EP0687860B1 - Chambre de combustion à allumage automatique - Google Patents

Chambre de combustion à allumage automatique Download PDF

Info

Publication number
EP0687860B1
EP0687860B1 EP95810291A EP95810291A EP0687860B1 EP 0687860 B1 EP0687860 B1 EP 0687860B1 EP 95810291 A EP95810291 A EP 95810291A EP 95810291 A EP95810291 A EP 95810291A EP 0687860 B1 EP0687860 B1 EP 0687860B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
duct
flow
fuel
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95810291A
Other languages
German (de)
English (en)
Other versions
EP0687860A2 (fr
EP0687860A3 (fr
Inventor
Rolf Dr. Althaus
Yau-Pin Dr. Chyou
Franz Joos
Jakob J. Prof. Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
ABB Asea Brown Boveri Ltd
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Publication of EP0687860A2 publication Critical patent/EP0687860A2/fr
Publication of EP0687860A3 publication Critical patent/EP0687860A3/fr
Application granted granted Critical
Publication of EP0687860B1 publication Critical patent/EP0687860B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/02Baffles or deflectors for air or combustion products; Flame shields in air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03341Sequential combustion chambers or burners

Definitions

  • the present invention relates to a combustion chamber according to Preamble of claim 1.
  • a supersonic combustion chamber is known from WO 88/08927, in which a main amount of fuel in a premixing zone Supersonic combustion chamber is introduced into a supersonic flow.
  • Combustion chamber can be due to the high Flow rate within the combustion chamber Flashback can be avoided; however are the basic thermodynamic data within one Supersonic burners of a very special nature, and can not readily in general applications Gas turbine combustors are transmitted.
  • WO 088/08927 does not indicate how one is possible uniform mixing of the fuel in the working gas can be reached beforehand, and thereby one stable combustion in a well-defined downstream Ensure pre-mixing zone located combustion zone.
  • the invention seeks to remedy this.
  • the invention as it is characterized in the claims, the Task based on a combustion chamber of the beginning to propose measures mentioned, which a Induce flame stabilization and pollutant emissions minimize.
  • Swirl generators vortex generators
  • a protruding into the channel is suitable for this Fuel lance.
  • a major advantage of the invention is that that the swirl flow originating from the vortex generators on the one hand for a large-scale distribution of the introduced fuel ensures, on the other hand this causes Turbulence a homogenization in the mixture formation of Combustion air with fuel.
  • premixed fuel / air mixtures tend to general to self-ignition, therefore to one Flashback.
  • the fuel is injected behind a narrowing point in the premix channel. This narrowing offers the advantage of being turbulent is reduced by increasing the axial speed, what the danger of a flashback from the Change in the turbulent flame speed minimized.
  • Annular combustion chamber 1 shows, as can be seen from the shaft axis 16, a Annular combustion chamber 1, which is essentially in the form of a coherent has annular or quasi-annular cylinder.
  • a combustion chamber can also be used a number of axially, quasi-axially or helically arranged and individually exist in self-contained combustion chambers.
  • Such ring combustion chambers are excellent as self-igniting combustion chambers to be operated, which in Flow direction between two bearings on a shaft Turbines are placed.
  • the upstream Turbine 2 designed only for a partial relaxation of the hot gases 3, with which the exhaust gases 4 are downstream with this turbine 2 a fairly high temperature in the inflow zone 5 of the annular combustion chamber 1 stream.
  • This inflow zone 5 is on the inside and in the circumferential direction of the channel wall 6 with a series of vortex-generating elements 100, hereinafter only vortex generators called, populated, on which below is discussed in more detail.
  • the exhaust gases 4 are caused by the Vortex generators 100 are twisted in such a way that subsequent pre-mixing section 7 no recirculation areas occur in the wake of the vortex generators 100 mentioned.
  • this premixing section designed as a Venturi channel 7 several fuel lances 8 are planned, which is the supply of fuel 9 and supporting air 10 take over. These fuel lances 8 will be described below discussed in more detail.
  • the feeding of these media to the individual Fuel lances 8, for example, cannot shown ring line can be made.
  • the one from the vortex generators 100 triggered swirl flow ensures a large-scale distribution of the introduced fuel 9, if necessary also the admixed supporting air 10. Furthermore the swirl flow ensures homogenization of the mixture from combustion air and fuel.
  • the one through the Fuel lance 8 fuel 9 injected into the exhaust gases 4 triggers a self-ignition, insofar as these exhaust gases 4 have that specific one Have temperature which is the fuel-dependent Auto ignition can trigger.
  • the premix zone 7 is designed as a venturi channel is, on the other hand by the injection of the fuel 9 in Area of largest constriction in premix zone 7 is scheduled. Due to the restriction in the premix zone 7 becomes turbulence by increasing the axial speed diminishes what the risk of kickback due to the diminution the turbulent flame speed is minimized.
  • the large-scale distribution of the fuel 9 continues to be guaranteed, since the circumferential component of the swirl flow originating from the vortex generators 100 is affected.
  • Behind the relatively short premix zone 7 is followed by a combustion zone 11.
  • the Transition between the two zones is marked by a radial one Cross-sectional jump 12 formed, the flow cross section first the combustion zone 11 induced.
  • the cross-sectional jump 12 also presents a flame front on.
  • the vortex generators 100 designed so that there is no recirculation in the premixing zone 7 takes place; only after the sudden cross-sectional expansion the swirl flow is desired to burst.
  • the Swirl flow supports the quick reinstallation of the Flow behind the cross-sectional jump 12, so that through the full use of the volume of the combustion zone 11 high burnout achieved with a short overall length can be.
  • Forms within this cross-sectional jump 12 there is a flow boundary zone during operation, in which due to the negative pressure prevailing there arise, which then stabilize the Lead flame front.
  • the processed in the combustion zone 11 Exhaust gases 4 to hot gases 14 then act another downstream turbine 14.
  • the exhaust gases 15 can then used to operate a steam cycle in the latter case, the system then is a combination system.
  • a vortex generator 100, 101, 102 essentially consists of three freely flowing triangular surfaces. These are a roof surface 110 and two side surfaces 111 and 113. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the side walls of the vortex generators 100, 101, 102 which preferably consist of right-angled triangles, are fixed with their long sides on the channel wall 6 already mentioned, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle ⁇ .
  • the joint is designed as a sharp connecting edge 116 and is perpendicular to each channel wall 6 with which the side surfaces are flush.
  • the two side surfaces 111, 113 including the arrow angle ⁇ are symmetrical in shape, size and orientation in FIG. 4, they are arranged on both sides of an axis of symmetry 117 which is aligned in the same direction as the channel axis.
  • the roof surface 110 lies against the same channel wall 6 as the side surfaces 111, 113 with a very narrow edge 115 running transversely to the flow channel. Its longitudinal edges 112, 114 are flush with the longitudinal edges of the side surfaces 111 protruding into the flow channel , 113.
  • the roof surface 110 extends at an angle of inclination ⁇ to the channel wall 6, the longitudinal edges 112, 114 of which, together with the connecting edge 116, form a point 118.
  • the vortex generator 100, 101, 102 can also be provided with a bottom surface with which it is attached to the channel wall 6 in a suitable manner. Such a floor area is, however, unrelated to the mode of operation of the element.
  • the mode of operation of the vortex generator 100, 101, 102 is the following: When flowing around edges 112 and 114, the Main flow converted into a pair of counter-rotating vortices, as schematically sketched in the figures.
  • the swirl axes lie in the axis of the main flow.
  • the swirl number and the location of the vortex breakdown (vortex breakdown), if the latter is sought, be replaced by appropriate Choice of the angle of attack ⁇ and the arrow angle ⁇ determined.
  • the vortex strength or the swirl number becomes increased, and the location of the vortex burst shifts upstream into the area of the vortex generator 100, 101, 102 itself.
  • these are two Angle ⁇ and ⁇ through constructional conditions and through predefined the process itself. These have to be adjusted Vortex generators only in terms of length and height, like this below in detail in FIG. 5 for execution will arrive.
  • Fig. 3 is a so-called half "vortex generator" the basis of a vertebrae geneartor shown in FIG. 2.
  • Vortex generator 101 shown here is only one of the two Provide side surfaces with the arrow angle ⁇ / 2.
  • the other Side surface is straight and aligned in the direction of flow.
  • a vortex on the swept side is created here, like this is symbolized in the figure. Accordingly, it is downstream this vortex generator does not have a vortex-neutral field, but instead a swirl is imposed on the current.
  • Fig. 4 differs from Fig. 2 insofar as here the sharp connecting edge 116 of the vortex generator 102 is the point which is affected first by the channel flow becomes. The element is therefore rotated by 180 °. How it can be seen from the illustration that the two have opposite directions Vortex changed their sense of rotation.
  • Fig. 5 shows the basic geometry of one in one Channel 5 built-in vortex generator 100.
  • the influence on the ratio to be chosen of the two heights h / H is the pressure drop, that occurs when the vortex generator 100 flows around. It it goes without saying that with a larger ratio h / H the Pressure loss coefficient increases.
  • the vortex generators 100, 101, 102 are mainly used when it comes to two currents with each other to mix.
  • the main flow 4 in the form of combustion air attacks the transverse edge 115 in the direction of the arrow respectively the connecting edge 116.
  • the secondary flow in Form of a gaseous and / or liquid fuel, the possibly enriched with a proportion of supporting air (cf. Fig. 13), has a substantially smaller mass flow than the mainstream. This secondary flow is in the present Fall downstream of the vortex generator into the main flow initiated, as can be seen particularly well from FIG. 1.
  • FIG. 1 there are four vortex generators 100 distributed at a distance over the circumference of the channel 5.
  • the vortex generators can be in Circumferential direction are also lined up so that none Spaces on the channel wall 6 are left blank.
  • Figures 6-12 show other possible forms of introduction of fuel in combustion air 4. These variants can interact with one another in a variety of ways central fuel injection, such as from 1 emerges can be combined.
  • the fuel is added to channel wall bores 120, which are located downstream of the vortex generators, also injected via wall holes 121, which are immediate next to the side surfaces 111, 113 and in their longitudinal extent are in the same channel wall 6 on which the Vortex generators are arranged.
  • the introduction of fuel through the wall holes 121 gives the generated Whirling an extra impulse, extending the life of the Vortex generator extended.
  • the fuel is passed through a slot 122 or injected via wall holes 123, both precautions immediately in front of the cross-canal extending edge 115 of the roof surface 110 and in the Longitudinal extension in the same channel wall 6 are located on the the vortex generators are arranged.
  • the geometry of the Wall bores 123 or the slot 122 is selected so that the fuel at a certain injection angle into the Main flow 4 is entered and the re-placed vortex generator as a protective film against the hot main flow 4 largely shielded by flow.
  • the secondary flow (See above) first of all via guides not shown through the channel wall 6 into the hollow interior of the vortex generators initiated. In this way, an internal cooling facility for the vortex generators created.
  • the fuel is injected via wall bores 124, which is located directly within the roof area 110 behind and along the one running across the channel Edge 115.
  • the vortex generator is cooled here more external than internal.
  • the emerging secondary flow forms a flow against the roof surface 110 against this hot main flow 4 shielding protective layer.
  • the fuel is injected via wall bores 125, which within the roof surface 110 along the line of symmetry 117 are staggered.
  • the channel walls 6 are particularly good before the hot main flow 4 protected because the fuel is initially on the outer circumference the vertebra is introduced.
  • the injection takes place via wall bores 127, which are in the side surfaces 111 and 113, on the one hand in the area of the longitudinal edges 112 and 114, on the other hand in Area of the connecting edge 116.
  • This variant has a similar effect like those from FIG. 6 (bores 121) and from FIG. 11 (holes 126).
  • FIG. 13 shows an embodiment of a fuel lance 8 in Flow direction 4 and from the front.
  • This lance is for one central fuel injection designed. It is for about 10% of the total volume flow through the channel, where the fuel 9 is injected transversely to the direction of flow. It goes without saying that the fuel can also be injected lengthways be provided in the direction of flow. In this In this case, the injection pulse corresponds approximately to that of the main flow.
  • the injected fuel 9 is in connection with a portion of supporting air 10 over several radial openings 17 entrained by the upstream injected vertebrae and with the main flow 4 is mixed.
  • the injected fuel 9 follows the helical course of the vertebrae (see Fig. 2-4) and becomes uniform downstream of the vortex in the chamber finely divided.
  • Fig. 14 shows a diagram regarding supply of fuel 9 and supporting air 10, and after which the described combustion chamber is approached. This is about starting to create those conditions that are optimal Mixing of the injected fuel with the main flow ensure optimal ignition behavior and optimal combustion in the transient range up to Full load of the combustion chamber.
  • the ordinate Y carries the set of injected media to each other, the abscissa X the load the plant. Now you can see that at the start the amount Support air 10 is maximum; it increases with increasing load Combustion chamber successively decreases while fuel 9 is being injected gradually increases. At full load, the fuel 9 always points still a portion Z of supporting air 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Claims (10)

  1. Chambre de combustion à allumage spontané, qui se compose essentiellement d'une zone d'admission configurée en canal (5) et d'une zone de combustion, dans laquelle les deux zones sont montées l'une derrière l'autre et présentent le même sens d'écoulement, et chambre de combustion dans laquelle une zone de prémélange (7) est disposée en aval de la zone d'admission (5), zone de prémélange dans laquelle un combustible gazeux et/ou liquide (9) peut être injecté sous forme de courant secondaire dans un courant principal gazeux (4), caractérisée en ce que la zone d'admission (5) présente des générateurs de tourbillons (100, 101, 102), dont plusieurs sont disposés les uns à côté des autres sur la périphérie du canal parcouru, et en ce qu'il existe, entre la zone de prémélange (7) et la zone de combustion (11), un saut de section transversale (12), lequel induit la section transversale d'écoulement initiale de la zone de combustion (11).
  2. Chambre de combustion suivant la revendication 1, caractérisée en ce que le combustible (9) est doté d'une fraction d'air d'appoint (10).
  3. Chambre de combustion suivant l'une des revendications 1, 2, caractérisée en ce que la zone de prémélange (7) est un canal en forme de Venturi, et en ce que le combustible (9) peut être injecté par une lance à combustible (8) le long du ou transversalement au courant principal (4) dans la région du plus grand étranglement du canal en forme de Venturi.
  4. Chambre de combustion suivant la revendication 1, caractérisée en ce que la chambre de combustion est une chambre de combustion annulaire (1).
  5. Chambre de combustion suivant la revendication 1, caractérisée en ce qu'un générateur de tourbillons (100) présente trois faces librement balayées, qui s'étendent dans le sens de l'écoulement, dont l'une forme la face de toit (110) et les deux autres les faces latérales (111, 113), en ce que les faces latérales (111, 113) sont jointives à un même segment de paroi du canal (5) et forment entre elles l'angle de flèche (α), en ce que la face de toit (110) s'applique par une arête (115) orientée transversalement au canal parcouru (5) sur le même segment de paroi du canal (6) que les faces latérales (111, 113), et en ce que des arêtes longitudinales (112, 114) de la face de toit (110) sont jointives avec les arêtes longitudinales des faces latérales (111, 113) pénétrant dans le canal (5) et se raccordent avec un angle d'inclinaison () au segment de paroi du canal (5).
  6. Chambre de combustion suivant la revendication 5, caractérisée en ce que les deux faces latérales (111, 113) du générateur de tourbillons (100) formant l'angle de flèche (α) sont disposées symétriquement par rapport à un axe de symétrie (117).
  7. Chambre de combustion suivant la revendication 5, caractérisée en ce que les deux faces latérales (111, 113) formant l'angle de flèche (α, α/2) définissent l'une avec l'autre une arête de liaison (116), qui forme une pointe (118) avec les arêtes longitudinales (112, 114) de la face de toit (110), et en ce que l'arête de liaison (116) se trouve en position radiale dans le canal circulaire (5).
  8. Chambre de combustion suivant la revendication 7, caractérisée en ce que l'arête de liaison (116) et/ou les arêtes longitudinales (112, 114) de la face de toit (110) sont au moins approximativement des arêtes vives.
  9. Chambre de combustion suivant les revendications 5, 6, 7, caractérisée en ce que l'axe de symétrie (117) du générateur de tourbillons (100) est parallèle à l'axe du canal, en ce que l'arête de liaison (116) des deux faces latérales (111, 113) forme l'arête aval du générateur de tourbillons (100), et en ce que l'arête (115) de la face de toit (110) orientée transversalement au canal parcouru (5) est l'arête atteinte en premier lieu par le courant principal (4).
  10. Chambre de combustion suivant la revendication 1, caractérisée en ce que le rapport de la hauteur (h) du générateur de tourbillons à la hauteur (H) du canal (5) est choisi de telle façon que le tourbillon produit immédiatement en aval du générateur de tourbillons (100) remplisse toute la hauteur (H) du canal (5) et toute la hauteur (h) de la partie du canal associée au générateur de tourbillons (100).
EP95810291A 1994-05-19 1995-05-03 Chambre de combustion à allumage automatique Expired - Lifetime EP0687860B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4417538 1994-05-19
DE4417538A DE4417538A1 (de) 1994-05-19 1994-05-19 Brennkammer mit Selbstzündung

Publications (3)

Publication Number Publication Date
EP0687860A2 EP0687860A2 (fr) 1995-12-20
EP0687860A3 EP0687860A3 (fr) 1997-04-23
EP0687860B1 true EP0687860B1 (fr) 2001-02-28

Family

ID=6518482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810291A Expired - Lifetime EP0687860B1 (fr) 1994-05-19 1995-05-03 Chambre de combustion à allumage automatique

Country Status (5)

Country Link
US (1) US5593302A (fr)
EP (1) EP0687860B1 (fr)
JP (1) JP3631802B2 (fr)
CN (1) CN1106531C (fr)
DE (2) DE4417538A1 (fr)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520291A1 (de) * 1995-06-02 1996-12-05 Abb Management Ag Brennkammer
US6105516A (en) * 1998-01-08 2000-08-22 Bowen; Peter Burner nozzle for pulverized coal
DE19948673B4 (de) * 1999-10-08 2009-02-26 Alstom Verfahren zum Erzeugen von heissen Gasen in einer Verbrennungseinrichtung sowie Verbrennungseinrichtung zur Durchführung des Verfahrens
US6450108B2 (en) 2000-03-24 2002-09-17 Praxair Technology, Inc. Fuel and waste fluid combustion system
DE10056243A1 (de) 2000-11-14 2002-05-23 Alstom Switzerland Ltd Brennkammer und Verfahren zum Betrieb dieser Brennkammer
DE10128063A1 (de) * 2001-06-09 2003-01-23 Alstom Switzerland Ltd Brennersystem
DE10210034B4 (de) * 2002-03-07 2009-10-01 Webasto Ag Mobiles Heizgerät mit einer Brennstoffversorgung
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
EP1975506A1 (fr) * 2007-03-30 2008-10-01 Siemens Aktiengesellschaft Pré-chambre de combustion
WO2009109448A1 (fr) * 2008-03-07 2009-09-11 Alstom Technology Ltd Ensemble brûleur et son utilisation
EP2112433A1 (fr) 2008-04-23 2009-10-28 Siemens Aktiengesellschaft Chambre de mélange
EP2116767B1 (fr) * 2008-05-09 2015-11-18 Alstom Technology Ltd Brûleur avec lance
EP2211110B1 (fr) * 2009-01-23 2019-05-01 Ansaldo Energia Switzerland AG Brûleur pour turbine à gaz
EP2230455B1 (fr) * 2009-03-16 2012-04-18 Alstom Technology Ltd Brûleur pour une turbine à gaz et procédé de refroidissement local d'un flux de gaz chauds passant par un brûleur
CN101846315B (zh) * 2009-03-24 2012-07-04 烟台龙源电力技术股份有限公司 煤粉浓缩装置和包含该煤粉浓缩装置的内燃式煤粉燃烧器
EP2261566A1 (fr) * 2009-05-28 2010-12-15 Siemens AG Brûleur et procédé de réduction d'oscillations de flammes à auto-induction dans un brûleur
EP2496884B1 (fr) 2009-11-07 2016-12-28 General Electric Technology GmbH Système d'injection de brûleur de postcombustion
EP2496885B1 (fr) 2009-11-07 2019-05-29 Ansaldo Energia Switzerland AG Brûleur avec un système de refroidissement permettant d'accroître le rendement d'une turbine à gaz
EP2496880B1 (fr) 2009-11-07 2018-12-05 Ansaldo Energia Switzerland AG Système d'injection pour brûleur de réchauffage
EP2496883B1 (fr) * 2009-11-07 2016-08-10 Alstom Technology Ltd Brûleur à prémélange pour chambre de combustion de turbine à gaz
WO2011054757A2 (fr) 2009-11-07 2011-05-12 Alstom Technology Ltd Système d'injection pour brûleur de réchauffage avec lances à combustible
ES2462974T3 (es) 2010-08-16 2014-05-27 Alstom Technology Ltd Quemador de recalentamiento
US9388982B2 (en) * 2010-10-27 2016-07-12 Alstom Technology Ltd Flow deflectors for fuel nozzles
EP2644997A1 (fr) 2012-03-26 2013-10-02 Alstom Technology Ltd Agencement de mélange pour mélanger un combustible avec un flux de gaz contenant de l'oxygène
EP2703721B1 (fr) * 2012-08-31 2019-05-22 Ansaldo Energia IP UK Limited Brûleur à prémélange
EP2775107A1 (fr) 2013-03-06 2014-09-10 Alstom Technology Ltd Procédé pour démarrer une centrale électrique à cycle combiné
EP2894405B1 (fr) * 2014-01-10 2016-11-23 General Electric Technology GmbH Dispositif à combustion séquentielle avec un gaz de dilution
EP3051206B1 (fr) * 2015-01-28 2019-10-30 Ansaldo Energia Switzerland AG Agencement de combustion séquentielle d'une turbine à gaz avec un mélangeur et un amortisseur
CN105180155A (zh) * 2015-10-23 2015-12-23 山东永能节能环保服务股份有限公司 新型高效生物质燃烧器及燃烧工艺
CN106247337A (zh) * 2016-09-28 2016-12-21 中国海洋石油总公司 一种用于天然气直接引射液态液化石油气的增热引射器
GB201806020D0 (en) * 2018-02-23 2018-05-30 Rolls Royce Conduit
ES2939761T3 (es) * 2018-12-21 2023-04-26 Nat Univ Ireland Galway Aparato generador de vórtice
CN109931628B (zh) * 2019-03-27 2020-08-04 北京理工大学 一种基于rde燃烧室的环腔旋流对喷结构
JP7257215B2 (ja) * 2019-03-27 2023-04-13 三菱重工業株式会社 音響ダンパ、燃焼器及びガスタービン

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620362A1 (fr) * 1993-04-08 1994-10-19 ABB Management AG Turbine à gaz

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974646A (en) * 1974-06-11 1976-08-17 United Technologies Corporation Turbofan engine with augmented combustion chamber using vorbix principle
DE3707773C2 (de) * 1987-03-11 1996-09-05 Bbc Brown Boveri & Cie Einrichtung zur Prozesswärmeerzeugung
US4821512A (en) * 1987-05-05 1989-04-18 United Technologies Corporation Piloting igniter for supersonic combustor
CH674561A5 (fr) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
JP2772955B2 (ja) * 1988-07-08 1998-07-09 株式会社日本ケミカル・プラント・コンサルタント 燃焼器用の燃料混合器
JPH02147610U (fr) * 1989-05-11 1990-12-14
US5013236A (en) * 1989-05-22 1991-05-07 Institute Of Gas Technology Ultra-low pollutant emission combustion process and apparatus
CH687831A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Vormischbrenner.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620362A1 (fr) * 1993-04-08 1994-10-19 ABB Management AG Turbine à gaz

Also Published As

Publication number Publication date
US5593302A (en) 1997-01-14
DE59509043D1 (de) 2001-04-05
JP3631802B2 (ja) 2005-03-23
CN1117567A (zh) 1996-02-28
EP0687860A2 (fr) 1995-12-20
CN1106531C (zh) 2003-04-23
DE4417538A1 (de) 1995-11-23
EP0687860A3 (fr) 1997-04-23
JPH07310909A (ja) 1995-11-28

Similar Documents

Publication Publication Date Title
EP0687860B1 (fr) Chambre de combustion à allumage automatique
DE4426351B4 (de) Brennkammer für eine Gasturbine
EP0675322B1 (fr) Brûleur à prémélange
EP1754002B1 (fr) Brûleur étagé à prémélange comprenant in injecteur de carburant liquide
DE2338673C2 (de) Nachbrenneranordnung für ein Gasturbinenstrahltriebwerk
EP0718561B1 (fr) Brûleur
EP1654496B1 (fr) Bruleur et procede pour faire fonctionner une turbine a gaz
EP0718558B1 (fr) Brûleur
DE19510744A1 (de) Brennkammer mit Zweistufenverbrennung
EP0924470B1 (fr) Chambre de combustion à prémélange pour turbine à gaz
EP2257736B1 (fr) Procédé de production de gaz chaud
EP2116766A1 (fr) Lance à combustible
DE19520291A1 (de) Brennkammer
EP1182398A1 (fr) Procédé pour accroítre la stabilité fluidique d'un brûleur de prémélange ainsi que brûleur de prémélange pour mettre en oeuvre le procédé
EP0481111B1 (fr) Chambre de combustion pour turbine à gaz
DE4411623A1 (de) Vormischbrenner
DE19640198A1 (de) Vormischbrenner
EP0777081A2 (fr) Brûleur à prémélange
CH679692A5 (fr)
EP0483554B1 (fr) Procédé pour la réduction au minimum des émissions de NOx dans une combustion
DE19507088B4 (de) Vormischbrenner
DE4242003A1 (de) Prozesswärmeerzeuger
DE4404389A1 (de) Brennkammer mit Selbstzündung
EP2252831B1 (fr) Ensemble brûleur et son utilisation
CH701905A1 (de) Verfahren zum Verbrennen wasserstoffreicher, gasförmiger Brennstoffe in einem Brenner sowie Brenner zur Durchführung des Verfahrens.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19970913

17Q First examination report despatched

Effective date: 19990810

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB (SCHWEIZ) AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 59509043

Country of ref document: DE

Date of ref document: 20010405

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010501

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ALSTOM (SWITZERLAND) LTD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ABB SCHWEIZ HOLDING AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20120709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59509043

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59509043

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM (SWITZERLAND) LTD., CH

Effective date: 20130123

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20130227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140425

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140513

Year of fee payment: 20

Ref country code: FR

Payment date: 20140424

Year of fee payment: 20

Ref country code: IT

Payment date: 20140519

Year of fee payment: 20

Ref country code: DE

Payment date: 20140602

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59509043

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20150503

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150502