EP0740585B1 - Procede et dispositif permettant de traiter des particules transportees par gaz - Google Patents

Procede et dispositif permettant de traiter des particules transportees par gaz Download PDF

Info

Publication number
EP0740585B1
EP0740585B1 EP95906297A EP95906297A EP0740585B1 EP 0740585 B1 EP0740585 B1 EP 0740585B1 EP 95906297 A EP95906297 A EP 95906297A EP 95906297 A EP95906297 A EP 95906297A EP 0740585 B1 EP0740585 B1 EP 0740585B1
Authority
EP
European Patent Office
Prior art keywords
particles
electrodes
flow duct
gas
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95906297A
Other languages
German (de)
English (en)
Other versions
EP0740585A1 (fr
Inventor
Andreas Gutsch
Friedrich LÖFFLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0740585A1 publication Critical patent/EP0740585A1/fr
Application granted granted Critical
Publication of EP0740585B1 publication Critical patent/EP0740585B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • B03C3/0175Amassing particles by electric fields, e.g. agglomeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts

Definitions

  • the invention relates to a method for treating gas-borne Particles, especially for electrically induced agglomeration gas-borne particles according to the preamble of the claim 1 and an apparatus for performing the method according to the preamble of claim 7.
  • Such methods and devices have a whole range of Areas of application.
  • they are in the field of Particle separation used to test the effectiveness of known particle separation processes and devices towards smaller and expand the smallest particles.
  • the desired particle enlargement can be different Way to be achieved.
  • agglomeration techniques also known as “dry” processes known in which the desired agglomeration due to a collision of particles in a fluid Phase.
  • dry processes known in which the desired agglomeration due to a collision of particles in a fluid Phase.
  • a prerequisite for this so-called direct agglomeration is therefore that the individual particles in the fluid phase have a relative speed to one another.
  • This relative speed can be determined by means of thermal and turbulent diffusion or by one induced by force fields Particle movement are generated. Coming as force fields especially heavy fields, centrifugal fields, sound fields or electric fields in question.
  • the advantage of an electric induced agglomeration, d. H. the generation of relative speeds the particles by means of an electric field lies, for example, considerably in comparison to sound fields lower energy requirements, especially in the area small and smallest particles where electrical forces at only low power requirements still have a significant impact on the Exercise particle movements.
  • DE-A-1 407 534 describes one for the separation of particles known from gas streams serving electrostatic precipitators, the ionization electrodes and has deposition electrodes.
  • the ionization electrodes are arranged opposite, needle-shaped Electrodes formed, two opposite each other Ionization electrodes in a separating electrode serving cabbage protrude.
  • For the desired separation of the Particles occur due to a potential difference between the ionization electrodes and the deposition electrode assigned to them, i.e. with this arrangement there is also a unipolar one Charging the particles instead.
  • From US-A-4 734 105 is a method and a Device for separating solid or liquid particles known a gas flow by means of an electrical field.
  • the particle-laden gas flow through a flow channel headed, in which several flat or flat curved Electrode pairs are arranged.
  • At least the main electrodes have needle-shaped projections protruding into the flow channel with spherical or hemispherical tips on which there are corona discharges after application of an electric field and this leads to the ionization of gas molecules.
  • the spherical or hemispherical tips of the needle-shaped Electrode extensions have a diameter that is larger than the diameter of the needle shaft.
  • grid-shaped auxiliary electrodes should be reached be that the area in which the gas is ionized by that area separated in the radial direction of the flow channel is where the particles charged with the help of the gas ions collide.
  • the creation of a strong electric field are made possible by the Solution to the problem identified in US-A-4,734,105 to be achieved, namely in the direction of flow Separation of particles significantly shorten the necessary distance. It is accordingly the one in US Pat. No. 4,734,105 described device for a further developed Electrostatic precipitator.
  • the invention has for its object a method and a device for treating gas-borne particles, in particular for the electrically induced agglomeration of gas-borne Provide particles with which it is possible is an at least almost symmetrically bipolar charged aerosol to provide and at the same time the particle deposition during to minimize deployment.
  • the electrodes must be wired so that they are ungrounded are. Furthermore, it must be ensured that the electrical Field only over the needle-shaped electrodes in the flow channel is coupled and the latter is otherwise free of external electrical fields. Through these measures achieved that the electric field in a spatially limited Area is coupled so that the particle agglomeration takes place mainly in areas where there is no external electric field. In this way prevents it from being reversed in the event of incomplete recombination charged particle to a particle drift in the radial direction of the flow channel and thus for the separation of Particles in the flow channel comes.
  • the method and the device according to the invention are suitable for this are larger and highly unipolar charged, gas-borne Neutralize particles.
  • larger particles are here Particles are meant that are larger than approximately 1 to 2 ⁇ m and in particular are larger than 5 ⁇ m.
  • Charge distribution measurements in the particle size range above about 1.5 ⁇ m have shown that even with bipolar wiring of the electrodes a bipolar charged aerosol is generated.
  • Process and the device according to the invention have been treated are. Due to theoretical considerations actually expects the number of elementary charges to be roughly proportional should be to particle size.
  • a decisive advantage of the method according to the invention or a device according to the invention is in the focusing action of the needle-shaped electrodes can be seen, their opposite Arrangement enables oppositely charged particles in the immediate vicinity and in a spatially limited area Generate area, reducing the agglomeration speed compared to conventional methods or devices is significantly increased and a separation of particles, in particular in the area of the corona electrodes, is greatly reduced.
  • the aerosol flowing through the flow channel is preferred repeatedly bipolar charged in the flow direction the agglomeration of oppositely charged particles charge recombination occurring and a high Ensure collision rate. Due to the repeated bipolar Charging the aerosol can also target the agglomerate size to be influenced. Experiments have shown that the gradual Connection of additional electrode pairs for an additional shift the resulting particle size distribution in areas leads to larger particle sizes. Saturation of the agglomeration effect due to multiple bipolar charging of the Aerosols could not be determined.
  • the wall of the flow channel preferably consists of either electrically insulating plastic or a metal that provided with an electrically insulating coating on the inside is.
  • a device 10 for electrically induced agglomeration gas-borne particles essentially consist of a closed one Flow channel 12 through the in the direction of the arrow Aerosol flows containing gas-borne particles 14 that are solid or can be liquid.
  • the walls of the flow channel 12 d. H. the top surface 16, the bottom surface 18 and the two side surfaces, are made of metal, the inside with an electric insulating coating is provided. They can just as well But walls also made of an electrically insulating plastic consist. Because of the better recognizability it is that Side face of the flow channel 12 facing the observer only shown transparently in the figure.
  • the upper electrodes 20 in FIG. 1 are connected to the positive pole of the DC voltage source, while the opposite, lower electrodes 22 are connected to the negative pole of the DC voltage source.
  • the term "floating" should therefore mean here that none of the Electrodes 20 and 22 are connected to ground, but actually is connected with a plus or minus potential.
  • the DC power source can also be a high voltage AC power source be used.
  • Electrode pairs 20, 22 are in the top surface 16 or the bottom surface 18 with a distance of 10 cm in the flow direction arranged in the middle.
  • the distance at which successive Electrode pairs arranged in the flow direction are from the residence time, the particles 14 between successive pairs of electrodes 20, 22 should have depends on the geometry of the flow channel used and the flow rate of the aerosol. It has found that the dwell time between in the direction of flow successive pairs of electrodes 20, 22 advantageous is in the range of one second.
  • the five pairs of electrodes 20, 22 ensure that the during the residence time of the aerosol taking place in the flow channel 12 Agglomeration of oppositely charged particles and the same Charge recombination occurring, which leads to a reduction of the attractive interaction potential within the particle collective leads, balanced and overcompensated and thus one high collision rate over the entire length of the flow channel 12 is maintained. With targeted overcompensation due to the repeated bipolar charging of the aerosol Agglomerate size in the sense of increasing it to be influenced.
  • Fig. 2 shows the structure of a needle-shaped electrode 20 and their fastening in the top surface 16 more precisely.
  • the electrodes 22 are constructed identically and in the same way in the bottom surface 18 of the flow channel 12 attached.
  • the heart of the electrode 20 is a thin long stainless steel needle 28, at the inner with respect to the flow channel 12 End 26 is formed. On the larger part of the Stainless steel needle 28 has an external thread 30.
  • the part of the needle shaft 31, which is in the operational state in the Flow channel 12 protrudes from an electrical insulation 32 enclosed, which only leaves the tip 26 and thus from the shaft end of the tip 26 to the start of the external thread 30 is enough.
  • the stainless steel needle 28 With its external thread 30, the stainless steel needle 28 is in a Screwed brass sleeve 34, which has a through hole for this 36 with a suitable internal thread 38. At their the End facing the flow channel 12 has the brass sleeve 34 External thread 40, with which it can be screwed into the cover surface 16 is in this a hole with a corresponding internal thread is provided. For easier screwing in of the brass sleeve 34 is a mouth or at its end facing away from the flow channel 12. Ring wrench attachment 42 formed.
  • the electrical connection of the electrode 20 takes place by means of a another sleeve 44, which also has a through hole with a internal thread matching the external thread 30 of the stainless steel needle 28 having.
  • This sleeve 44 which with the not shown here Line 24 is connected to the part of the external thread 30 screwed out of the brass sleeve 34 protrudes.
  • a handle attached to the sleeve 44 called that at the same time for electrical insulation serves.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrostatic Separation (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Claims (18)

  1. Procédé de traitement de particules supportées par gaz en particulier pour l'agglomération induite électriquement de telles particules, comprenant les opérations consistant à :
    canaliser un courant de gaz chargé en particules à travers un conduit d'écoulement fermé;
    encoupler dans le conduit d'écoulement un champ électrique qui soit approprié pour ioniser le gaz s'écoulant dans le conduit d'écoulement au moyen d'au moins une paire d'électrodes,
    caractérisé par
    l'ionisation du gaz entres des électrodes en forme d'aiguilles, se faisant face radialement dans le conduit d'écoulement, montées sans être reliées à la terre, de polarités opposées, ce qui provoque une agglomération des particules dans le conduit d'écoulement principalement dans des zones sans champ électrique extérieur.
  2. Procédé selon la revendication 1,
    caractérisé en ce que les particules sont chargées de façon bipolaire presque symétrique.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que les particules sont chargées de façon répétée de façon bipolaire dans la direction de l'écoulement.
  4. Procédé selon l'une quelconque des revendications 1 à 3,
    caractérisé en ce que la charge des particules a lieu dans le champ de tension continue.
  5. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que le champ électrique est focalisé dans une région très étroitement délimitée dans l'espace entre les pointes des électrodes en forme d'aiguilles.
  6. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que les particules à charger sont plus petites que 1 µm, de préférence plus petites que 0,5 µm et en particulier plus petites que 0,1 µm.
  7. Dispositif pour mettre en oeuvre le procédé selon l'une quelconque des revendications 1 à 6, comprenant un conduit d'écoulement fermé (12) et plusieurs électrodes (20, 22) disposées à l'intérieur de celui-ci, qui sont toutes en forme d'aiguille et sont isolées par rapport à la paroi du conduit d'écoulement et qui se font face radialement par paires dans le conduit d'écoulement (12) et comprenant une source de courant qui est reliée aux électrodes (20, 22) et dont la puissance suffit pour engendrer entre les électrodes (20, 22) montées sans être mises à la terre de polarités opposées de chaque paire d'électrodes (20 et 22) des décharges en couronne.
  8. Dispositif selon la revendication 7,
    caractérisé en ce que le rapport de potentiel s'appliquant entre les électrodes (20, 22) se faisant face est au moins approximativement symétrique.
  9. Dispositif selon la revendication 7 ou 8,
    caractérisé en ce que plusieurs paires d'électrodes (20, 22) sont disposées les unes derrière les autres dans le conduit d'écoulement (12) dans la direction de l'écoulement.
  10. Dispositif selon l'une quelconque des revendications 7 à 9,
    caractérisé en ce que la source de courant est une source de courant continu à haute tension.
  11. Dispositif selon l'une quelconque des revendications 7 à 10,
    caractérisé en ce que le talon d'aiguille (31) de chaque électrode (20 et 22) est entouré par une isolation électrique (32).
  12. Dispositif selon l'une quelconque des revendications 9 à 11,
    caractérisé en ce que les paires d'électrodes (20, 22) sont disposées avec un écartement d'au moins environ 10 cm dans la direction de l'écoulement.
  13. Dispositif selon l'une quelconque des revendications 7 à 12,
    caractérisé en ce que les pointes (26) se faisant face de chaque paire d'électrodes (20, 22) présentent un écartement l'une de l'autre situe dans la plage allant de 10 mm à 40 mm.
  14. Dispositif selon l'une quelconque des revendications 7 à 13,
    caractérisé en ce que les électrodes (20 et 22) sont fixées dans la paroi du conduit au moyen de deux manchons (34, 44).
  15. Dispositif selon l'une quelconque des revendications 7 à 14,
    caractérisé en ce que la paroi du conduit est en une matière synthétique électriquement isolante.
  16. Dispositif selon l'une quelconque des revendications 7 à 14,
    caractérisé en ce que la paroi du conduit est en métal et est pourvue intérieurement d'un revêtement électriquement isolant.
  17. Utilisation d'un dispositif selon l'une quelconque des revendications 7 à 16 pour neutraliser des particules supportées par gaz fortement chargées de façon unipolaire.
  18. Utilisation selon la revendication 17,
    caractérisée en ce que les particules sont plus grandes que 1,5 µm, de préférence plus grandes que 2 µm et en particulier plus grandes que 5 µm.
EP95906297A 1994-01-13 1995-01-04 Procede et dispositif permettant de traiter des particules transportees par gaz Expired - Lifetime EP0740585B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4400827 1994-01-13
DE4400827A DE4400827C1 (de) 1994-01-13 1994-01-13 Verfahren und Vorrichtung zur elektrisch induzierten Agglomeration gasgetragener Partikeln
PCT/EP1995/000026 WO1995019226A1 (fr) 1994-01-13 1995-01-04 Procede et dispositif permettant de traiter des particules transportees par gaz

Publications (2)

Publication Number Publication Date
EP0740585A1 EP0740585A1 (fr) 1996-11-06
EP0740585B1 true EP0740585B1 (fr) 1998-08-05

Family

ID=6507853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95906297A Expired - Lifetime EP0740585B1 (fr) 1994-01-13 1995-01-04 Procede et dispositif permettant de traiter des particules transportees par gaz

Country Status (10)

Country Link
US (1) US5824137A (fr)
EP (1) EP0740585B1 (fr)
JP (1) JP3115326B2 (fr)
AT (1) ATE169246T1 (fr)
BR (1) BR9506491A (fr)
CA (1) CA2181138A1 (fr)
DE (2) DE4400827C1 (fr)
ES (1) ES2120723T3 (fr)
WO (1) WO1995019226A1 (fr)
ZA (1) ZA95276B (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004375A (en) * 1994-01-13 1999-12-21 Gutsch; Andreas Process and apparatus to treat gasborne particles
GB9605574D0 (en) * 1996-03-16 1996-05-15 Mountain Breeze Ltd Treatment of particulate pollutants
DE19615111A1 (de) * 1996-04-17 1997-10-23 Degussa Oxide
US6228149B1 (en) 1999-01-20 2001-05-08 Patterson Technique, Inc. Method and apparatus for moving, filtering and ionizing air
US6482253B1 (en) * 1999-09-29 2002-11-19 John P. Dunn Powder charging apparatus
FR2818451B1 (fr) * 2000-12-18 2007-04-20 Jean Marie Billiotte Dispositif electrostatique d'emission ionique pour deposer une quantite quasi homogene d'ions sur la surface d'une multitude de particules aerosols au sein d'un fluide en mouvement.
US6589314B1 (en) 2001-12-06 2003-07-08 Midwest Research Institute Method and apparatus for agglomeration
JP4409516B2 (ja) * 2006-01-16 2010-02-03 財団法人大阪産業振興機構 帯電ナノ粒子製造方法及び帯電ナノ粒子製造システム並びに帯電ナノ粒子堆積システム
US8167984B1 (en) 2008-03-28 2012-05-01 Rogers Jr Gilman H Multistage electrically charged agglomeration system
DE102009021631B3 (de) * 2009-05-16 2010-12-02 Gip Messinstrumente Gmbh Verfahren und Vorrichtung zur Erzeugung einer bipolaren Ionenatmosphäre mittels elektrischer Sperrschichtentladung
KR101917589B1 (ko) 2011-10-24 2018-11-13 아디트야 비를라 누보 리미티드 카본 블랙의 제조를 위한 개선된 방법
EP2772309B1 (fr) 2013-03-01 2015-06-03 Brandenburgische Technische Universität Cottbus-Senftenberg Dispositif de séparation de particules à partir d'un flux de gaz chargé de particules et procédé
CN109387463A (zh) * 2017-08-08 2019-02-26 财团法人交大思源基金会 可防止采样误差的高效率静电微粒液相采样器
CN107626452A (zh) * 2017-10-11 2018-01-26 江苏中建材环保研究院有限公司 一种湿式电除尘器用预荷电式整流格栅
DE102018205332A1 (de) * 2018-04-10 2019-10-10 BSH Hausgeräte GmbH Elektrostatische Filtereinheit und Lüftungsvorrichtung mit elektrostatischer Filtereinheit
US11772103B2 (en) * 2020-03-27 2023-10-03 Praan Inc. Filter-less intelligent air purification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1407534A1 (de) * 1960-09-21 1969-04-10 G A Messen Jaschin Fa Elektrofilter

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE144509C (fr) *
US1962555A (en) * 1931-07-09 1934-06-12 Int Precipitation Co Method and apparatus for electrical precipitations
US2758666A (en) * 1952-04-10 1956-08-14 Phillips Petroleum Co Carbon black separation
FR1379191A (fr) * 1963-12-11 1964-11-20 Trion Procédé et dispositif d'ionisation de particules en suspension dans un courant degaz
US3768258A (en) * 1971-05-13 1973-10-30 Consan Pacific Inc Polluting fume abatement apparatus
US3826063A (en) * 1973-05-21 1974-07-30 T Festner Electrostatic agglomeration apparatus
US4071688A (en) * 1976-08-18 1978-01-31 Uop Inc. Method and article for protecting a precipitator discharge electrode
DE2646798C2 (de) * 1976-10-16 1982-12-16 Haug & Co KG, 7022 Leinfelden-Echterdingen Vorrichtung zur elektrischen Aufladung von flüssigen oder festen Teilchen in einem Gas-, insbesondere Luftstrom und Aufbringung der geladenen Teilchen auf Oberflächen
JPS5364878A (en) * 1976-11-19 1978-06-09 Matsushita Electric Ind Co Ltd Electric dust collector
US4391614A (en) * 1981-11-16 1983-07-05 Kelsey-Hayes Company Method and apparatus for preventing lubricant flow from a vacuum source to a vacuum chamber
US4477263A (en) * 1982-06-28 1984-10-16 Shaver John D Apparatus and method for neutralizing static electric charges in sensitive manufacturing areas
ATE40302T1 (de) * 1984-12-21 1989-02-15 Bbc Brown Boveri & Cie Verfahren und vorrichtung zur entstaubung eines feste oder fluessige partikel in suspension enthaltenden gasstromes mittels eines elektrischen feldes.
US4670026A (en) * 1986-02-18 1987-06-02 Desert Technology, Inc. Method and apparatus for electrostatic extraction of droplets from gaseous medium
DE3737343A1 (de) * 1986-11-18 1988-05-26 Bbc Brown Boveri & Cie Vorrichtung zur konzentration und agglomeration von in einem gasstrom suspendierten festen oder fluessigen partikeln
JP3066833B2 (ja) * 1989-09-08 2000-07-17 高砂熱学工業株式会社 空気清浄装置、空気清浄方法及びクリーンルーム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1407534A1 (de) * 1960-09-21 1969-04-10 G A Messen Jaschin Fa Elektrofilter

Also Published As

Publication number Publication date
CA2181138A1 (fr) 1995-07-20
DE4400827C1 (de) 1995-04-20
JP3115326B2 (ja) 2000-12-04
US5824137A (en) 1998-10-20
ES2120723T3 (es) 1998-11-01
DE59503073D1 (de) 1998-09-10
ZA95276B (en) 1995-09-21
WO1995019226A1 (fr) 1995-07-20
EP0740585A1 (fr) 1996-11-06
JPH09507429A (ja) 1997-07-29
ATE169246T1 (de) 1998-08-15
BR9506491A (pt) 1997-10-07
MX9602771A (es) 1998-06-28

Similar Documents

Publication Publication Date Title
EP0740585B1 (fr) Procede et dispositif permettant de traiter des particules transportees par gaz
DE3234100C2 (de) Plasmalichtbogeneinrichtung zum Auftragen von Überzügen
DE2646798C2 (de) Vorrichtung zur elektrischen Aufladung von flüssigen oder festen Teilchen in einem Gas-, insbesondere Luftstrom und Aufbringung der geladenen Teilchen auf Oberflächen
DD281892A5 (de) Vorrichtung zum transport von luft
CH625974A5 (fr)
DD271611A3 (de) Spruehpistole mit elektrokinetischer pulveraufladung
DE3238793C2 (de) Verfahren und Vorrichtung zum Reinigen von Gasen
WO2006074888A1 (fr) Procede et dispositif pour charger electrostatiquement et separer des particules difficiles a separer
DE3314168C2 (de) Verfahren und Vorrichtung zum Reinigen von Gasen von elektrisch leitfähigen Partikeln
EP0238970B1 (fr) Procédé et dispositif pour l'agglomération de particules solides ou fluides en suspension dans un courant gazeux, chargées électriquement de polarité opposée
DE3121054C2 (de) "Verfahren und Vorrichtung zur elektrostatischen Staubabscheidung
EP2284442A2 (fr) Séparateur électrostatique et système de chauffage
DE3609698A1 (de) Vorrichtung und verfahren zur ionisierung oder neutralisation eines gasstroms und der in ihm enthaltenen partikel
DE2151220C3 (de) Vorrichtung zur elektrostatischen Aufladung und Abscheidung von Masseteilchen
EP0715894A1 (fr) Installation de filtrage électrostatique
DE102008028166A1 (de) Vorrichtung zur Erzeugung eines Plasma-Jets
DE2326432A1 (de) Verfahren und vorrichtung zur aufbereitung von gasen oder daempfen
DE10014663A1 (de) Elektrostatische Trennvorrichtung
CH617363A5 (en) Method and apparatus for the electrostatic precipitation of particles from a gaseous medium
DE1557087A1 (de) Elektrostatische Vorrichtung zum Ausfaellen
CH620057A5 (en) Device for ionising gases
DE102005013987B3 (de) Vorrichtung zur Neutralisierung elektrisch geladener Teilchen
DE1757115A1 (de) Elektro-aerodynamische Ausfaellvorrichtung
DE2632233A1 (de) Verfahren und vorrichtung zur aufbereitung von gasen oder daempfen
AT34994B (de) Verfahren und Vorrichtung zur Erzeugung eines explodierbaren Gemenges für Maschinen mit innerer Verbrennung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971209

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

REF Corresponds to:

Ref document number: 169246

Country of ref document: AT

Date of ref document: 19980815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980810

REF Corresponds to:

Ref document number: 59503073

Country of ref document: DE

Date of ref document: 19980910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120723

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19981022

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000103

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000120

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20000124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000125

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010105

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010131

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801

EUG Se: european patent has lapsed

Ref document number: 95906297.7

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010801

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

BERE Be: lapsed

Owner name: GUTSCH ANDREAS

Effective date: 20020131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020916

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030131

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050104