EP0745809B1 - Générateur de tourbillons pour chambre de combustion - Google Patents

Générateur de tourbillons pour chambre de combustion Download PDF

Info

Publication number
EP0745809B1
EP0745809B1 EP96810314A EP96810314A EP0745809B1 EP 0745809 B1 EP0745809 B1 EP 0745809B1 EP 96810314 A EP96810314 A EP 96810314A EP 96810314 A EP96810314 A EP 96810314A EP 0745809 B1 EP0745809 B1 EP 0745809B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
chamber according
duct
flow
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810314A
Other languages
German (de)
English (en)
Other versions
EP0745809A1 (fr
Inventor
Burkhard Dr. Schulte-Werning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7763530&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0745809(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP0745809A1 publication Critical patent/EP0745809A1/fr
Application granted granted Critical
Publication of EP0745809B1 publication Critical patent/EP0745809B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/222Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes

Definitions

  • the present invention relates to a combustion chamber according to the preamble of claim 1. It also relates to a method for operating such a combustion chamber.
  • the flow over the respective burners and in the mixing zone in front of the turbine must be adjusted to the temperature profile suitable for the turbine by admixing the mass flow not flowing through the burners.
  • the quality of this admixture is usually controlled by the dimensioning of the cross section and the number of air inlet openings.
  • These air inlet openings which also act as mixed air nozzles, simultaneously provide both the necessary penetration depth of the air flowing through and colder into the hot gas flow and thus produce the necessary for rapid mixing macroscopic turbulence and for a sufficient uniform distribution of colder air supply through the combustion chamber wall.
  • the invention aims to remedy this situation.
  • the invention as characterized in the claims, the object is based on a combustion chamber and a method of the type mentioned to improve the Zumischungsproof and reducing the caloric load of the combustion chamber to achieve at the same time should be task of the invention, minimizing the pollutant Emissions and maximizing efficiency.
  • vortex-generating elements hereinafter referred to as vortex generators, which are preferably fixed to the combustion chamber wall or the combustion chamber walls in the mixing section, downstream of the primary zone.
  • vortex generators serve to generate the necessary intensive, large-scale mixing movement between hot gases and the mixing air to be mixed in the form of a secondary flow, which, in contrast to the usual procedure, behave independently of the mixed air jet.
  • the mixed air is now uniformly supplied to the hot gas via a number of small holes in the combustion chamber wall, that a supercritical blow-off rate is sought, which simultaneously ensures effusion cooling. Due to the desired supercritical blow-off rate, the mixed air penetrates into the edge zones of the vortexes which are induced by the vortex generators, is carried away by the vortexes from the wall and accordingly mixes rapidly with the hot gases. Since the vortex generators are exposed directly to the hot gases, the achievable sufficient cooling is an indispensable prerequisite of such a mixing section.
  • the effusion cooling effect is mainly due to the internal convective cooling during the passage of the mixed air through the flow openings and the possible formation of a cooling air film on the hot gas side. If the ratio between the pulse of the mixed air jet and that of the hot gas flow is small enough, the flow boundary layer of the mixed air will not be pierced on the hot gas side and a cooling air film may be formed optimally. If this blow-off rate exceeds a critical value, then the mixed-air jet penetrates into the hot-gas flow without the formation of a cooling-air film. With a suitable design, the wall-internal cooling effect increases at the same time as the blow-off rate increases, so that the overall cooling effect can be kept approximately constant.
  • the penetration depth of the mixed air jet into the hot gas flow near the vortex generators can be kept small, at least an order of magnitude smaller than in the conventional air inlet openings, since they only have to be so large that the mixed air penetrates into the vortex, but not the mixed air jet itself must provide for the necessary large-scale turbulence. Therefore, no large diameter are required and the supply of mixed air can be made over a large area.
  • the proposed mixing section can also be adapted to different load conditions of the gas turbine. If the pressure gradient available for intervention is made variable, for example by means of an adjustable pre-throttle, then the mixed-air flow to be admixed can also be controlled. If the discharge rate changes from over- to the sub-critical range, a constant effect of the effusion cooling over a large load range is given despite large variation of the mixed air flow. In this way, both the air to be admixed is supplied over a large area to the mixing process and thus overall the mixing quality is increased, as well as the wall of the mixing section is protected from excessively high temperatures, regardless of the mixing performance.
  • variable mixing section can be used both in the conventional diffusion and Vormischbrennhuntn as well as in combustion chamber concepts with staged combustion.
  • Fig. 1 shows, as is apparent from the indicated shaft axis 15, that it is a combustion chamber to an annular combustion chamber 100, which has substantially the shape of a contiguous annular or quasi-annular cylinder.
  • a combustion chamber can also consist of a number of axially, quasi-axially or helically arranged and individually self-contained combustion chambers.
  • the combustion chamber can also consist of a single Tube exist.
  • this combustion chamber may be the sole combustion stage of a gas turbine or a combustion stage of a sequentially fired gas turbine.
  • the annular combustion chamber 100 according to Fig.
  • a secondary stage 3 which is preferably designed as an inflow to a turbine.
  • the burner and the fuel supply and the primary air supply are placed substantially at the beginning of the primary zone 1 and are present in the present Fig. 1 symbolized with arrow 13.
  • the primary zone 1 is covered with a spaced concentric tube 11; In between flows in the counterflow direction, a cooling air amount 12, which ensures a convective cooling of the primary zone 1. This air can then pass through the burners after completion of the run, for example.
  • the various forms, effects and arrangements of the vortex generators 200 will be discussed in more detail below.
  • the mixing section 2 is surrounded by a chamber 10, in which a mixed air 8 flows through control elements 9 and then there distributed over the various openings in the inner wall 6 and outer wall 5 and by the vortex generators 200 to subsequently in to flow the mixing section 2.
  • the openings mentioned are, for example, in FIGS. 8, 10, 12, 14 and 15 visible; These figures will be explained below in more detail.
  • the mixed air 8 is in itself of a larger amount, for example up to 50% or more of the total mass flow.
  • the blow-off rate in the mixing section 2 is supercritical, which is why a cooling film can not form along the walls 5, 6 per se.
  • the possible mixed air 8 drops significantly, which is why the amount of hot gas stream 4 then increases.
  • a supercritical blow-off rate is intended as intended, because then the mixed air 8 penetrates into the edge zones of the vertebrae triggered by the vortex generators 200 arranged there. As a result of these vortices, the incoming mixed air 8 is carried away by the walls 5, 6, whereby it mixes rapidly with the hot gases 4 flowing through the combustion chamber 100. All-round openings through the vortex generators 200 (See below Fig. 15 In addition, a sufficient cooling of the latter against the hot gases 4. The supercritical blow-out rate also ensures that the penetration depth of the mixed air 8 into the hot gases 4 in the area of the vortex generators 200 can be kept small.
  • the openings also have no large cross section resp. Diameter, wherein the introduction of the mixed air 8 within the mixing section 2 can be made over a large area.
  • the vertical connecting edge (see 4-7, pos. 216) of the vortex generators 200 also forms the transition from the mixing section 2 to the secondary stage 3, whereby here a constriction of the mixing zone 2 results, which then leads to an immediate jump in cross section 14 at the beginning of the secondary stage. 3 leads.
  • the variable distribution of the mass flows 4, 8 causes depending on the load condition of the system, the cooling effect of the mixed air 8 when passing through the wall either by the heat transfer in the interior Openings alone or by a combination with the cooling film is achieved.
  • the first case is a supercritical case with high mass flow and high admission pressure
  • the second case is a subcritical case with low mass flow and low admission pressure.
  • the mixing configuration thus formed is variable in the sense that the mixed air stream 8 may be heavily load-dependent, without overheating of the material, in particular the vortex generators 200 and the walls 5, 6, occurs.
  • the design criterion for the injection geometry is accordingly a cooling efficiency that is only slightly dependent on the mixed air flow 8 over a relatively large range.
  • Such a so concepulated mixing section 2 finds both their application in staged combustion and in burners, which is about being able to drive despite a changed load with constant fuel-air ratio.
  • Fig. 2 is a section of the section plane II-II of Fig. 1 and shows a configuration of vortex generators 200 which are fixed to both the outer wall 5 and the inner wall 6. They are adjacent to each other in the circumferential direction, wherein the flow of the hot gases 4 is given by the free space from the radial spacing of the opposite tips of the vortex generators 200 and from the spaces between the free-flowing surfaces.
  • the curved lines shown in this figure are intended to depict the vortices induced by the vortex generators 200.
  • Fig. 3 corresponds largely Fig. 2 , where here the vortex generators 200 are fixed only to the inner wall 6.
  • a vortex generator 200, 201, 202 consists essentially of three freely flowing around triangular surfaces. These are a roof surface 210 and two side surfaces 211 and 213. In their longitudinal extent, these surfaces extend at certain angles in the flow direction.
  • the side walls of the vortex generators 200, 201, 202, which preferably consist of right-angled triangles, are fixed with their longitudinal sides at least on the already mentioned channel wall 6, preferably gas-tight. They are oriented so that they form a shock on their narrow sides, including a sweep angle ⁇ .
  • the joint is designed as a sharp connecting edge 216 and is perpendicular to each channel wall 5, 6, with which the side surfaces are flush.
  • the two side surfaces 211, 213 enclosing the sweep angle ⁇ are in Fig. 4 symmetrical in shape, size and orientation, they are arranged on both sides of a symmetry axis 217, which is rectified as the channel axis.
  • the roof surface 210 rests against the same channel wall 6 as the side surfaces 211, 213 with a very narrow edge 215 extending transversely to the through-flow channel. Its longitudinal edges 212, 214 are flush with the longitudinal edges of the side surfaces 211 projecting into the flow channel , 213.
  • the roof surface 210 extends at an angle of incidence ⁇ to the channel wall 6, the longitudinal edges 212, 214 together with the connecting edge 216 a tip 218.
  • the vortex generator 200, 201, 202 may also be provided with a bottom surface, with which he on suitable manner is attached to the channel wall 6.
  • a floor surface is not related to the mode of action of the element.
  • the operation of the vortex generator 200, 201, 202 is as follows: As the edges 212 and 214 flow around, the main flow is converted into a pair of opposing vortices, as schematically outlined in the figures.
  • the vortex axes lie in the axis of the main flow.
  • the swirl number and the location of vortex breakdown, if the latter is desired, are determined by appropriate choice of the angle of attack e and the arrow angle ⁇ . With increasing angles, the vorticity or swirl number is increased, and the location of the vortex shedding shifts upstream into the area of the vortex generator 200, 201, 202 itself.
  • these two angles ⁇ and ⁇ are determined by structural conditions and by the Process itself specified.
  • the connecting edge 216 of the two side surfaces 211, 213 forms the downstream edge of the vortex generator 200.
  • the edge 215 of the roof surface 210 extending transversely to the through-flow channel is thus the edge first acted on by the channel flow.
  • Fig. 5 is a so-called half "vortex generator" based on a vortex generator Fig. 4 shown.
  • the vortex generator 201 shown here only one of the two side surfaces is provided with the sweep angle ⁇ / 2. The other side surface is straight and aligned in the flow direction.
  • the symmetrical vortex generator here only a vortex is generated on the swept side, as symbolized in the figure. Accordingly, downstream of this vortex generator no vortex-neutral field is present, but the flow is forced to a total spin.
  • Fig. 6 is different Fig. 4 in so far as the sharp connecting edge 216 of the vortex generator 202 is the point which is first acted upon by the channel flow. The element is therefore rotated by 180 °. As can be seen from the illustration, the two opposing vortices have changed their sense of rotation.
  • Fig. 7 shows the basic geometry of a built-in mixing section 2 vortex generator 200.
  • the height h of the connecting edge 216 with the channel height H, or the height of the channel part, which is associated with the vortex generator vote so that the generated vortex immediately downstream the vortex generator 200 already reached such a size, such that thus the full channel height H is filled.
  • Another criterion that can influence the ratio of the two heights h / H to be selected is the pressure drop which occurs when the vortex generator 200 flows around. It is understood that with a higher ratio h / H and the pressure loss coefficient increases.
  • the vortex generators 200, 201, 202 are mainly and preferably used where it comes to mixing two streams together.
  • the main flow 4 as hot gases attacks the transverse edge 215 in the direction of the arrow, and the connecting edge 216, respectively.
  • the mixed air 8 (cf. Fig. 1 ) has an amount up to 50% and more of the main flow 4. This mixed air flow 8 is introduced in the present case upstream and downstream of the vortex generator and by the vortex generators themselves in the main flow 4, as is apparent from Fig. 1 especially good.
  • the vortex generators are placed flush with each other; Of course, these vortex generators can be distributed at a distance from each other over the circumference of the mixing section 2. For the choice of geometry, number and arrangement of the vortex generators, the vortex to be generated is decisive.
  • FIGS. 8-15 show more vortex generators with different configurations in terms of flow openings or holes for the inflow of mixed air into the Mainstream.
  • these passages may also be used to introduce a further or different medium, for example a fuel, into the mixing section.
  • Fig. 10 shows channel wall bores 220, which are located downstream of the vortex generators, and further wall bores 221, which are located immediately adjacent to the side surfaces 211, 213 and in the longitudinal extent in the same channel wall 6, to which the vortex generators are fixed.
  • the introduction of the mixed air flow through the wall bores 221 gives the generated vortices an additional impulse and cooling effect, which prolongs the life of the vortex generator.
  • the mixed air flow is injected via a slot 222 or via wall bores 223, both provisions being located directly in front of the edge 215 of the roof surface 210 running transversely to the flow-through channel and in its longitudinal extent in the same duct wall 6 on which the vortex generators are arranged.
  • the geometry of the wall bores 223 or of the slit 222 is selected such that the mixed air, if necessary another medium, is introduced into the main flow 4 at a certain injection angle and largely shields the downstream vortex generator as a protective film against the hot main flow 4 by flow around.
  • the mixed air flow is as shown Fig. 1 visible, introduced into the hollow interior of the vortex generators. This provides, without providing further dispositives, the desired mixing mechanism with respect to the main flow 4 as well as the eminently important cooling possibility for the vortex generators themselves.
  • Fig. 11 the mixed air flow is injected through holes 224 which occupy the roof surface 210, wherein the inflow of the mixed air flow transversely to the channel through which flows. to the edge 215 happens.
  • the cooling of the vortex generator takes place here more externally than internally.
  • the exiting mixed air flow unfolds at subcritical blow-off rate when flowing around the roof surface 210 a shielding this against the hot main flow 4 protective layer, otherwise, at supercritical Ausblasrate, the mixing effect, as under Fig. 1 has been described.
  • the mixed air flow is injected via bores 225, which are arranged staggered within the roof surface 210 at least along the symmetry line 217.
  • the channel walls 6 are particularly well protected from the hot main flow 4, since the mixed air flow is first introduced at the outer periphery of the vortex.
  • the mixed air flow is injected via bores 226 located at least in the longitudinal edges 212, 214 of the roof surface 210.
  • This solution ensures good cooling of the vortex generator, since the mixed air flow exits at the extremities and thus completely surrounds the inner walls of the element.
  • the mixed air flow is here introduced directly into the resulting vortex, which leads to a defined mixture within the main flow at supercritical blow-off rate.
  • Fig. 14 happens the injection of the mixed air flow through holes 227, which are located in the side surfaces 211 and 213, on the one hand in the region of the longitudinal edges 212 and 214, on the other hand, in the region of the connecting edge 216.
  • This variant is similar effect as those from Fig. 8 (Holes 221) and off Fig. 13 (Holes 226).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Claims (15)

  1. Chambre de combustion, constituée essentiellement d'une zone primaire (1), d'un étage secondaire (3) monté en aval dans la direction d'écoulement, les deux étages (1, 3) étant parcourus par un écoulement principal (4) et étant en liaison fonctionnelle l'un avec l'autre en vue de la combustion, caractérisée en ce qu'entre la zone primaire et l'étage secondaire est disposée une section de mélange (2), en ce que la section de mélange est munie de générateurs de tourbillons (200, 201, 202) qui pénètrent dans la section de mélange (2) en réduisant sa section transversale, et en ce que la section de mélange et les générateurs de tourbillons présentent des ouvertures de passage (220, 221, 223 ; 225, 226, 227) par le biais desquelles une quantité d'air de mélange (8) peut être injectée dans l'écoulement principal (4).
  2. Chambre de combustion selon la revendication 1, caractérisée en ce qu'un générateur de tourbillon (200) présente trois surfaces librement parcourues par l'écoulement, qui s'étendent dans la direction de l'écoulement, dont une forme la surface de recouvrement (210) et les deux autres les surfaces latérales (211, 213), en ce que les surfaces latérales (211, 213) sont en affleurement avec un même segment de paroi du canal (2) et forment ensemble l'angle de flèche (α), en ce que la surface de recouvrement (210) s'applique avec une arête (215) s'étendant transversalement au canal (2) parcouru par l'écoulement, contre le même segment de paroi (5, 6) du canal (2) que les surfaces latérales (211, 213), et en ce que les arêtes orientées longitudinalement (212, 214) de la surface de recouvrement (210) sont en affleurement avec les arêtes orientées longitudinalement des surfaces latérales (211, 213), pénétrant dans le canal, et s'étendent suivant un angle d'inclinaison (θ) par rapport au segment de paroi (5) du canal.
  3. Chambre de combustion selon la revendication 2, caractérisée en ce que les deux surfaces latérales (211, 213) du générateur de tourbillon (200) formant l'angle de flèche (α) sont disposées symétriquement par rapport à un axe de symétrie (217).
  4. Chambre de combustion selon la revendication 2, caractérisée en ce que les deux surfaces latérales (211, 213) formant l'angle de flèche (α, α/2) forment l'une avec l'autre une arête de connexion (216) qui forme avec les arêtes (212, 214) orientées longitudinalement de la surface de recouvrement (210), une pointe (218) et en ce que l'arête de connexion (216) se situe dans la radiale du canal (2).
  5. Chambre de combustion selon la revendication 4, caractérisée en ce que l'arête de connexion (216) et/ou les arêtes (212, 214) orientées longitudinalement de la surface de recouvrement (210) sont au moins approximativement vives.
  6. Chambre de combustion selon les revendications 1, 2, 3, 4, caractérisée en ce que l'axe de symétrie (217) du générateur de tourbillon (200) s'étend parallèlement à l'axe du canal, en ce que l'arête de connexion (216) des deux surfaces latérales (211, 213) forme l'arête aval du générateur de tourbillon (200), et en ce que l'arête (215) de la surface de recouvrement (210) s'étendant transversalement au canal (2) parcouru par l'écoulement est l'arête sollicitée en premier par l'écoulement principal (4).
  7. Chambre de combustion selon les revendications 1 et 4, caractérisée en ce que l'arête de connexion (216) forme la transition entre la section de mélange (2) et l'étage secondaire (3).
  8. Chambre de combustion selon l'une quelconque des revendications 1 à 7, caractérisée en ce que le générateur de tourbillon (220, 201, 202) présente des ouvertures de passage (225, 226, 227) intégralement sur toutes les surfaces (210, 211, 213) et sur l'arête de connexion (216).
  9. Chambre de combustion selon la revendication 1, caractérisée en ce que le rapport entre la hauteur (h) du générateur de tourbillon (200) et la hauteur (H) du canal (2) est choisi de telle sorte que le tourbillon produit remplisse directement en aval du générateur de tourbillon (200) toute la hauteur (H) du canal (2) et toute la hauteur (h) de la partie du canal associée au générateur de tourbillon (200).
  10. Chambre de combustion selon la revendication 1, caractérisée en ce que la chambre de combustion est une chambre de combustion annulaire.
  11. Chambre de combustion selon la revendication 1, caractérisée en ce que la section du côté de la sortie de l'écoulement des générateurs de tourbillons (200, 201, 202) est réalisée en forme de venturi, et en ce qu'un combustible supplémentaire peut être injecté dans la région de la constriction maximale de la section en forme de venturi.
  12. Chambre de combustion selon la revendication 1, caractérisée en ce que les générateurs de tourbillon (200, 201, 202) sont fixés au moins à une paroi de canal (5, 6) de la section de mélange (2).
  13. Chambre de combustion selon la revendication 1, caractérisée en ce que la zone primaire (1) est disposée en aval des turbomachines et l'étage secondaire (3) en amont.
  14. Chambre de combustion selon la revendication 13, caractérisée en ce que la turbomachine en aval de l'étage secondaire (3) est une turbine.
  15. Procédé pour faire fonctionner une chambre de combustion selon la revendication 1, qui se compose essentiellement d'une zone primaire, d'un étage secondaire monté en aval dans la direction de l'écoulement, les deux étages étant en liaison fonctionnelle l'un avec l'autre en vue de la combustion, caractérisé en ce qu'un air de mélange (8) est injecté dans un écoulement principal (4) dans une section de mélange (2) disposée entre la zone primaire (1) et l'étage secondaire (3), en ce que la quantité de cet air de mélange (8) par rapport à l'écoulement principal (4) dans le cas d'un taux de soufflage sur-critique ne pénètre que dans le tourbillon produit par les générateurs de tourbillons (200, 201, 202), et en ce que dans le cas d'un taux de soufflage sous-critique, un refroidissement par film est déclenché au moins le long de la section de mélange (2).
EP96810314A 1995-06-02 1996-05-17 Générateur de tourbillons pour chambre de combustion Expired - Lifetime EP0745809B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19520291A DE19520291A1 (de) 1995-06-02 1995-06-02 Brennkammer
DE19520291 1995-06-02

Publications (2)

Publication Number Publication Date
EP0745809A1 EP0745809A1 (fr) 1996-12-04
EP0745809B1 true EP0745809B1 (fr) 2008-11-12

Family

ID=7763530

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810314A Expired - Lifetime EP0745809B1 (fr) 1995-06-02 1996-05-17 Générateur de tourbillons pour chambre de combustion

Country Status (5)

Country Link
US (1) US5735126A (fr)
EP (1) EP0745809B1 (fr)
JP (1) JPH0914603A (fr)
CN (1) CN1244766C (fr)
DE (2) DE19520291A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12123596B2 (en) 2021-07-29 2024-10-22 General Electric Company Mixer vanes

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19641725A1 (de) * 1996-10-10 1998-04-16 Asea Brown Boveri Gasturbine mit einer sequentiellen Verbrennung
DE19649486A1 (de) * 1996-11-29 1998-06-04 Abb Research Ltd Brennkammer
US5850732A (en) * 1997-05-13 1998-12-22 Capstone Turbine Corporation Low emissions combustion system for a gas turbine engine
EP0999367B1 (fr) 1998-11-06 2003-02-12 ALSTOM (Switzerland) Ltd Conduit d'écoulement à discontinuité de section transversale
DE19859829A1 (de) * 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Brenner zum Betrieb eines Wärmeerzeugers
US6453658B1 (en) 2000-02-24 2002-09-24 Capstone Turbine Corporation Multi-stage multi-plane combustion system for a gas turbine engine
KR20030036174A (ko) 2000-05-01 2003-05-09 엘리오트 에너지 시스템즈, 인코포레이티드 에너지 시스템에 사용되는 환상 연소기
JP2002317650A (ja) * 2001-04-24 2002-10-31 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
DE50212871D1 (de) * 2001-09-07 2008-11-20 Alstom Technology Ltd Dämpfungsanordnung zur reduzierung von brennkammerpulsationen in einer gasturbinenanlage
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
US7047722B2 (en) * 2002-10-02 2006-05-23 Claudio Filippone Small scale hybrid engine (SSHE) utilizing fossil fuels
DE10250208A1 (de) * 2002-10-28 2004-06-03 Rolls-Royce Deutschland Ltd & Co Kg Vorrichtung zur Flammenstabilisierung für mager vorgemischte Brenner für Flüssigbrennstoff in Gasturbinenbrennkammern mittels Turbolatorelementen im Hauptstrom
US6826913B2 (en) * 2002-10-31 2004-12-07 Honeywell International Inc. Airflow modulation technique for low emissions combustors
US7104068B2 (en) * 2003-08-28 2006-09-12 Siemens Power Generation, Inc. Turbine component with enhanced stagnation prevention and corner heat distribution
DE10341515A1 (de) * 2003-09-04 2005-03-31 Rolls-Royce Deutschland Ltd & Co Kg Anordnung zur Kühlung hoch wärmebelasteter Bauteile
US7096668B2 (en) * 2003-12-22 2006-08-29 Martling Vincent C Cooling and sealing design for a gas turbine combustion system
US7000396B1 (en) * 2004-09-02 2006-02-21 General Electric Company Concentric fixed dilution and variable bypass air injection for a combustor
US7389643B2 (en) * 2005-01-31 2008-06-24 General Electric Company Inboard radial dump venturi for combustion chamber of a gas turbine
WO2007067085A1 (fr) * 2005-12-06 2007-06-14 Siemens Aktiengesellschaft Procédé et appareil de combustion d’un carburant
KR100715027B1 (ko) * 2005-12-10 2007-05-09 재단법인서울대학교산학협력재단 연소기
US8156743B2 (en) * 2006-05-04 2012-04-17 General Electric Company Method and arrangement for expanding a primary and secondary flame in a combustor
US7574870B2 (en) 2006-07-20 2009-08-18 Claudio Filippone Air-conditioning systems and related methods
US7637720B1 (en) * 2006-11-16 2009-12-29 Florida Turbine Technologies, Inc. Turbulator for a turbine airfoil cooling passage
DE102007008319A1 (de) * 2007-02-16 2008-08-21 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Prallluftkühlung für Gasturbinen
EP1975506A1 (fr) * 2007-03-30 2008-10-01 Siemens Aktiengesellschaft Pré-chambre de combustion
WO2009019113A2 (fr) * 2007-08-07 2009-02-12 Alstom Technology Ltd Brûleur pour une chambre de combustion d'un turbogroupe
DE102008000050A1 (de) * 2007-08-07 2009-02-12 Alstom Technology Ltd. Brenner für eine Brennkammer einer Turbogruppe
EP2112433A1 (fr) 2008-04-23 2009-10-28 Siemens Aktiengesellschaft Chambre de mélange
US8096133B2 (en) * 2008-05-13 2012-01-17 General Electric Company Method and apparatus for cooling and dilution tuning a gas turbine combustor liner and transition piece interface
GB2460403B (en) * 2008-05-28 2010-11-17 Rolls Royce Plc Combustor Wall with Improved Cooling
US8220270B2 (en) * 2008-10-31 2012-07-17 General Electric Company Method and apparatus for affecting a recirculation zone in a cross flow
EP2230455B1 (fr) * 2009-03-16 2012-04-18 Alstom Technology Ltd Brûleur pour une turbine à gaz et procédé de refroidissement local d'un flux de gaz chauds passant par un brûleur
EP2496885B1 (fr) * 2009-11-07 2019-05-29 Ansaldo Energia Switzerland AG Brûleur avec un système de refroidissement permettant d'accroître le rendement d'une turbine à gaz
EP2496884B1 (fr) 2009-11-07 2016-12-28 General Electric Technology GmbH Système d'injection de brûleur de postcombustion
EP2496883B1 (fr) * 2009-11-07 2016-08-10 Alstom Technology Ltd Brûleur à prémélange pour chambre de combustion de turbine à gaz
EP2496880B1 (fr) * 2009-11-07 2018-12-05 Ansaldo Energia Switzerland AG Système d'injection pour brûleur de réchauffage
WO2011054757A2 (fr) * 2009-11-07 2011-05-12 Alstom Technology Ltd Système d'injection pour brûleur de réchauffage avec lances à combustible
JP2011102669A (ja) * 2009-11-10 2011-05-26 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器及びガスタービン
EP2436977A1 (fr) * 2010-09-30 2012-04-04 Siemens Aktiengesellschaft Brûleur pour turbine à gaz
US20130091847A1 (en) * 2011-10-13 2013-04-18 General Electric Company Combustor liner
FR2982010B1 (fr) * 2011-10-26 2013-11-08 Snecma Chambre de combustion annulaire dans une turbomachine
US20150159878A1 (en) * 2013-12-11 2015-06-11 Kai-Uwe Schildmacher Combustion system for a gas turbine engine
US10364684B2 (en) * 2014-05-29 2019-07-30 General Electric Company Fastback vorticor pin
EP2993404B1 (fr) * 2014-09-08 2019-03-13 Ansaldo Energia Switzerland AG Mélangeur de gaz ou d'air de dilution pour une chambre de combustion d'une turbine à gaz
CN105716112A (zh) * 2014-12-04 2016-06-29 中国航空工业集团公司沈阳发动机设计研究所 一种调节燃烧室温度场的方法
CN105840315B (zh) * 2016-03-15 2017-10-31 哈尔滨工程大学 一种应用于气膜冷却技术的旋流冷气腔结构
CN110748919B (zh) * 2018-07-23 2024-04-12 中国联合重型燃气轮机技术有限公司 燃料喷嘴
CN113932249B (zh) * 2020-06-29 2022-10-18 中国航发商用航空发动机有限责任公司 燃烧室和前置扩压器
CN116265810A (zh) * 2021-12-16 2023-06-20 通用电气公司 利用成形冷却栅栏的旋流器反稀释
US11788724B1 (en) * 2022-09-02 2023-10-17 General Electric Company Acoustic damper for combustor
US11747019B1 (en) * 2022-09-02 2023-09-05 General Electric Company Aerodynamic combustor liner design for emissions reductions
US11840988B1 (en) 2023-03-03 2023-12-12 Venus Aerospace Corp. Film cooling with rotating detonation engine to secondary combustion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292801A (en) * 1979-07-11 1981-10-06 General Electric Company Dual stage-dual mode low nox combustor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1203521A (fr) * 1958-02-04 1960-01-19 Snecma Dispositif de brûleur perfectionné destiné notamment aux chambres de combustion parcourues par un flux continu
GB1377636A (en) * 1972-11-20 1974-12-18 Secr Defence Combustors
JPS5260323A (en) * 1975-11-14 1977-05-18 Hitachi Ltd Gas-turbine combustor
US5127221A (en) * 1990-05-03 1992-07-07 General Electric Company Transpiration cooled throat section for low nox combustor and related process
DE4034711C1 (en) * 1990-11-01 1992-02-27 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Secondary air feed control for gas turbine burner flame tube - has jacketed tube with spherical surface in region with air ports with throttle ring
FR2674317B1 (fr) * 1991-03-20 1993-05-28 Snecma Chambre de combustion de turbomachine comportant un reglage du debit de comburant.
KR930013441A (ko) * 1991-12-18 1993-07-21 아더 엠.킹 다수의 연소기들을 포함한 가스터어빈 연소장치
DE59401177D1 (de) * 1993-04-08 1997-01-16 Abb Management Ag Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung
CH687832A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Brennstoffzufuehreinrichtung fuer Brennkammer.
DE59401018D1 (de) * 1993-04-08 1996-12-19 Abb Management Ag Mischkammer
DE59402803D1 (de) * 1993-04-08 1997-06-26 Asea Brown Boveri Brennkammer
DE4417538A1 (de) * 1994-05-19 1995-11-23 Abb Management Ag Brennkammer mit Selbstzündung
DE4426351B4 (de) * 1994-07-25 2006-04-06 Alstom Brennkammer für eine Gasturbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292801A (en) * 1979-07-11 1981-10-06 General Electric Company Dual stage-dual mode low nox combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12123596B2 (en) 2021-07-29 2024-10-22 General Electric Company Mixer vanes

Also Published As

Publication number Publication date
DE19520291A1 (de) 1996-12-05
JPH0914603A (ja) 1997-01-17
CN1244766C (zh) 2006-03-08
DE59611488D1 (de) 2008-12-24
US5735126A (en) 1998-04-07
EP0745809A1 (fr) 1996-12-04
CN1160150A (zh) 1997-09-24

Similar Documents

Publication Publication Date Title
EP0745809B1 (fr) Générateur de tourbillons pour chambre de combustion
EP0675322B1 (fr) Brûleur à prémélange
EP0687860B1 (fr) Chambre de combustion à allumage automatique
EP0619456B1 (fr) Système d'alimentation en carburant pour chambre de combustion
EP0718558B1 (fr) Brûleur
DE4426351B4 (de) Brennkammer für eine Gasturbine
DE2338673C2 (de) Nachbrenneranordnung für ein Gasturbinenstrahltriebwerk
EP1141628B1 (fr) Bruleur pour generateur de chaleur
EP0620403B1 (fr) Dispositif de mélange et de stabilisation de la flamme dans une chambre de combustion avec mélange préalable du combustible.
EP0718561B1 (fr) Brûleur
WO1999001643A1 (fr) Partie de paroi d'aube de turbine refroidie par un courant d'impact
EP0775869B1 (fr) Brûleur à prémélange
CH680084A5 (fr)
DE10064264A1 (de) Anordnung zur Kühlung eines Bauteils
EP0851172A2 (fr) Brûleur pour la mise en oeuvre d'une chambre de combustion avec un combustible liquide ou gazeux
EP0483554B1 (fr) Procédé pour la réduction au minimum des émissions de NOx dans une combustion
DE19507088B4 (de) Vormischbrenner
EP0882932B1 (fr) Chambre de combustion
DE4412315A1 (de) Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine
EP0866268B1 (fr) Procédé de fonctionnement d'un brûleur stabilisé par vortex et brûleur mettant en oeuvre le procédé
EP0780628B1 (fr) Brûleur à prémélange pour un générateur de chaleur
EP0866269B1 (fr) Chaudière pour la génération de chaleur
DE3942451C2 (fr)
DE3540942C2 (fr)
CH687827A5 (de) Gasturbinenanlage mit einer Druckwellenmaschine.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

17P Request for examination filed

Effective date: 19970507

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20011123

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59611488

Country of ref document: DE

Date of ref document: 20081224

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20090812

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090517

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081112

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20110725