des substituants sulfonés, et/ou dans le groupe constitué des pyridines carboxylées, des quinolines carboxylées, des 2,2'-bipyridines, des 1,10-phénanthrolines, des 2,2'-biquinolines, des 2,2',6',2"-terpyridines et des porphines éventuellement substituées, carboxylées ou portant des substituants carboxylés, dans la phase aqueuse et en ce qu'on isole de l'effluent d'hydroformylation extrait, l'alcool et/ou l'aldéhyde, en ce qu'on achemine l'extrait aqueux contenant du rhodium vers une étape de précarbonylation et en ce qu'on lui fait subir une précarbonylation dans une étape de précarbonylation en présence d'un liquide organique essentiellement insoluble dans l'eau et en présence de monoxyde de carbone, de gaz de synthèse ou d'un mélange gazeux contenant du monoxyde de carbone à une pression de 50 à 1.000 bars et à une température de 50 à 180 °C, en ce qu'on sépare l'effluent provenant de l'étape de précarbonylation en une phase organique contenant la majeure partie du rhodium et en une phase aqueuse contenant l'agent complexant et en ce qu'on achemine la phase organique en vue de l'hydroformylation de l'oléfine à 50 à 1.000 bars et à une température de 50 à 180 °C vers l'étape d'hydroformylation.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on effectue l'extraction du catalyseur au rhodium de l'effluent d'hydroformylation à des températures de 80 à 140 °C et à une pression de 1 à 20 bars.
  3. Procédé selon les revendications 1 et 2, caractérisé en ce qu'on effectue l'extraction du catalyseur au rhodium en une ou en plusieurs étapes et en ce qu'on fait passer la solution aqueuse de l'agent complexant lors de l'extraction en contre-courant par rapport à l'effluent d'hydroformylation.
  4. Procédé selon les revendications 1 à 3, caractérisé en ce qu'on utilise la phase aqueuse contenant l'agent complexant obtenu après la séparation de la phase organique contenant la majeure partie du rhodium après l'étape de précarbonylation, pour l'extraction du catalyseur au rhodium de l'effluent d'hydroformylation.
  5. Procédé selon les revendications 1 à 4, caractérisé en ce que le procédé est effectué en continu dans une installation constituée d'une unité de précarbonylation, d'une unité d'hydroformylation et d'une unité d'extraction opérée en une ou en plusieurs étapes.
  6. Procédé selon les revendications 1 à 5, caractérisé en ce qu'on utilise à titre d'oléfines des α-oléfines ou des oléfines internes, linéaires ou ramifiées, non-substituées ou substituées par un ou deux substituants inertes dans les conditions de réaction, ou des mélanges de ces oléfines en absence ou en présence d'un solvant.
  7. Procédé selon les revendications 1 à 6, caractérisé en ce qu'on hydroformyle des oligomères ou des co-oligomères de propène ou de butène.
  8. Procédé selon les revendications 1 à 6, caractérisé en ce qu'on hydroformyle des polyisobutènes, des polybutadiènes ou des copolymères d'isobutène-1,3-butadiène inférieurs.
  9. Procédé selon les revendications 1 à 6, caractérisé en ce qu'on hydroformyle des dérivés d'acides gras insaturés.
  10. Procédé selon les revendications 1 à 9, caractérisé en ce que
    on extrait l'effluent provenant de l'étape d'hydroformylation dans une étape d'extraction A avec une solution aqueuse de l'agent complexant contenant de l'azote provenant de l'étape d'extraction C,
    on sépare ce mélange d'extraction en une première phase aqueuse et en une première phase organique,
    on achemine la première phase aqueuse vers l'étape de précarbonylation et la première phase organique vers l'étape d'extraction C,
    on carbonyle, dans une étape de précarbonylation, le rhodium contenu dans la première phase aqueuse, en présence d'un liquide organique essentiellement insoluble dans l'eau, avec du monoxyde de carbone, du gaz de synthèse ou un mélange gazeux contenant du monoxyde de carbone,
    on sépare l'effluent provenant de l'étape de précarbonylation au cours d'une séparation des phases B en une deuxième phase organique et en une deuxième phase aqueuse,
    on achemine la deuxième phase organique vers le réacteur d'hydroformylation et la deuxième phase aqueuse vers l'étape d'extraction C,
    on hydroformyle, à l'étape d'hydroformylation, l'oléfine en présence de gaz de synthèse,
    on utilise la deuxième phase aqueuse pour l'extraction du catalyseur au rhodium résiduel de la première phase organique à l'étape d'extraction C,
    on sépare le mélange d'extraction provenant de l'étape d'extraction C en une troisième phase organique et en une troisième phase aqueuse,
    on isole l'aldéhyde et/ou l'alcool de la troisième phase organique,
    et on réachemine la troisième phase aqueuse en vue de l'extraction du catalyseur au rhodium de l'effluent d'hydroformylation dans l'étape d'extraction A.
  11. Procédé selon les revendications 1 à 10, caractérisé en ce qu'on utilise dans l'étape de précarbonylation à titre de liquide organique essentiellement insoluble dans l'eau, l'effluent brut provenant de l'étape d'hydroformylation.
  12. Procédé selon les revendications 1 à 10, caractérisé en ce qu'on utilise dans l'étape de précarbonylation à titre de liquide organique essentiellement insoluble dans l'eau, un aldéhyde ou un alcool.
  13. Procédé selon la revendication 12, caractérisé en ce qu'on utilise l'aldéhyde ou l'alcool formé à l'étape d'hydroformylation après sa purification, ou un mélange purifié de cet aldéhyde et de cet alcool.
  14. Procédé selon les revendications 1 à 10, caractérisé en ce qu'on utilise dans l'étape de précarbonylation à titre de liquide organique essentiellement insoluble dans l'eau, des mélanges de produits de condensation d'aldéhydes à point d'ébullition élevé.
  15. Procédé selon les revendications 1 à 10, caractérisé en ce qu'on utilise dans l'étape de précarbonylation à titre de liquide organique essentiellement insoluble dans l'eau, une oléfine.
  16. Procédé selon la revendication 15, caractérisé en ce qu'on utilise à titre d'oléfine, l'oléfine à hydroformyler.
  17. Procédé selon les revendications 15 et 16, caractérisé en ce qu'on utilise une oléfine interne.
  18. Procédé selon les revendications 15 et 16, caractérisé en ce qu'on utilise une α-oléfine.
  19. Procédé selon les revendications 15 et 18, caractérisé en ce qu'on effectue la précarbonylation à des températures de 100 à 180°C et à une pression de 50 à 1.000 bars.
  20. Procédé selon les revendications 15, 18 et 19, caractérisé en ce qu'on effectue la précarbonylation en présence de monoxyde de carbone.
  21. Procédé selon les revendications 15, 18 et 19, caractérisé en ce qu'on effectue la précarbonylation en présence de gaz de synthèse.
  22. Procédé selon les revendications 1 à 21, caractérisé en ce qu'on utilise à titre d'agents complexants contenant de l'azote, un sel soluble dans l'eau de l'acide 2,2'-bipyridine-5-sulfonique.
  23. Procédé selon les revendications 1 à 21, caractérisé en ce qu'on utilise à titre d'agents complexants contenant de l'azote, des sels solubles dans l'eau d'une 1,10-phénanthroline sulfonée.
  24. Procédé selon les revendications 1 à 21, caractérisé en ce qu'on utilise à titre d'agents complexants contenant de l'azote, un sel soluble dans l'eau de l'acide 2,2'-bipyridine-4,4'-dicarboxylique et/ou de l'acide 2,2'-bipyridine-5,5'-dicarboxylique.
  25. Procédé pour la préparation d'acides carboxyliques à partir d'une oléfine interne ou d'une α-oléfine, caractérisé en ce qu'on hydroformyle l'oléfine selon les revendications 1 à 24 et en ce qu'on oxyde ensuite l'aldéhyde résultant d'une manière connue en soi en acide carboxylique.
  26. Procédé pour la préparation d'alcools à partir d'une oléfine interne ou d'une α-oléfine, caractérisé en ce qu'on hydroformyle l'oléfine selon les revendications 1 à 24 et en ce qu'on réduit ou hydrogène ensuite l'aldéhyde résultant d'une manière connue en soi en alcool.
  27. Procédé pour la préparation d'amines à partir d'une oléfine interne ou d'une α-oléfine, caractérisé en ce qu'on hydroformyle l'oléfine selon les revendications 1 à 24 et en ce qu'on amine ensuite l'aldéhyde ou l'alcool résultant en présence d'un catalyseur d'amination et d'hydrogène avec de l'ammoniac, une amine primaire ou une amine secondaire d'une manière connue en soi.
EP95912212A 1994-03-16 1995-03-06 Procede de fabrication d'alcools et/ou d'aldehydes Expired - Lifetime EP0750602B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4408950 1994-03-16
DE4408950A DE4408950A1 (de) 1994-03-16 1994-03-16 Verfahren zur Herstellung von Alkoholen und/oder Aldehyden
PCT/EP1995/000825 WO1995025080A1 (fr) 1994-03-16 1995-03-06 Procede de fabrication d'alcools et/ou d'aldehydes

Publications (2)

Publication Number Publication Date
EP0750602A1 EP0750602A1 (fr) 1997-01-02
EP0750602B1 true EP0750602B1 (fr) 1998-08-19

Family

ID=6512962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95912212A Expired - Lifetime EP0750602B1 (fr) 1994-03-16 1995-03-06 Procede de fabrication d'alcools et/ou d'aldehydes

Country Status (7)

Country Link
US (1) US5919987A (fr)
EP (1) EP0750602B1 (fr)
JP (1) JPH09510219A (fr)
AU (1) AU1948795A (fr)
DE (2) DE4408950A1 (fr)
ES (1) ES2121357T3 (fr)
WO (1) WO1995025080A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19603201A1 (de) * 1996-01-30 1997-07-31 Basf Ag Verfahren zur Herstellung von Aldehyden durch Hydroformylierung von Olefinen
DE19605435A1 (de) * 1996-02-14 1997-08-21 Basf Ag Verfahren zur Herstellung von Aldehyden durch Hydroformylierung mit einem Rhodiumkatalysator und Wiedergewinnung des Rhodiumkatalysators durch Extraktion
CZ283697A3 (cs) * 1996-09-11 1998-04-15 Mitsubishi Chemical Corporation Způsob přípravy roztoku komplexu rhodia a jeho použití
DE19801437A1 (de) 1998-01-16 1999-07-22 Basf Ag Verfahren zur Herstellung von Aldehyden
DE10045056A1 (de) * 2000-09-12 2002-03-21 Basf Ag Verfahren zur kontinuierlichen Hydroformylierung von Polyalkenen mit 30 bis 700 Kohlenstoffatomen
JP4709414B2 (ja) * 2001-04-16 2011-06-22 株式会社Adeka 乳化重合用乳化剤又は懸濁重合用分散剤
FR2838431B1 (fr) * 2002-04-11 2005-05-06 Inst Francais Du Petrole Procede d'hydroformylation mettant en oeuvre un catalyseur a base de cobalt dans un liquide ionique non-aqueux avec un recyclage du catalyseur ameliore
US8083102B2 (en) * 2006-04-28 2011-12-27 Pouch Pac Innovations, Llc Flexible pouch with a tube spout fitment and flexible sleeve
WO2007133379A1 (fr) * 2006-05-15 2007-11-22 Dow Global Technologies Inc. Processus d'hydroformylation et séparation de produit avec récupération améliorée de rhodium
CN107001984B (zh) 2014-09-08 2019-11-12 宝洁公司 包含支化表面活性剂的洗涤剂组合物
EP3191569B1 (fr) 2014-09-08 2023-01-25 The Procter & Gamble Company Compositions détergentes contenant un tensioactif ramifié
US11680032B2 (en) 2020-06-05 2023-06-20 SCION Holdings LLC Alcohols production

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL213649A (fr) * 1956-01-11
US4148830A (en) * 1975-03-07 1979-04-10 Union Carbide Corporation Hydroformylation of olefins
US3984478A (en) * 1975-05-27 1976-10-05 Universal Oil Products Company Hydroformylation process
DE2604545C3 (de) * 1976-02-06 1978-08-17 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Alkylcarbonsäuren
US4329521A (en) * 1980-04-09 1982-05-11 Uop Inc. Oxo alcohol synthesis with rhodium catalyst recycle
US4400547A (en) * 1981-04-10 1983-08-23 Eastman Kodak Company Hydroformylation process utilizing an unmodified rhodium catalyst and the stabilization and regeneration thereof
US4388476A (en) * 1981-05-01 1983-06-14 Eastman Kodak Company Hydroformylation process with rhodium catalyst and oxygen stabilization thereof
US4528403A (en) * 1982-10-21 1985-07-09 Mitsubishi Chemical Industries Ltd. Hydroformylation process for preparation of aldehydes and alcohols
DE3534314A1 (de) * 1985-09-26 1987-04-02 Ruhrchemie Ag Verfahren zur herstellung von aldehyden
FI85849C (fi) * 1988-03-22 1992-06-10 Neste Oy Foerfarande foer framstaellning av alkoholer och aldehyder fraon alkener och syntesgas.
US5183943A (en) * 1991-03-18 1993-02-02 Union Carbide Chemicals & Plastics Technology Corporation Reactivation of hydroformylation catalysts
DE4316180A1 (de) * 1992-09-16 1994-11-17 Basf Ag Verfahren zur Herstellung von Aldehyden

Also Published As

Publication number Publication date
WO1995025080A1 (fr) 1995-09-21
ES2121357T3 (es) 1998-11-16
AU1948795A (en) 1995-10-03
DE4408950A1 (de) 1995-09-21
DE59503268D1 (de) 1998-09-24
JPH09510219A (ja) 1997-10-14
US5919987A (en) 1999-07-06
EP0750602A1 (fr) 1997-01-02

Similar Documents

Publication Publication Date Title
EP0695734B1 (fr) Procédé pour la préparation d'aldéhydes
EP0880494B1 (fr) Procede de fabrication d'aldehydes par hydroformylation au moyen d'un catalyseur au rhodium et de recuperation de ce catalyseur par extraction
EP0216315B1 (fr) Procédé de préparation d'aldéhydes
DE3338340A1 (de) Hydroformylierungsverfahren
WO2004024661A1 (fr) Procede de production d'aldehydes par hydroformylation de composes insatures par olefine, catalysee par des complexes metalliques non modifies, en presence d'esters d'acide carbonique cycliques
EP0750602B1 (fr) Procede de fabrication d'alcools et/ou d'aldehydes
EP0158246A2 (fr) Procédé de production d'aldéhydes
EP0157316A2 (fr) Procédé de préparation d'aldéhydes
DE10108475A1 (de) Verfahren zur Herstellung von Aldehyden
EP0885183B1 (fr) Procede de preparation d'aldehydes par hydroformylation d'olefines
EP0588225B1 (fr) Procédé pour la préparation d'aldéhydes
DE10108474A1 (de) Verfahren zur Herstellung von Aldehyden
EP1160234B1 (fr) Procédé pour la préparation d' aldéhydes par hydroformylation
EP0958270B1 (fr) Procede et preparation d'aldehydes en presence d'une phase aqueuse contenant comme catalyseur du rhodium et de la triarylphosphine sulfonee
EP2387554B1 (fr) Procédé de production d'aldéhydes
DE3017651C2 (fr)
EP0160249B1 (fr) Procédé de préparation d'aldéhydes
DE10327435A1 (de) Verfahren zur Herstellung von Aldehyden durch Hydroformylierung von olefinisch ungesättigten Verbindungen, katalysiert durch unmodifizierte Metallkomplexe von Metallen der 8. bis 10. Gruppe des PSE in Gegenwart von cyclischen Kohlensäureestern
EP1017492B1 (fr) Procede de preparation d'aldehydes par hydroformylation
DE2639755A1 (de) Verfahren zur herstellung von hydroformylierungsprodukten
DE4230871A1 (de) Verfahren zur Herstellung von Aldehyden
DE19908462A1 (de) Verfahren zur Hydroformylierung von Olefinen
EP0824095A1 (fr) Procédé pour la séparation d'oxydes de phosphines et d'alkylarylphosphines de mélanges réactionnels obtenus par hydroformylation homogène

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES

REF Corresponds to:

Ref document number: 59503268

Country of ref document: DE

Date of ref document: 19980924

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2121357

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010307

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010316

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20020309

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030410