EP0747995A2 - Datenübertragungsverfahren und Antennensystem insbesondere für verkehrstechnische Kommunikationssysteme sowie Schaltungsanordnung - Google Patents

Datenübertragungsverfahren und Antennensystem insbesondere für verkehrstechnische Kommunikationssysteme sowie Schaltungsanordnung Download PDF

Info

Publication number
EP0747995A2
EP0747995A2 EP96810372A EP96810372A EP0747995A2 EP 0747995 A2 EP0747995 A2 EP 0747995A2 EP 96810372 A EP96810372 A EP 96810372A EP 96810372 A EP96810372 A EP 96810372A EP 0747995 A2 EP0747995 A2 EP 0747995A2
Authority
EP
European Patent Office
Prior art keywords
antenna system
as1ae
as1a
as1b
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96810372A
Other languages
English (en)
French (fr)
Other versions
EP0747995A3 (de
Inventor
Alfred Lauper
Max Loder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Publication of EP0747995A2 publication Critical patent/EP0747995A2/de
Publication of EP0747995A3 publication Critical patent/EP0747995A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3225Cooperation with the rails or the road
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the present invention relates to a device according to the preamble of patent claim 1.
  • antennas For the transmission of transmission signals with low losses from a transmitter to a receiver, high-quality antennas are used, which form narrow-band resonance circuits that are matched to the transmission frequency. In particular, the source resistance in the transmitter and the load resistance in the receiver are adjusted accordingly.
  • the antennas which act as narrow-band resonance circuits, therefore only allow signals from a narrow frequency range to pass.
  • a larger bandwidth is often required for message channels in which larger amounts of data are to be transmitted. E.g. by damping the resonant circuits, their bandwidths can be increased. However, this also influences the attenuation behavior of the transmission link, so that due to the increase in the bandwidth of the transmission channel, higher signal attenuation must be tolerated at the same time.
  • the permissible transmission powers are limited in particular in the case of traffic communication systems with earthbound and mobile communication units. It can also be assumed that these systems will have an increased bandwidth requirement in the future.
  • the present invention is therefore based on the object of specifying a method for improved transmission of transmission signals of high bandwidth and a corresponding antenna system and a circuit arrangement corresponding thereto.
  • a broadband transmission channel can be created by the antenna system according to the invention, which has only a low attenuation and is suitable for the reliable transmission of larger amounts of data.
  • the antenna system can due to the advantageous transmission characteristics. can be realized in a relatively narrow space, which means that it can be easily assembled, for example, in vehicles. The use of comparatively large broadband antennas is therefore unnecessary.
  • the avoidance of coupling losses according to the invention is of great importance, inter alia, in the remote feeding of traffic communication units whose transmission units have only a low transmission power. This is particularly important for communication units that e.g. only be operated briefly when a vehicle is in transit for the transmission and reception of signals.
  • antennas fulfill the function of transformation quadripoles, which bring about the adaptation between the wave resistance of the antenna feed and the wave resistance of the free space and which convert an electrical vibration transmitted via the antenna feed into an electromagnetic wave.
  • the antenna acts as a resonator.
  • the equivalent circuit diagram of a lossless transmission antenna operated in resonance consists only of its radiation resistance. According to C. Dorf, The electrical engineering handbook, CRC Press Inc., Boca Raton 1993, chapter 36.1, page 864, this radiation resistance for a dipole, which can be determined by calculating the electrical and magnetic fields E, H, is approximately 73 ohms .
  • Aao also describes that the effective length of a dipole can be increased by increasing the end capacitance of the dipole (end loading).
  • FIG. 4 shows an antenna A1, for example, the effective length of which has been increased by the connection of a capacitor Ca1.
  • the wire line which connects the connections of the capacitor Ca1 to one another, therefore acts as an inductor and is schematically referred to as coil La1. It is known that maximum antiphase voltages occur at the ends of the dipole (capacitive zone) and maximum currents occur between these ends in the inductive zone or in the coil La1.
  • their antennas can be coupled, for example, via the magnetic field. In this way, the antenna A1 is coupled to a similar antenna A2 in FIG. 4.
  • a current in the coil Lal therefore causes a magnetic field through which a current is induced in the coil La2 of the antenna A2.
  • the distance d12 between the antennas A1 and A2 is preferably chosen to be smaller than the wavelength of the transmitted signals. This avoids losses that arise if electrical fields have to pass through strongly damping layers.
  • the coils Lal and La2 are formed, for example, by an elongated wire, a coaxial line or a metal strip printed on a printed circuit board. The degree of magnetic coupling can be set by changing the distance d12.
  • the relatively narrow-band pass curves k A1 , k A2 of antennas A1 and A2 are shown in FIG. 5. If a large bandwidth (f1-f2) is required for the data transmission, the antennas A1 and A2, as can be seen in FIG. 5, do not have a sufficiently large bandwidth.
  • the bandwidth of the antenna A2 can be increased by various measures. For example, the quality of the resonance circuit can be reduced by known measures.
  • the coupling of the transmitting and / or receiving stage to the antenna A2 can be adapted accordingly. However, as shown in FIG.
  • a further resonance circuit (antenna A3, consisting of capacitor Ca3 and coil La3) is particularly advantageously coupled to antenna A2.
  • the antennas A2 and A3 form a resonance circuit with a wide bandwidth.
  • the transmission curve k AS23 shown in FIG. 6 of this resonance circuit has two distinct natural frequencies f1, f2, which differ from one another the less the weaker the coupling between the second and third antennas A2, A3.
  • the pass curve k A12 of this vibration system therefore corresponds to that of a bandpass filter.
  • Coupled resonant circuits which are known, for example, from Dobrinski / Krakau / Vogel, Physik für Ingenieure, Teubner Verlag, Stuttgart 1976, 4th edition, chapter 5.1.8.2, pages 316/317, figure 316.1, have so far been used in input or intermediate frequency stages of radio receivers used.
  • the transmit signals emitted by the antenna A1 are therefore received by the antennas A2 and A3 with only slight losses and are emitted to a transmitter / receiver unit.
  • the resulting transmission curve k A123 is therefore determined by the quality of the individual systems and by the degree of mutual coupling or by the choice of the distances d12 and d23 of the antennas A1, A2 and A3.
  • FIGS. 9 and 10 Possibilities for coupling the transmitting and receiving units T / R1, T / R2 or for generating electricity Rectifier units provided to antennas A1, A2, A3 are shown in FIGS. 9 and 10.
  • 9 shows the coupling or the connection of a coaxial cable KK to a tap of the coil La1.
  • 10 shows that the capacitor Ca1 can be formed by individual capacitors connected to one another and to the transmitter and receiver units T / R1, T / R2.
  • the transmitting and receiving units T / R1, T / R2 can also be coupled to the antennas A1, A2, A3 via a coupling coil.
  • the antenna system described so far (without capacitor Ct and switch St) and formed by antennas A1, A2 and A3 works well if the distance d12 between the first antenna A1 and the further antennas A2 and A3 never changes significantly (the distance d23 of Antennas A2 and A3, which are assigned to the same transmitting and receiving unit T / R2, is constant).
  • the measures described below further improve in particular the antenna system shown in FIG. 4.
  • the antenna A1 is tuned as narrowly as possible to the prevailing frequency of the transmission signals.
  • the data ds to be transmitted is preferably modulated using the FSK (frequency shift keying) method, which is described, for example, in Rudolf Switzerlandl, Digital Modulation Method, Weghig Verlag, Heidelberg 1991, on pages 183 ff.
  • FSK frequency shift keying
  • the frequency of the carrier oscillation is changed between two defined values which are assigned to the logic states "0" and "1".
  • a digital data signal ds is fed to a modulation stage FSK-M in the circuit arrangement shown in FIG. 1.
  • a control signal mod is fed from the modulation stage FSK-M to a frequency generator FG, by means of which the signals emitted by the frequency generator FG via a transmitter amplifier SV to the antenna system AS1a are keyed between two frequencies in accordance with the FSK method.
  • the antenna system AS1a has a parallel resonance circuit which consists of a capacitor Ca1, a coil La1 and a resistor Ra1, which corresponds to the losses occurring in the resonant circuit.
  • a capacitor Ct is additionally provided, which can be connected to the resonant circuit by a switch St, for example a transistor, which is generated by a signal tn emitted by the modulation stage FSK-M is controllable.
  • the switching over of the resonance frequency of the resonant circuit of the antenna system AS1a is practically synchronous with the switching over of the frequency of the keyed transmission signals.
  • the narrow-band parallel resonance circuit which consists of the capacitor Ca1, the coil La1 and the resistor Ra1, is therefore keyed by switching the capacitor Ct on and off in synchronism with the frequency shift keying of the transmission signals between two resonance frequencies.
  • the antenna system AS1a therefore has a virtual resonance circuit of high bandwidth and quality.
  • the transmission signals are therefore always emitted at maximum transmission power, regardless of the transmission frequency present.
  • a broadband input stage must therefore also be provided on the receiving side, which has a broadband resonance circuit of correspondingly low quality, or preferably, as shown in FIG. 4, two mutually coupled resonance circuits of high quality.
  • the antenna system AS1a provided in a first communication unit is inductively coupled via an air gap to an antenna system A21 provided in a second communication unit, which is connected to a load resistor R1.
  • a virtual equivalent inductance La12 is also shown, which can be determined by calculation based on the selected coupling.
  • the antenna system AS21 has a broadband parallel resonance circuit which consists of a capacitor Ca2, a coil La2 and a resistor Ra2.
  • the antenna system AS1b shown in FIG. 2 has, instead of the capacitor Ct, a coil Lt which can be connected to the parallel resonance circuit and by means of which the parallel resonance circuit can also be tuned to a second resonance frequency in a narrow band (see pass curves k ' A1 and k " A2 in FIG. 5).
  • FIG. 3 shows the antenna system AS1b from FIG. 2, inductively coupled via an air gap or the corresponding virtual equivalent inductance La12 to a broadband antenna system AS23, which consists of two narrow-band resonance circuits which have a capacitor Ca2; Ca3, a coil La2; La3 and a resistance Ra2; Ra3 and which are coupled to each other via a virtual replacement inductor La23 as described at the beginning.
  • 1, 2 and 3 which contain virtual inductors La12, La23, are therefore equivalent circuit diagrams of the physically present conditions.
  • a resonance circuit is used according to the invention, which can be tuned to the transmission frequencies in a narrowband and switchable manner and broadband to the frequencies of the signals to be received.
  • two capacitors Ct1, Ct2 are therefore provided which can be connected via switches St1, St2 to the already known parallel resonance circuit (Ca1, La1, Ra1).
  • the parallel resonance circuit can be tuned as follows, for example. When switches St1, St2 are open, the parallel circuit has the resonance frequency f2. When switch St1 is closed (switch St2 open), the parallel circuit has the resonance frequency fm. When switch St2 is closed (switch St1 open), the parallel circuit has the resonance frequency f1. The switch Stl (switch St2 open) is therefore closed for reception, as a result of which the capacitor Ct1 is connected to the parallel circuit. To increase the bandwidth of the parallel circuit (reception), a damping resistor Rt is also connected in parallel with the capacitor.
  • the modulation stage FSK-M controls the switches St1, St2 by means of signals tn1, tn2 in such a way that a broadband and virtually two narrowband resonance circuits are available for reception and transmission.
  • Switchable inductors can of course also be provided for the circuit arrangements shown in FIG. 11.
  • the connection of the resistor Rt or further damping resistors can also be carried out separately in order to set any bandwidth for the transmit and receive operation.
  • the resonance frequency of the tunable resonant circuit, e.g. 11 is preferably carried out by connecting or disconnecting impedances.
  • impedances e.g. voltage-controlled capacitance diodes that can be changed almost continuously or by leaps and bounds.
  • capacitors Ct and coils Lt are switched on and off.
  • the capacitors Ct are therefore preferably switched on or off when the voltage across the capacitor Ca1 crosses zero.
  • the coils Lt are preferably switched on or off at a maximum of the voltage across the coil Lal.
  • threshold value circuits TH1, TH2 are provided in FIGS. 1 and 2, which inform the modulation stage FSK-M by means of a signal trg at what point in time the voltage across the parallel circuit has fallen below or exceeded a certain value. It is only at this point in time that the capacitors Ct or coils Lt are switched on or off by the modulation stage FSK-M.
  • the use of the antenna system according to the invention can often hardly be used advantageously in broadcasting technology, e.g.
  • the required bandwidth, especially in the radio and television frequencies, is practically always available, because there is sufficient transmission power and because the antennas of the system can be installed in a stable manner, transmission systems in traffic engineering, which will be used in the future to transmit high data rates are provided and which operate at relatively low transmission powers and low frequencies from 1 MHz to about 50 MHz, can be significantly improved by the use of the antenna system according to the invention.
  • the use of the antenna system according to the invention results in particular advantages if individual communication units have to be powered.
  • the reduction in the coupling losses therefore results in a higher supply power available at the receiving end, or the transmission power can be reduced accordingly.
  • the measures according to the invention advantageously increase the distance between the levels of the useful and interference signals.
  • FIG. 8 shows two pairs of rails S1, S2 guided next to one another.
  • a railway train ZK provided with a mobile transmitting and receiving unit T / R2 is guided on the rails S1.
  • Ground-based transmitting and receiving units T / R1 are provided between the rails S1, S2 and are provided for data exchange with the vehicles ZK carried on the pairs of rails S1, S2.
  • information is often only transmitted from the ground-based to the mobile transmitting and receiving units T / R2.
  • bidirectional data transmission is also possible. Since the vehicles move at speeds of up to a few hundred km / h, there are only very short contact times of a few milliseconds between the ground-based and the mobile transmitter and receiver units T / R. Soiling, snow and ice are also to be expected. Furthermore, the national approval authorities only use systems with relatively low transmission powers approved.
  • the measures according to the invention extend the contact time within which the transmitting and receiving units T / R1 or T / R2 can share their information.
  • the path loss is thereby reduced, which means that transmitter and receiver units T / R1 and T / R2 can come into contact earlier.
  • FSK modulation frequency hopping method
  • a method with continuous modulation can also be used.

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

Das abstimmbare Antennensystem (AS1a, AS1b, A1, AS1ae) besteht aus einem Schwingkreis der entsprechend dem angegebenen Verfahren und mit der angegebenen Schaltungsanordnung derart abstimmbar ist, dass die Resonanzfrequenz des Antennensystems (AS1a, AS1b, A1, AS1ae) immer der Frequenz der Sendesignale entspricht. Dadurch können Sendesignale von hoher Bandbreite mit nur geringen Dämpfungsverlusten zu einer Empfangseinheit übertragen werden. <IMAGE>

Description

  • Die vorliegende Erfindung betrifft ein nach dem Oberbegriff des Patentanspruchs 1.
  • Zur Übertragung von Sendesignalen mit geringen Verlusten von einem Sender zu einem Empfänger werden Antennen mit hoher Güte verwendet, die schmalbandig auf die Sendefrequenz abgestimmte Resonanzkreise bilden. Dazu werden insbesondere der Quellenwiderstand im Sender und der Lastwiderstand im Empfänger entsprechend abgestimmt. Die als schmalbandige Resonanzkreise wirkenden Antennen lassen daher nur Signale aus einem engen Frequenzbereich passieren. Für Nachrichtenkanäle, in denen grössere Datenmengen zu übertragen sind, wird jedoch öfters eine grössere Bandbreite benötigt. Z.B. durch Dämpfung der Resonanzkreise können, deren Bandbreiten erhöht werden. Dadurch wird jedoch auch das Dämpfungsverhalten der Übertragungsstrecke beeinflusst, so dass aufgrund der Erhöhung der Bandbreite des Übertragungskanals gleichzeitig höhere Signaldämpfungen toleriert werden müssen. Diese Dämpfungen sind entsprechend höher, falls die Bandbreiten im Verhältnis zur Sendefrequenz bzw. zur Mittenfrequenz fm der Resonanzkreise gross sind. Die Bandbreite von 1 MHz kann bei einer Mittenfrequenz von 30 MHz u.U. noch zufriedenstellend, bei Mittenfrequenzen unter 10 MHz jedoch kaum noch ohne das Entstehen grösserer Übertragungsverluste realisiert werden. Zur Kompensation der auftretenden Verluste müssen daher entsprechend höhere Sendeleistungen vorgesehen werden.
  • Insbesondere bei verkehrstechnischen Kommunikationssystemen mit erdgebundenen und mobilen Kommunikationseinheiten sind jedoch die zulässigen Sendeleistungen beschränkt. Femer ist davon auszugehen, dass diese Systeme in Zukunft einen erhöhten Bandbreitenbedarf aufweisen werden.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur verbesserten Übertragung von Sendesignalen hoher Bandbreite sowie ein entsprechendes Antennensystem und eine dazu korrespondierende Schaltungsanordnung anzugeben.
  • Diese Aufgabe wird durch die im kennzeichnenden Teil des Patentanspruchs 1, 7 bzw. 10 angegebenen Massnahmen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in weiteren Ansprüchen angegeben.
  • Durch das erfindungsgemässe Antennensystem kann ein breitbandiger Übertragungskanal geschaffen werden, der nur eine geringe Dämpfung aufweist und für eine zuverlässige Übertragung von grösserer Datenmengen geeignet ist. Das Antennensystem kann aufgrund der vorteilhaften Übertragungseigen. schaften auf verhältnismässig engem Raum realisiert werden, wodurch dessen Montage z.B. auch ar Fahrzeugen problemlos möglich ist. Die Verwendung von verhältnismässig grossen Breitbandantenner erübrigt sich dadurch.
  • Femer wird mit dem erfindungsgemässen Antennensystem eine gute Störfestigkeit bzw. ein hoher Störabstand gegenüber Fremdsignalen erzielt. Die erfindungsgemässe Vermeidung von Kopplungsverlusten ist unter anderem auch bei der Femspeisung von verkehrstechnischen Kommunikationseinheiten von grosser Bedeutung, deren Sendeeinheiten nur eine geringe Sendeleistung aufweisen. Dies ist insbesondere bei Kommunikationseinheiten wesentlich, die z.B. bei der Durchfahrt eines Fahrzeugs nur kurzzeitig für das Senden und Empfangen von Signalen in Betrieb gesetzt werden.
  • Die Erfindung wird nachfolgend anhand einer Zeichnung beispielsweise näher erläutert. Dabei zeigt:
  • Fig. 1-3
    Ersatzschaltbilder verschiedener Ausgestaltungen des erfindungsgemässen Antennensystems,
    Fig. 4
    eine vorzugsweise Ausgestaltung des erfindungsgemässen Antennensystems,
    Fig. 5
    die Durchlasskurven der in Fig. 4 gezeigten, nicht aneinander angekoppelten Antennen
    Fig. 6
    die Durchlasskurve des Antennensystems, das durch die aneinander angekoppelte zweite und dritte Antenne gebildet wird,
    Fig. 7
    die Durchlasskurve des Antennensystems, das durch die aneinander angekoppelte erste, zweite und dritte Antenne gebildet wird,
    Fig. 8
    die Verwendung des erfindungsgemässen Antennensystems in der Verkehrstechnik und
    Fig. 9, 10
    Möglichkeiten zur Ankopplung an eine Antenne,
    Fig. 11
    eine weitere vorzugsweise Ausgestaltung des erfindungsgemässen Antennensystems.
  • Antennen erfüllen grundsätzlich die Aufgabe von Transformationsvierpolen, die die Anpassung zwischen dem Wellenwiderstand der Antennenzuleitung und dem Wellenwiderstand des freien Raumes bewirken und die eine über die Antennenzuleitung übertragene elektrische Schwingung in eine elektromagnetische Welle umformen. Die Antenne wirkt dabei als Resonator. Das Ersatzschaltbild einer in Resonanz betriebenen verlustfreien Sendeantenne besteht nur aus deren Strahlungswiderstand. Gemäss C. Dorf, The electrical engineering handbook, CRC Press Inc., Boca Raton 1993, Kapitel 36.1, Seite 864 beträgt dieser Strahlungswiderstand für einen Dipol, der durch Berechnung der elektrischen und magnetischen Felder E, H ermittelt werden kann, ca. 73 Ohm. A.a.o. ist femer beschrieben, dass die effektive Länge eines Dipols vergrössert werden kann, indem die Endkapazität des Dipols erhöht wird (end loading). Ein relativ kurzer Dipol kann durch diese Massnahme daher auf Signale mit grösseren Wellenlängen abgestimmt werden. In Fig. 4 ist z.B. eine Antenne A1 gezeigt, deren effektive Länge durch den Anschluss eines Kondensators Ca1 erhöht wurde. Die Drahtleitung, welche die Anschlüsse des Kondensators Ca1 miteinander verbindet, wirkt daher als Induktivität, und ist schematisch als Spule La1 bezeichnet. Es ist bekannt, dass an den Enden des Dipols (kapazitive Zone) maximale gegenphasige Spannungen und zwischen diesen Enden in der induktiven Zone bzw. in der Spule La1 maximale Ströme auftreten. Zur Übertragung von Daten zwischen zwei Sendestationen können deren Antennen z.B. über das magnetische Feld gekoppelt werden. In Fig. 4 wird die Antenne A1 auf diese Weise mit einer gleichartigen Antenne A2 gekoppelt. Ein Strom in der Spule Lal verursacht daher ein magnetisches Feld, durch das in der Spule La2 der Antenne A2 ein Strom induziert wird. Der Abstand d12 zwischen den Antennen Al und A2 wird bevorzugt kleiner als die Wellenlänge der übertragenen Signale gewählt. Dadurch werden Verluste vermieden, die entstehen, falls elektrische Felder stark dämpfende Schichten durchlaufen müssen. Die Spulen Lal und La2 werden z.B. durch einen langgezogenen Draht, eine Koaxialleitung oder einen auf einer Platine (printed circuit board) aufgedruckten Metallstreifen gebildet. Durch die Änderung des Abstandes d12 kann der Grad magnetischer Kopplung eingestellt werden.
  • Die relativ schmalbandigen Durchlasskurven kA1, kA2 der Antennen A1 und A2 (ebenso die Durchlasskurve kA3 der nachstehend beschriebenen Antenne A3) sind in Fig. 5 gezeigt. Falls für die Datenübertragung eine grosse Bandbreite (f1 -f2) benötigt wird, weisen die Antennen A1 und A2, wie aus Fig. 5 ersichtlich, keine genügend grosse Bandbreite auf. Die Bandbreite der Antenne A2 kann durch verschiedene Massnahmen erhöht werden. Z.B. kann die Güte des Resonanzkreises durch bekannte Massnahmen reduziert werden. Femer kann, wie in Fig. 9 und Fig. 10 gezeigt, die Ankopplung der Sende- und/oder Empfangsstufe an die Antenne A2 entsprechend angepasst werden. Besonders vorteilhaft wird jedoch, wie in Fig. 4 gezeigt, ein weiterer Resonanzkreis (Antenne A3, bestehend aus Kondensator Ca3 und Spule La3) an die Antenne A2 angekoppelt. Durch die Antennen A2 und A3 wird dadurch ein Resonanzkreis gebildet der eine grosse Bandbreite aufweist. Die in Fig. 6 gezeigte Durchlasskurve kAS23 dieses Resonanzkreises weist zwei ausgeprägte Eigenfrequenzen f1, f2 auf, die sich um so weniger voneinander unterscheiden, je schwächer die Kopplung zwischen der zweiten und dritten Antenne A2, A3 ist. Die Durchlasskurve kA12 dieses Schwingungssystems entspricht daher derjenigen eines Bandpassfilters. Gekoppelte Schwingkreise, die z.B. aus Dobrinski / Krakau / Vogel, Physik für Ingenieure, Teubner Verlag, Stuttgart 1976, 4. Auflage, Kapitel 5.1.8.2, Seiten 316 / 317, Bild 316.1 bekannt sind, wurden bisher in Eingangs- oder Zwischenfrequenzstufen von Rundfunkempfängem eingesetzt. Die von der Antenne A1 abgegebenen Sendesignale werden von den Antennen A2 und A3 daher nur mit geringen Verlusten empfangen und an eine Sende- / Empfangseinheit abgegeben.
  • Durch die Ankopplung der ersten Antenne A1, die in der Sende- und/oder Empfangsstufe einer ersten Kommunikationseinheit vorgesehen ist, an das durch die Antennen A2 und A3 gebildete Schwingungssystem, das in der Sende- und/oder Empfangsstufe einer zweiten Kommunikationseinheit vorgesehen ist, entsteht ein System mit drei schwingungsfähigen Einzelsystemen gleicher Eigenfrequenz fm, dessen in Fig. 7 gezeigte Durchlasskurve kA123 angenähert einem Rechteck entspricht und im Vergleich zur Durchlasskurve kA0 eines breitbandigen Schwingkreises im Durchlassbereich deutlich geringere Dämpfungen (etwa -15dB) aufweist.
  • Die resultierende Durchlasskurve kA123 wird daher durch die Güte der Einzelsysteme sowie durch den Grad der gegenseitigen Kopplung bzw. durch die Wahl der Abstände d12 und d23 der Antennen A1, A2 und A3 bestimmt.
  • Möglichkeiten zur Ankopplung der Sende- und Empfangseinheiten T/R1, T/R2 oder von für die Stromerzeugung vorgesehenen Gleichrichtereinheiten an die Antennen A1, A2, A3 sind in Fig. 9 und Fig. 10 gezeigt. Fig. 9 zeigt die Ankopplung bzw. den Anschluss eines Koaxialkabels KK an einen Abgriff der Spule La1. In Fig. 10 ist gezeigt, dass der Kondensator Ca1 durch miteinander sowie mit der Sende- und Empfangseinheiten T/R1, T/R2 verbundene Einzelkondensatoren gebildet werden kann. Ebenso können die Sende- und Empfangseinheiten T/R1, T/R2 auch über eine Koppelspule transformatorisch an die Antennen A1, A2, A3 angekoppelt werden.
  • Das soweit (ohne Kondensator Ct und Schalter St) beschriebene, durch die Antennen A1, A2 und A3 gebildete Antennensystem funktioniert gut, falls der Abstand d12 zwischen der ersten Antenne A1 und den weiteren Antennen A2 und A3 sich nie wesentlich ändert (der Abstand d23 der Antennen A2 und A3, die derselben Sende- und Empfangseinheit T/R2 zugeordnet sind, ist konstant).
  • Durch die nachfolgend beschriebenen Massnahmen wird insbesondere das in Fig. 4 gezeigte Antennensystem weiter verbessert. Dazu wird die Antenne A1 möglichst schmalbandig auf die jeweils vorliegende Frequenz der Sendesignale abgestimmt. Die Modulation der zu übertragenden Daten ds erfolgt dabei vorzugsweise nach dem FSK (frequency shift keying) - Verfahren, das z.B. in Rudolf Mäusl, Digitale Modulationsverfahren, Hüthig Verlag, Heidelberg 1991, auf Seiten 183 ff. beschrieben ist. Prinzipiell wird bei der zweistufigen Frequenzumtastung die Frequenz der Trägerschwingung zwischen zwei definierten Werten geändert, die den logischen Zuständen "0" und "1" zugeordnet sind. Zu diesem Zweck wird in der in Fig. 1 gezeigten Schaltungsanordnung einer Modulationsstufe FSK-M ein digitales Datensignal ds zugeführt. Von der Modulationsstufe FSK-M wird einem Frequenzgenerator FG ein Steuersignal mod zugeführt, durch welches die vom Frequenzgenerator FG über einen Sendeverstärker SV an das Antennensystem AS1a abgegebenen Signale gemäss dem FSK - Verfahren zwischen zwei Frequenzen umgetastet werden. Das Antennensystem AS1 a weist einen Parallelresonanzkreis auf, der aus einem Kondensator Ca1, einer Spule La1 und einem Widerstand Ra1 besteht, der den im Schwingkreis auftretenden Verlusten entspricht. Damit die beiden vom Sendeverstärker SV abgegebenen Frequenzen innerhalb der Bandbreite des Antennensystem AS1a liegen, ist zusätzlich ein Kondensator Ct vorgesehen, der dem Schwingkreis durch einen Schalter St, z.B. einen Transistor, zuschaltbar ist, der durch ein von der Modulationsstufe FSK-M abgegebenes Signal tn steuerbar ist. Die Umschaltung der Resonanzfrequenz des Schwingkreises des Antennensystem AS1a erfolgt praktisch synchron zur Umschaltung der Frequenz der umgetasteten Sendesignale. Der schmalbandige Parallelresonanzkreis, der aus dem Kondensator Ca1, der Spule La1 und dem Widerstand Ra1 besteht, wird durch Zu- und Wegschalten des Kondensators Ct daher synchron zur Frequenzumtastung der Sendesignale zwischen zwei Resonanzfrequenzen umgetastet. Bezüglich den zu übertragenen Sendesignalen weist das Antennensystem AS1a daher einen virtuellen Resonanzkreis hoher Bandbreite und Güte auf. Die Sendesignale werden daher, unabhängig von der vorliegenden Sendefrequenz, immer mit maximaler Sendeleistung abgestrahlt. Empfangsseitig ist daher ebenfalls eine breitbandige Eingangsstufe vorzusehen, die einen breitbandigen Resonanzkreis von entsprechend geringer Güte, oder vorzugsweise, wie in Fig. 4 gezeigt, zwei aneinandergekoppelte Resonanzkreise hoher Güte aufweist.
  • In Fig. 1 ist das in einer ersten Kommunikationseinheit vorgesehene Antennensystem AS1a über einen Luftspalt induktiv an ein in einer zweiten Kommunikationseinheit vorgesehenes Antennensystem A21 gekoppelt, das mit einem Lastwiderstand Rl verbunden ist. Gezeigt ist femer eine virtuelle Ersatzinduktivität La12, die aufgrund der gewählten Kopplung rechnerisch ermittelt werden kann. Das Antennensystem AS21 weist einen breitbandigen Parallelresonanzkreis auf, der aus einem Kondensator Ca2, einer Spule La2 und einem Widerstand Ra2 besteht.
  • Das in Fig. 2 gezeigte Antennensystem AS1b weist anstelle des Kondensators Ct eine dem Paralleresonanzkreis zuschaltbare Spule Lt auf, durch die der Paralleresonanzkreis schmalbandig ebenfalls auf eine zweite Resonanzfrequenz abstimmbar ist (siehe Durchlasskurven k'A1 und k"A2 in Fig. 5).
  • Fig. 3 zeigt das Antennensystem AS1b aus Fig. 2, induktiv angekoppelt über einen Luftspalt bzw. die entsprechende virtuelle Ersatzinduktivität La12 an ein breitbandiges Antennensystem AS23, das aus zwei schmalbandigen Resonanzkreisen besteht, die einen Kondensator Ca2; Ca3, eine Spule La2; La3 und einen Widerstand Ra2; Ra3 aufweisen und die über eine virtuelle Ersatzinduktivität La23 wie eingangs beschrieben aneinander angekoppelt sind. Fig. 1, 2 und 3, die virtuelle Induktivitäten La12, La23 enthalten, sind daher Ersatzschaltbilder der physikalisch vorliegenden Verhältnisse.
  • Falls das Antennensystem AS1a oder AS1b nicht nur zum Senden, sondem auch zum Empfangen von Signalen vorgesehen ist, wird erfindungsgemäss ein Resonanzkreis verwendet, der schmalbandig und umschaltbar auf die Sendefrequenzen sowie breitbandig auf die Frequenzen der zu empfangenden Signale abstimmbar ist.
  • Gemäss Fig. 11 werden daher zwei Kondensatoren Ct1, Ct2 vorgesehen die über Schalter St1, St2 dem bereits bekannten Parallelresonanzkreis (Ca1, La1, Ra1) zuschaltbar sind. Der Parallelresonanzkreis lässt sich z.B. wie folgt abstimmen. Bei geöffneten Schaltem St1, St2 weist der Parallelkreis die Resonanzfrequenz f2 auf. Bei geschlossenem Schalter St1 (Schalter St2 offen) weist der Parallelkreis die Resonanzfrequenz fm auf. Bei geschlossenem Schalter St2 (Schalter St1 offen) weist der Parallelkreis die Resonanzfrequenz f1 auf. Für den Empfang wird daher der Schalter Stl (Schalter St2 offen) geschlossen, wodurch der Kondensator Ct1 dem Parallelkreis zugeschaltet wird. Zur Erhöhung der Bandbreite des Parallelkreises (Empfang) ist femer ein Dämpfungswiderstand Rt parallel zum Kondensator geschaltet. Die Modulationsstufe FSK-M steuert mittels Signalen tn1, tn2 die Schaltem St1, St2 derart, dass für den Empfang ein breitbandiger und für den Sendebetrieb virtuell zwei schmalbandige Resonanzkreise vorliegen. Für die in Fig. 11 gezeigte Schaltungsanordnungen können natürlich auch zuschaltbare Induktivitäten vorgesehen sein. Die Zuschaltung des Widerstandes Rt oder weiterer Dämpfungswiderstände kann auch separat erfolgen, um beliebige Bandbreiten für den Sende- und Empfangsbetrieb einzustellen.
  • Die Resonanzfrequenz des abstimmbaren Schwingkreises wie er z.B. in Fig. 11 dargestellt ist, erfolgt bevorzugt durch zu oder Abschaltung von Impedanzen. Möglich ist natürlich auch die Verwendung von änderbaren Impedanzen, wie z.B. spannungsgesteuerte Kapazitätsdioden, die nahezu kontinuierlich oder sprunghaft geändert werden können.
  • Bei der Zu- und Abschaltung der Kondensatoren Ct und Spulen Lt sind Signalverzerrungen bevorzugt zu vermeiden. Eine Zu- oder Abschaltung der Kondensatoren Ct erfolgt daher bevorzugt bei einem Nulldurchgang der Spannung über dem Kondensator Ca1. Eine Zu- oder Abschaltung der Spulen Lt erfolgt hingegen bevorzugt bei einem Maximum der Spannung über der Spule Lal. Dazu sind in Fig. 1 und 2 Schwellwertschaltungen TH1, TH2 vorgesehen, die der Modulationsstufe FSK-M durch ein Signal trg mitteilen zu welchem Zeitpunkt die Spannung über dem Parallelkreis einen bestimmten Wert unter- oder überschritten hat. Erst zu diesem Zeitpunkt wird die Zu- oder Abschaltung der Kondensatoren Ct oder Spulen Lt durch die Modulationsstufe FSK-M ausgelöst.
  • Während die Verwendung des erfindungsgemässen Antennensystems in der Rundfunktechnik oft kaum vorteilhaft anwendbar ist, z.B. weil die erforderliche Bandbreite insbesondere im Bereich der Radio- und Femsehfrequenzen praktisch immer vorhanden ist, weil genügend Sendeleistung vorhanden ist und weil die Antennen des Systems stabil installiert werden können, können im Gegensatz dazu insbesondere Übertragungssysteme der Verkehrstechnik, die in Zukunft zur Übertragung von hohen Datenraten vorgesehen werden und die bei relativ tiefen Sendeleistungen sowie tiefen Frequenzen von 1 MHz bis etwa 50 MHz arbeiten, durch den Einsatz des erfindungsgemässen Antennensystems deutlich verbessert werden.
  • Wie bereits oben beschrieben wurde, ergibt die Verwendung des erfindungsgemässen Antennensystems besondere Vorteile, falls einzelne Kommunikationseinheiten femgespeist werden müssen. Durch die Reduktion der Kopplungsverluste ergibt sich daher eine höhere empfangsseitig zur Verfügung stehende Versorgungsleistung, oder es kann die Sendeleistung entsprechend reduziert werden. Femer wird durch die erfindungsgemässen Massnahmen der Abstand zwischen den Pegeln der Nutz- und Störsignale vorteilhaft erhöht.
  • Fig. 8 zeigt zwei nebeneinander geführte Schienenpaare S1, S2. Auf den Schienen S1 ist ein mit einer mobilen Sende- und Empfangseinheit T/R2 versehener Eisenbahnzug ZK geführt. Zwischen den Schienen S1, S2 sind erdgebundene Sende- und Empfangseinheiten T/R1 vorgesehen, die für den Datenaustausch mit den auf den Schienenpaaren S1, S2 geführten Fahrzeugen ZK vorgesehen sind. In der praktischen Anwendung werden Informationen oft nur von den erdgebundenen zu den mobilen Sende- und Empfangseinheiten T/R2 übertragen. Möglich ist jedoch auch eine bidirektionale Datenübertragung. Da sich die Fahrzeuge mit Geschwindigkeiten bis zu einigen Hundert km/h bewegen, entstehen nur sehr kurze Kontaktzeiten von wenigen Millisekunden zwischen den erdgebundenen und den mobilen Sende- und Empfangseinheiten T/R. Femer ist mit Verschmutzungen sowie Schnee und Eis zu rechnen. Weiterhin werden durch die nationalen Zulassungsbehörden nur Systeme mit relativ tiefen Sendeleistungen bewilligt.
  • Um bei tiefen Frequenzen im Bereich von einigen MHz (Kurzwellenbereich), bei grosser Bandbreite und geringer Sendeleistung die gewünschten Daten übertragen zu können, wird durch die erfindungsgemässen Massnahmen die Kontaktzeit verlängert, innerhalb der die Sende- und Empfangseinheiten T/R1 bzw. T/R2 ihre Informationen austauschen können. Dabei wird die Streckendämpfung reduziert, wodurch Sende- und Empfangseinheiten T/R1 bzw. T/R2 früher in Kontakt treten können. Anstelle der beschriebenen FSK-Modulation sind grundsätzlich auch weitere Frequenzmodulationsverfahren anwendbar. Anstelle eines Frequenzsprungverfahrens (FSK) ist auch ein Verfahren mit kontinuierlicher Modulation einsetzbar.

Claims (13)

  1. Verfahren zur Übertragung von Daten über ein abstimmbares Antennensystem (AS1a, AS1b, A1, AS1ae) hoher Güte, dadurch gekennzeichnet, dass das Antennensystem (AS1a, AS1b, A1, AS1ae) wahlweise auf wenigstens zwei Frequenzen abstimmbar ist, dass das Sendesignal entsprechend den zu übertragenen Daten frequenzmoduliert und die Resonanzfrequenz des Antennensystems (AS1a, AS1b, A1, AS1ae) derart abgestimmt wird, dass die Frequenz des Sendesignals und die Resonanzfrequenz des Antennensystems (AS1a, AS1b, A1, AS1ae) einander jeweils zumindest angenähert entsprechen, so dass die Sendesignale praktisch ungedämpft übertragen werden können.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Sendesignale vor der Übertragung nach dem FSK-Verfahren moduliert werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Resonanzfrequenz des abstimmbaren Antennensystems (AS1ae) für den Empfang von Signalen zumindest annähemd auf die Frequenz der zu empfangenden Signale abgestimmt wird.
  4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Resonanzfrequenz des Antennensystems (AS1ae) durch Zu- oder Abschaltung von festen Impedanzen (Ct; Lt), wie Spulen, Kondensatoren, Widerständen oder Kombinationen davon und/oder durch die Einstellung änderbarer Impedanzen abgestimmt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bandbreite des Antennensystems (AS1ae) durch Zu- oder Abschaltung und/oder Einstellung von änderbaren bzw. festen Widerständen (Rt) entsprechend der Bandbreite der empfangenen oder abgesendeten Signale abgestimmt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zu- und Abschaltung der Impedanzen derart erfolgt, dass keine Verzerrungen des Sendesignals auftreten
  7. Abstimmbares Antennensystem (AS1a, AS1b, A1, AS1ae) hoher Güte für eine Kommunikationseinheit, die wenigstens eine zur Abgabe frequenzmodulierter Sendesignale vorgesehene Sendeeinheit (FSK-M, FG, SV) aufweist, dadurch gekennzeichnet, dass das Antennensystem (AS1a, AS1b, A1, AS1ae) wahlweise auf wenigstens zwei Frequenzen abstimmbar ist, dass die Resonanzfrequenz des Antennensystems (AS1a, AS1b, A1, AS1ae) durch Zu- oder Abschaltung und/oder durch Änderung von Impedanzen (Ct; Lt) derart abstimmbar ist, dass die Frequenz des Sendesignals und die Resonanzfrequenz des Antennensystems (AS1a, AS1b, A1, AS1ae) einander jeweils zumindest angenähert entsprechen, so dass die Sendesignale praktisch ungedämpft übertragbar sind.
  8. Antennensystem (AS1a, AS1b, A1, AS1ae) nach Anspruch 7, dadurch gekennzeichnet, dass die Resonanzfrequenz des abstimmbaren Antennensystems (AS1ae) für den Empfang von Signalen zumindest annähemd auf die Frequenz der zu empfangenden Signale abstimmbar ist und/oder dass die Bandbreite des Antennensystems (AS1ae) durch Zu- oder Abschaltung und/oder Einstellung von änderbaren bzw. festen Widerständen (Rt) entsprechend der Bandbreite der empfangenen oder abgesendeten Signale abstimmbar.
  9. Antennensystem (AS1a, AS1b, A1, AS1ae) nach Anspruch 8, dadurch gekennzeichnet, dass die empfangsseitig vorgesehene Kommunikationseinheit ein breitbandiges Antennensystem (AS23) hoher Güte aufweist, das durch zwei schmalbandige induktiv aneinander angekoppelte Schwingkreise gebildet wird.
  10. Schaltungsanordnung für eine Kommunikationseinheit zur Übertragung von Daten über ein abstimmbares Antennensystem (AS1a, AS1b, A1, AS1ae) hoher Güte, dadurch gekennzeichnet, dass das Antennensystem (AS1a, AS1b, A1, AS1ae) wahlweise auf wenigstens zwei Frequenzen abstimmbar ist, dass die Resonanzfrequenz des Antennensystems (AS1a, AS1b, A1, AS1ae) durch Zu- oder Abschaltung und/oder durch Änderung von Impedanzen (Ct, Lt) derart abstimmbar ist, dass die Frequenz des Sendesignals und die Resonanzfrequenz des Antennensystems (AS1a, AS1b, A1, AS1ae) einander jeweils zumindest angenähert entsprechen, so dass die Sendesignale praktisch ungedämpft übertragbar sind.
  11. Schaltungsanordnung nach Anspruch 10, dadurch gekennzeichnet, dass die Bandbreite des Antennensystems (AS1ae) durch Zu- oder Abschaltung und/oder Einstellung von änderbaren bzw. festen Widerständen (Rt) entsprechend der Bandbreite der empfangenen oder abgesendeten Signale ist.
  12. Schaltungsanordnung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Impedanzen (Ct, Lt) und/oder die Widerstände (Rt) durch eine Modulationsstufe (FSK-M) wahlweise zuschaltbar und/oder einstellbar sind, der die zu übertragenden Daten ds zuführbar sind und die über eine Sendeeinheit zur Abgabe entsprechend frequenzmodulierter Signale an das Antennensystem (AS1a, AS1b, A1, AS1ae) geeignet ist.
  13. Schaltungsanordnung nach Anspruch 10, 11 oder 12, dadurch gekennzeichnet, dass eine Schwellwertschaltung (TH1; TH2) vorgesehen ist, durch die der Modulationsstufe (FSK-M) die Zeitpunkte übertragbar sind, zu denen die Impedanzen (Ct, Lt) zugeschaltet werden können, ohne dass Verzerrungen des Sendesignals auftreten.
EP96810372A 1995-06-09 1996-06-06 Datenübertragungsverfahren und Antennensystem insbesondere für verkehrstechnische Kommunikationssysteme sowie Schaltungsanordnung Withdrawn EP0747995A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH169795 1995-06-09
CH1697/95 1995-06-09

Publications (2)

Publication Number Publication Date
EP0747995A2 true EP0747995A2 (de) 1996-12-11
EP0747995A3 EP0747995A3 (de) 1997-10-22

Family

ID=4216488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810372A Withdrawn EP0747995A3 (de) 1995-06-09 1996-06-06 Datenübertragungsverfahren und Antennensystem insbesondere für verkehrstechnische Kommunikationssysteme sowie Schaltungsanordnung

Country Status (1)

Country Link
EP (1) EP0747995A3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0960797A2 (de) * 1998-05-25 1999-12-01 Siemens Schweiz AG (Siemens Suisse SA) (Siemens Svizzera SA) Siemens Switzerland Ltd) Übertragungssystem insbesondere für verkehrstechnische Systeme
CN106448224A (zh) * 2016-12-20 2017-02-22 朱广志 一种车船位置信号监控管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799066A (en) * 1985-07-26 1989-01-17 The Marconi Company Limited Impedance matching arrangement
US5034697A (en) * 1989-06-09 1991-07-23 United States Of America As Represented By The Secretary Of The Navy Magnetic amplifier switch for automatic tuning of VLF transmitting antenna
EP0535363A2 (de) * 1991-09-30 1993-04-07 Siemens Aktiengesellschaft Empfangseinrichtung für amplituden-, frequenz- und/oder FSK-modulierte Sendesignale auf verschiedenen Trägerfrequenzkanälen
WO1994011754A1 (de) * 1992-11-06 1994-05-26 Siemens-Albis Ag Verfahren und schaltungsandordnung zur datenübertragung zwischen zwei stationen
WO1996032755A1 (de) * 1995-04-12 1996-10-17 Siemens Schweiz Ag Antennensystem insbesondere für verkehrstechnische kommunikationssysteme

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799066A (en) * 1985-07-26 1989-01-17 The Marconi Company Limited Impedance matching arrangement
US5034697A (en) * 1989-06-09 1991-07-23 United States Of America As Represented By The Secretary Of The Navy Magnetic amplifier switch for automatic tuning of VLF transmitting antenna
EP0535363A2 (de) * 1991-09-30 1993-04-07 Siemens Aktiengesellschaft Empfangseinrichtung für amplituden-, frequenz- und/oder FSK-modulierte Sendesignale auf verschiedenen Trägerfrequenzkanälen
WO1994011754A1 (de) * 1992-11-06 1994-05-26 Siemens-Albis Ag Verfahren und schaltungsandordnung zur datenübertragung zwischen zwei stationen
WO1996032755A1 (de) * 1995-04-12 1996-10-17 Siemens Schweiz Ag Antennensystem insbesondere für verkehrstechnische kommunikationssysteme

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0960797A2 (de) * 1998-05-25 1999-12-01 Siemens Schweiz AG (Siemens Suisse SA) (Siemens Svizzera SA) Siemens Switzerland Ltd) Übertragungssystem insbesondere für verkehrstechnische Systeme
EP0960797A3 (de) * 1998-05-25 2002-06-12 Siemens Schweiz AG (Siemens Suisse SA) (Siemens Svizzera SA) Siemens Switzerland Ltd) Übertragungssystem insbesondere für verkehrstechnische Systeme
CN106448224A (zh) * 2016-12-20 2017-02-22 朱广志 一种车船位置信号监控管理系统

Also Published As

Publication number Publication date
EP0747995A3 (de) 1997-10-22

Similar Documents

Publication Publication Date Title
EP1012899B1 (de) Vorrichtung zur kontaktlosen übertragung elektrischer signale und/oder energie
EP0806849B1 (de) Schaltungsanordnung zur Funktionsprüfung mobiler Rundfunkempfangsanlagen
DE69821037T2 (de) Fensterscheibenantenne für Kraftfahrzeug
DE69819897T2 (de) Fm videosignalabtragung via verschiedene leitungen
EP1225653B1 (de) Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
EP0820646B1 (de) Antennensystem insbesondere für verkehrstechnische kommunikationssysteme
DE4321805A1 (de) FM-Übertragungsantenneneinrichtung für Kraftfahrzeuge und TV-Übertragungsantenneneinrichtung für Kraftfahrzeuge
DE60119437T2 (de) Breitband Hochimpedanz-Transponder für elektronisches Identifizierungssystem
EP1168500A2 (de) Antennenumschalter für Sende-Empfangseinheiten in einer Mobilstation
CH632884A5 (de) Duplexe mikrowellenfunkanlage.
DE2816786A1 (de) Abstimmschaltung fuer eine antenne
EP0747995A2 (de) Datenübertragungsverfahren und Antennensystem insbesondere für verkehrstechnische Kommunikationssysteme sowie Schaltungsanordnung
EP1312136B1 (de) Verkürzter schleifen-dipol und schleifen-monopol
EP0753159A1 (de) Fahrzeuggerät für transponderbetrieb
DE2326829C2 (de) Fernmeldesystem begrenzter Reichweite
EP0166387B1 (de) Antenne in der Heckscheibe eines Kraftfahrzeugs
DE3844541C2 (de) Antennenschaltung für eine Multiband-Antenne
EP0666989B1 (de) Verfahren und schaltungsanordnungen zur datenübertragung zwischen einer abfrage- und einer antwortstation
DE102020100580A1 (de) Schalttransformatoren und elektronische Vorrichtungen dieselben enthaltend
EP0743698B1 (de) Übertragungsvorrichtung für verkehrstechnische Kommunikationssysteme
DE69924819T2 (de) Erzeugung von fsk-signalen durch änderung von antennenimpedanz
WO1998019358A1 (de) Vorrichtung zur transformation einer antennenimpedanz
EP0563450A1 (de) Vorrichtung zur Filterung der Signale einer Antenneneinrichtung sowie eine Sende-Empfangseinrichtung mit zwei oder mehreren Antennen
DE3402331A1 (de) Einrichtung zur induktiven informationsuebertragung
DE3137070C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960619

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19981028

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990508