EP0738826B1 - Dispositif hydraulique à pistons différentiels et son application à une commande à poussée variable - Google Patents

Dispositif hydraulique à pistons différentiels et son application à une commande à poussée variable Download PDF

Info

Publication number
EP0738826B1
EP0738826B1 EP95810254A EP95810254A EP0738826B1 EP 0738826 B1 EP0738826 B1 EP 0738826B1 EP 95810254 A EP95810254 A EP 95810254A EP 95810254 A EP95810254 A EP 95810254A EP 0738826 B1 EP0738826 B1 EP 0738826B1
Authority
EP
European Patent Office
Prior art keywords
pistons
hydraulic fluid
piston
accordance
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95810254A
Other languages
German (de)
English (en)
Other versions
EP0738826A1 (fr
Inventor
Alfred Franz Wunder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wartsila NSD Schweiz AG
Original Assignee
Wartsila NSD Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wartsila NSD Schweiz AG filed Critical Wartsila NSD Schweiz AG
Priority to DK95810254T priority Critical patent/DK0738826T3/da
Priority to DE59508878T priority patent/DE59508878D1/de
Priority to EP95810254A priority patent/EP0738826B1/fr
Priority to KR1019960010534A priority patent/KR100380568B1/ko
Priority to JP08920696A priority patent/JP4164132B2/ja
Priority to CN96105060A priority patent/CN1088150C/zh
Publication of EP0738826A1 publication Critical patent/EP0738826A1/fr
Application granted granted Critical
Publication of EP0738826B1 publication Critical patent/EP0738826B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/17Characterised by the construction of the motor unit of the straight-cylinder type of differential-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic

Definitions

  • the invention relates to a hydraulic Step piston arrangement according to the preamble of the claim 1, as well a procedure for operating the Step piston arrangement.
  • Step pistons are known in hydraulic drive technology as pistons or piston systems, in which pistons with different cross-sectional areas are connected to a hydraulic fluid which is under a hydrostatic pressure P.
  • the coupling between the pistons is a force coupling.
  • the force coupling is achieved with the aid of a pressure cell filled with a hydraulic fluid, in that the pistons act on the hydraulic fluid in such a way that each of the pistons is displaced in the direction of the hydraulic fluid perpendicular to the cross-sectional areas. Since all pistons are exposed to the same hydrostatic pressure in the pressure cell, which is mediated by the hydraulic fluid, the pressure cell serves to transmit power between the pistons.
  • the hydraulic ratio is used to convert forces while maintaining mechanical energy, with the hydraulics establishing a non-positive connection between the pistons.
  • a typical application of hydraulic translation is the amplification of forces by transferring a force from one piston to another piston with a larger cross-sectional area, e.g. B. in a hydraulic press.
  • step piston is a Drive with a variable thrust, being used to generate the thrust is a hydraulic fluid that is under is a predetermined pressure P.
  • the variable thrust z. B. achieved by using several pistons different cross-sectional area rigid with each other be coupled and successively different Hydraulic fluid is applied to piston surfaces are or decoupled from the hydraulic fluid become. According to this principle, z. B.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, solves the Task, a hydraulic step piston assembly with a simplified control to implement any Force into a time variable force, a drive on the basis of this step piston arrangement, a method for Operation of this drive and one operated with the drive To create valve of an internal combustion engine.
  • a hydraulic step piston arrangement contains two guided Pistons of different cross-section, which pistons themselves touch in one position on their end faces, one with a hydraulic fluid filled pressure cell for Power transmission between the two pistons and means for Change in the amount of hydraulic fluid in the Pressure cell.
  • the amount of hydraulic fluid in the The pressure cell can be changed so that the two pistons touching on a first section of their movement remain and as a second section of their movement act hydraulic translation.
  • this arrangement can be operated that they exert a predetermined force on you when feeding first piston into a force on a second piston converts their strength on two different sections the movement is different, the change in force is achieved by one of a control device controlled switching of the type of coupling between the two pistons from a positive coupling, at which is essentially the force on the first piston is completely transferred to the second piston a frictional coupling in the form of a hydraulic Translation, the cross-sectional areas of the two Pistons determine the factor by which the force is modified is transferred from the first to the second piston.
  • Control device can be realized without elements that be activated separately by suitable control commands have to.
  • the Control device alone the position of a piston the character of the power transmission between the two Piston.
  • Another advantage of this principle is that Possibility of cascades from more than 2 independently movable Coupling pistons together. So in principle one can Drive to be created with no further active Controls a force while feeding into one Force with any number of discrete, from the position of one Piston dependent values is converted.
  • drives with the hydraulic stepped piston arrangement according to the invention consisting of a first and a second piston are considered, the first piston 9 (in FIG. 1) and 10 (in FIG. 2) having a larger cross-sectional diameter (A 1 ) than the second Piston 11 (A 2 ) and a force F 1 on the first piston when the first piston is fed in the direction of the force F 1 is converted into a force F 2 .
  • the force F 2 serves to counteract a force F 3 ( ⁇ F 2 ), which is generated by an unspecified device 40 and which in turn acts on the second piston, in an application not specified here.
  • the two pistons in FIGS. 1 and 2 move essentially in the same direction and the coupling of the two pistons is controlled such that the two pistons touch on their end faces on a first part of the movement.
  • the two pistons work together as a hydraulic transmission.
  • Such an arrangement is suitable for ensuring a feed with a counterforce F 3 (see above), which is reduced in magnitude in the ratio A 2 / A 1 during the feed.
  • FIG. 1A-D illustrate the basic principle of the invention based on four characteristic positions of the two pistons during the feed and during the return movement of the Pistons in their starting position.
  • the FIG. 1A-D show the Piston arrangement in longitudinal section.
  • the pistons 9, 11 point the shape of a straight cylinder (9) or two in Direction of the cylinder axes of connected cylinders (11).
  • a Guide member 15 is provided for the two pistons, wherein the management body has a first and a second sub-segment 15a, 15b, the first sub-segment 15a Direction of movement of the first piston 9 and the second Sub-segment 15b the direction of movement of the second piston 11 defined and the sub-segments dimensioned and so are arranged so that the two pistons in one Touch the basic position on their end faces 9b and 11a can.
  • the sub-segments 15a, 15b have the shape of Hollow cylinders, the interior of which is form-fitting to the jacket 9c and 11c of the pistons 9 and 11 is adjusted so that the Guide member 15 the directions of movement of the pistons parallel to the inner walls of the subsegments, d. H. in the y direction, specifies.
  • the directions of movement of the two pistons identical.
  • FIG. 1A indicates the basic position of the drive.
  • the second piston 11 is displaced in the y direction in such a way that it projects into the partial segment 15a over part of its length and its end face 11a touches the end face 9b of the first piston.
  • the guide member 15 is designed such that, together with the end faces 11a and 9b, it delimits a cavity 30 between the two pistons. This cavity is filled with a hydraulic fluid.
  • a reservoir 21 is provided for filling the cavity with hydraulic fluid, from which hydraulic fluid can be introduced into the cavity 30 via the channel 26 in the vicinity of the connecting wall 15c.
  • Channel 26 is set up as a one-way line for the hydraulic fluid by conventional means such as a check valve.
  • a constant force F 1 is generated in the negative y direction on the first piston 9 by means of a conventional device 5 for generating a force (e.g. a mechanical lever, a hydraulic press). Without displacement of the hydraulic fluid from the cavity 30, the two pistons 9 and 11 would act as a hydraulic transmission, which would force F 1 by the factor A 2 / A 1 (A 1 : cross-sectional area of the cavity 30 perpendicular to the y-axis in the area of the partial segment 15a; A 2 : The cross-sectional area of the cavity 30 perpendicular to the y-axis in the region of the partial segment 15b) is converted into the force F 2 on the second piston, the pistons separating in accordance with the above-mentioned law.
  • a 1 cross-sectional area of the cavity 30 perpendicular to the y-axis in the area of the partial segment 15a
  • a 2 The cross-sectional area of the cavity 30 perpendicular to the y-axis in the region of the partial segment 15b
  • the controlled switching according to the invention between a positive coupling between the first piston 9 and the second piston 11, as shown in the basic position according to FIG. 1A is realized, and a force-locking coupling in the form of a hydraulic transmission ratio is achieved by displacing the hydraulic fluid from the cavity 30 on a first section of the movement of the first piston from the basic position and on a second section of the Movement the displacement of the hydraulic fluid from the cavity 30 is prevented.
  • This controlled displacement ensures that on the first part of the movement the two pistons on the end faces 9b and 11a remain in contact and thus the force in the direction of movement is completely transmitted from the first piston 9 to the second piston 11, while the effect of the hydraulic translation only unfolds on the second section of the movement.
  • a control device for realizing this controlled switching shows the arrangement in FIG.
  • the wall of the guide member 15 has an opening through which hydraulic fluid can be displaced into the reservoir 20 via the channel 25, the first piston 9 serving as a flow barrier for the channel 25.
  • the effect of the hydraulic transmission is only put into effect when the outer surface 9c of the first piston 9 closes the inflow to the channel 25 and the reservoir 20.
  • the positioning and dimensioning of the opening to the channel 25 thus determines the parts of the movement mentioned, on which the two pistons are either in contact at their end faces (FIG. 1A and 1B) or act like a hydraulic transmission (FIG. 1C).
  • hydraulic fluid flows from the reservoirs 21 and / or 20 into the cavity 30.
  • the inflow from the reservoir 20 is only possible when the opening to the channel 25 is no longer covered by the lateral surface 9c of the first piston.
  • the inflow of hydraulic fluid from the reservoir 20 or 21 can be realized particularly simply in that the reservoir and cavity are designed as a communicating system for the hydraulic fluid. B. due to a pressure gradient or gravity hydraulic fluid flows into the cavity until it is filled.
  • the position s of the first piston 9, at which the displacement of hydraulic fluid from the cavity 30 is prevented and the hydraulic transmission is activated determined by the arrangement of the opening in the guide element which forms the access to the channel 25.
  • the arrangement in FIG. 1 can easily be modified so that the hydraulic ratio can be activated at any position s in the range 0 ⁇ s ⁇ s max .
  • This goal is achieved in that instead of channel 25 in FIG. 1, a connecting channel is created between the cavity 30 and the reservoir 20, which channel is accessible to the hydraulic fluid in the cavity 30 regardless of the position s, but which can be opened or blocked with a controllable valve depending on the position s. In this way, the position s at which the hydraulic transmission is activated can be regulated.
  • a channel opening, which enables a connection to the cavity 30 regardless of the position s, z. B. be installed at the transition between the connecting wall 15c and the sub-segment 15b.
  • FIG. 2 shows a special embodiment of the drive according to the invention in FIG. 1.
  • the arrangement in FIG. 2 is a special embodiment of the drive in FIG. 1 such that the device 5 is designed as a hydraulic system.
  • the special design of the device 5 as hydraulic system requires the installation of additional Elements on the management body 15. Furthermore, the first Piston 9 replaced by a modified piston 10 to to enable the power transmission to the first piston and a control of the movement sequence of the pistons 10, 11 to realize.
  • the arrangement in FIG. 2 a hydraulic braking device that ensures that the speed of the pistons is throttled when the Position s of the first piston has a lower limit falls below or exceeds an upper limit; on this way the impact of the pistons on fixed Limiting elements damped and a low-wear Operation of the drive guaranteed.
  • the force F 1 is transmitted hydraulically as a pressure force to the end face 10a of the piston 10 facing away from the second piston 11.
  • a pressure chamber 80 is set up as a device for generating the pressure force, which is formed by the end face 10a of the first piston, the wall of the partial segment 15a and the boundary wall 16 is formed and serves to hold a hydraulic fluid.
  • the hydraulic fluid is supplied under pressure P 1 by means of a supply system, which includes the reservoir 60 for hydraulic fluid and the connecting channels 53 and 51, under the control of the control unit 70 through the opening 51a.
  • a controlled drain is provided for draining the hydraulic fluid from the pressure chamber 80: likewise under the control of the control unit 70, the hydraulic fluid can flow via the connecting channels 52 and 54 into a reservoir 61 which is under the internal pressure P 2 ⁇ P 1 .
  • the inflow or outflow of hydraulic fluid is controlled with the aid of a control valve 50, which is controlled by the control unit 70 by means of the communication interface 71.
  • the control valve is designed as a slide valve, which either enables the inflow of hydraulic fluid from the reservoir 60 into the pressure chamber and at the same time prevents the outflow into the reservoir 61 or vice versa: for this purpose, connecting members 50a and 50b are synchronously used as controllable connections between the connecting channels 53 and 51 or the connecting channels 52 and 54 are pushed, the connecting element 50a isolating the connected connecting channels from one another and the connecting element 50b realizing an open connection between the connected connecting channels, which the flow of hydraulic fluid in the in FIG. 2 permitted by an arrow.
  • FIG. 2A-C identifies the Position of the elements of the drive during the movement of the Pistons 10, 11 from a basic position in which the distance s given by the position of the boundary wall 16 Assumes maximum value (FIG. 2A) and the two pistons 10 and 11 touch on the end faces 10b and 11a, in one End position (FIG. 2C) in which the distance s is one Assumes minimum value.
  • FIG. 2D describes the drive during the return movement of the pistons from the end position to the Basic position according to FIG. 2A.
  • FIG. 1X and 2X (X A, B, C, D) thus show equivalent states of motion.
  • connection channels 51 and 53 connects the connection channels 51 and 53 at this stage and prevents the outflow of hydraulic fluid by it isolates the connecting channels 52 and 54 from each other.
  • the two through channels each connect between an opening on the opening 51a facing part of the lateral surface 10c of the piston 10 and an opening in the end face 10a.
  • the two Through channels have different Cross-sectional areas and thus offer different Flow resistances for the hydraulic fluid. They are arranged so that at the beginning of the movement of the first Piston only the passage 12 with the larger one Cross-sectional area a connection between the opening 51 a and the pressure chamber 80 (see FIG. 2C-D). This Connection only lasts as long as during the Feed the first piston 10 with the inlet opening 12a of the opening 51a overlaps.
  • the second through channel 13 is set up so that when the first Piston from the moment at which the input opening 12a no longer overlaps the opening 51a, the connection between the connecting channel 51 and the pressure chamber 80 produces (FIG. 2B, C). Since the second through channel 13 has a smaller cross-sectional area than the first Through channel, it reduces the inflow of Hydraulic fluid to the pressure chamber 80 per unit time compared to the basic position shown in FIG. 2A. Since the Speed of the first piston when feeding is greater, the greater the per unit time in the Pressure chamber 80 is flowing amount of hydraulic fluid, the above-mentioned braking effect is achieved in this way, if the distance s is reduced to less than one certain, from the positioning and dimensioning of the Through channels and the opening 51a certain distance.
  • channels 25 and 26 are not to different reservoirs as shown in FIG. 1 (Reservoirs 20, 21), they rather have channel 28 Connection to a common reservoir 29 for the Hydraulic fluid. Since channel 26 in FIG. 1 and FIG. 2nd exclusively the filling of the cavity 30 with Hydraulic fluid is used and a displacement of Hydraulic fluid through the channel 26 with the function of the drive is not compatible, is shown in FIG. 2 between Channel 26 and channel 28 installed a check valve 27.
  • channel 26 is both in FIG. 1 as well as in FIG. 2 as a one-way line for hydraulic fluid designed.
  • a free bidirectional exchange of Hydraulic fluid between the reservoir 29 and the Cavity 30 is only possible via the channel 25.
  • the Flow direction of hydraulic fluid in the channels 25 and 26 is for the different positions of the actuator in FIG. 2 marked by arrows.
  • the first piston 10 in FIG. 2 has a braking device which determines the speed of the pistons during the return movement from the end position according to FIG. 2C in the basic position according to FIG. 2A is slowed down shortly before reaching the end position and is organized according to a similar principle as the braking during feed already dealt with: As shown in FIG. 2D compared to FIG.
  • the braking takes place during the return movement by reducing the hydraulic fluid displaced per unit of time from the pressure chamber 80 via the connecting channel 52, the opened control valve 50, the connecting channel 54 into the reservoir 61.
  • the displacement of hydraulic fluid from the pressure chamber 80 is limited by the part of the area of the passage opening in the partial segment 15a between the pressure chamber 80 and the connecting channel 52 which is not covered by the lateral surface 10c of the first piston.
  • the flow of hydraulic fluid for this situation is shown in FIG. 2D represented by arrows in the connecting channel 52.
  • this current is reduced and finally prevented when the lateral surface 10c covers the opening to the channel 52.
  • a through-channel 14 is installed in the first piston 10, which has the end face 10a and the outer surface 10c of the first piston 10 connects in such a way that hydraulic fluid always passes from the pressure chamber 80 into the connection channel 52 via the passage channel 14 when the volume of the pressure chamber falls below a predetermined limit and without such a passage channel 14 the piston itself provides access to the connection channel 52 would be blocked.
  • the cross section of the through-channel By suitably dimensioning the cross section of the through-channel, the amount of hydraulic fluid displaced per unit of time from the pressure chamber 80 and thus the speed of the pistons 10 and 11 on the last piece of the return movement into the basic position of the drive can be determined.
  • An obvious application of a drive according to FIG. 2 is the actuation of a valve of an internal combustion engine (e.g. a cylinder intake or exhaust valve) with a counterforce that changes over time.
  • a valve of an internal combustion engine e.g. a cylinder intake or exhaust valve
  • An example is an exhaust valve on the cylinder of an internal combustion engine, in which the valve needle has to be displaced when the valve is opened against the force due to the gas pressure prevailing in the combustion chamber of the internal combustion engine and the force of a resetting device which counteracts a displacement of the valve needle with a suitable counterforce.
  • the exhaust valve is opened, high-pressure combustion gases escape from the combustion chamber.
  • the gas pressure usually decreases so quickly that the total force F 4 , which opposes the opening of the valve, namely the force due to the gas pressure and the force of the reset device, decreases sharply during the opening of the valve.
  • a drive that has to move the valve needle by a predetermined distance when opening the valve and thereby reduces the thrust adapted to the total force F 4 has a more favorable energy balance than a drive without a corresponding adjustment of the thrust.
  • the first part of the movement should be as short as possible and the ratio A 2 / A 1 should be as small as possible, provided that the relationships for the forces F 4 and F 2 mentioned in the first two criteria are met.
  • the fulfillment of this secondary condition is obvious if specific information for F 4 is given as a function of the time and the position of the valve needle.
  • the specified special embodiments of the drive according to the invention can be modified in various ways.
  • the pistons do not necessarily have to have the same directions of movement.
  • a component of the force acting on the second piston is absorbed by the sub-segment 15b.
  • the relationships mentioned for F 1 and F 2 would have to be modified accordingly.
  • the hydraulic step piston arrangement according to the invention has two guided pistons (9, 10, 11) different Cross-section, with the pistons in one position touch their end faces (9b, 10b, 11a), one with a Hydraulic fluid-filled pressure cell (30, 15a-c) for Power transmission between the two pistons, and means (25, 20) to change the amount of hydraulic fluid in the pressure cell.
  • the amount of hydraulic fluid becomes changed by hydraulic fluid through a channel (25) connected to the pressure cell are displaced can and the flow of hydraulic fluid through the Channel is controlled by one of the pistons (9, 10) a shift by a predetermined distance of hydraulic fluid to the channel (25) only in one part blocked the route.
  • the power transmission mediated by the pressure cell be controlled between the two pistons and one constant force on one of the pistons into a variable force be implemented on the second piston, the pistons during part of the movement on their end faces Touch (9b, 10b, 11a) and during another part like a hydraulic ratio for those on the pistons attacking forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Actuator (AREA)
  • Valve Device For Special Equipments (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Fluid-Pressure Circuits (AREA)

Claims (13)

  1. Agencement hydraulique à pistons différentiels avec deux pistons guidés (9, 10, 11), dont le premier piston (9, 10) a une section transversale plus grande que le deuxième piston (11), ces pistons venant en contact dans une position avec leurs faces frontales (9b, 10b, 11a), et avec une cellule de pression (30, 15a-c) remplie d'un fluide hydraulique pour la transmission des forces entre les deux pistons, avec des moyens (25, 20) pour modifier la quantité du fluide hydraulique dans la cellule de pression, ces moyens (25, 20), lors d'un premier tronçon partiel de la course des deux pistons (9, 10, 11), permettant le refoulement respectivement l'afflux du fluide hydraulique depuis respectivement dans la cellule de pression (30, 15a-c) de telle sorte que les deux pistons (9, 10; 11), sur ce premier tronçon partiel de leur course, restent en contact, et les moyens précités empêchant sur un deuxième tronçon partiel de la course des deux pistons (9, 10, 11) le refoulement respectivement l'afflux du fluide hydraulique depuis respectivement dans la cellule de pression (30, 15a-c), de telle sorte que les deux pistons (9, 10, 11), sur ce deuxième tronçon partiel, agissent comme transmission hydraulique dont le rapport est donné par les sections transversales différentes indiquées des deux pistons (9, 10, 11).
  2. Agencement à pistons différentiels selon la revendication 1, caractérisé en ce que les moyens comportent un canal (25) pour le passage du fluide hydraulique, relié à la cellule de pression ainsi qu'un dispositif (9, 10) pour commander le passage du fluide hydraulique à travers le canal.
  3. Agencement à pistons différentiels selon la revendication 2, caractérisé en ce que l'un des pistons (9, 10) fait partie du dispositif et, lors d'un déplacement sur un trajet prédéterminé, bloque l'accès du fluide hydraulique au canal (25) seulement sur une partie du trajet.
  4. Agencement à pistons différentiels selon l'une des revendications 2-3, caractérisé en ce que le canal (25) est relié à un réservoir (20) pour le fluide hydraulique.
  5. Agencement à pistons différentiels selon l'une des revendications 1-4, caractérisé par une installation (5) pour produire une force sur l'un des pistons (9, 10) en direction de l'autre piston (11).
  6. Agencement à pistons différentiels selon la revendication 5, caractérisé en ce que fait partie de l'installation (5) pour produire une force sur l'un des pistons, un dispositif pour transférer une force de pression sur une face frontale (10a) d'un des pistons avec un fluide sous pression, le dispositif précité comportant une chambre de pression (80) et un système d'alimentation (50, 51, 53) pour introduire le fluide sous pression à partir d'un réservoir (60) dans la chambre de pression (80), où l'un des pistons (10) forme une paroi mobile de la chambre de pression.
  7. Agencement à pistons différentiels selon la revendication 6, caractérisé en ce que font partie du système d'alimentation une pluralité de canaux traversants (12, 13) pour le fluide sous pression dans l'un des pistons (10), ces canaux traversants étant en liaison (12b) avec la chambre de pression (80) et présentent une ouverture (12a) sur la face d'enveloppe (10c) d'un des pistons (10), où les ouvertures sont reliées au réservoir (60) pour introduire le fluide sous pression dans la chambre de pression (80), dans des zones différentes pour des canaux traversants différents (12, 13) pour la position d'un des pistons (10).
  8. Agencement à pistons différentiels selon la revendication 7, caractérisé en ce que les canaux traversants sont réalisés de façon que les résistances à l'écoulement des canaux traversants (12, 13) s'accroissent dans l'ordre selon lequel les canaux traversants, lors du déplacement d'un des pistons (10) par suite de l'effet de la force (5), sont reliés les uns après les autres au réservoir (60) pour introduire le fluide sous pression dans la chambre de pression (80) .
  9. Agencement à pistons différentiels selon l'une des revendications 6-8, caractérisé en ce que des moyens sont prévus (61, 54, 52, 50) pour recevoir le fluide hydraulique qui est refoulé de la chambre de pression (80) lors d'une diminution de son volume par un déplacement d'un des pistons (10), où le fluide hydraulique refoulé s'écoule à travers un canal (14) dans l'un des pistons (10) lorsque le volume passe en dessous d'une limite inférieure prédéterminée.
  10. Soupape d'un moteur à combustion interne, avec un agencement à pistons différentiels selon l'une des revendications 5-9.
  11. Moteur à combustion interne avec une soupape, notamment soupape d'admission du cylindre ou soupape d'échappement du cylindre, selon la revendication 10.
  12. Procédé de fonctionnement d'un agencement à pistons différentiels selon la revendication 9, caractérisé en ce que
    les deux pistons (9, 10, 11), dans une position initiale, se touchent à leurs faces frontales (9b, 10b, 11a),
    le piston ayant la plus grande face en section transversale est déplacé au moyen de l'installation (5) pour produire une force et
    pendant son déplacement, la quantité de fluide hydraulique dans la cellule de pression (30, 15a-c) est d'abord réduite et ensuite maintenue à un niveau constant.
  13. Procédé de fonctionnement d'un agencement à pistons différentiels selon la revendication 5, caractérisé en ce que
    les deux pistons (9, 10, 11), dans une position initiale, ne se touchent pas à leurs faces frontales (9b, 10b, 11a),
    le piston ayant la plus petite face en section transversale est déplacée par l'installation (5) pour produire une force et
    pendant son déplacement, la quantité de fluide hydraulique dans la cellule de pression (30, 15a-c) est d'abord maintenue constante et, après le contact des deux pistons (9, 10, 11) à leurs faces frontales (9b, 10b, 11a) est augmentée.
EP95810254A 1995-04-18 1995-04-18 Dispositif hydraulique à pistons différentiels et son application à une commande à poussée variable Expired - Lifetime EP0738826B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK95810254T DK0738826T3 (da) 1995-04-18 1995-04-18 Hydraulisk differentialstempelindretning og anvendelse heraf i en drivanordning med variabel trykkraft
DE59508878T DE59508878D1 (de) 1995-04-18 1995-04-18 Hydraulische Stufenkolbenanordnung und deren Anwendung in einem Antrieb mit einer variablen Schubkraft
EP95810254A EP0738826B1 (fr) 1995-04-18 1995-04-18 Dispositif hydraulique à pistons différentiels et son application à une commande à poussée variable
KR1019960010534A KR100380568B1 (ko) 1995-04-18 1996-04-09 유압스텝식피스톤장치및가변추력을이용한구동장치및그운전방법
JP08920696A JP4164132B2 (ja) 1995-04-18 1996-04-11 液圧階動ピストン装置及び同装置を備えた可変スラスト力を有する駆動装置の動作方法
CN96105060A CN1088150C (zh) 1995-04-18 1996-04-17 液压多级活塞装置及其在可变推力的传动装置上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95810254A EP0738826B1 (fr) 1995-04-18 1995-04-18 Dispositif hydraulique à pistons différentiels et son application à une commande à poussée variable

Publications (2)

Publication Number Publication Date
EP0738826A1 EP0738826A1 (fr) 1996-10-23
EP0738826B1 true EP0738826B1 (fr) 2000-11-29

Family

ID=8221731

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810254A Expired - Lifetime EP0738826B1 (fr) 1995-04-18 1995-04-18 Dispositif hydraulique à pistons différentiels et son application à une commande à poussée variable

Country Status (6)

Country Link
EP (1) EP0738826B1 (fr)
JP (1) JP4164132B2 (fr)
KR (1) KR100380568B1 (fr)
CN (1) CN1088150C (fr)
DE (1) DE59508878D1 (fr)
DK (1) DK0738826T3 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679594B1 (ko) * 2003-03-24 2007-02-08 요코하마 티엘오 가부시키가이샤 내연 기관의 가변동 밸브 장치와 그 제어 방법 및 유압액튜에이터
KR101081289B1 (ko) * 2004-01-29 2011-11-09 오티스 엘리베이터 컴파니 엘리베이터용 제동장치
WO2013118298A1 (fr) * 2012-02-10 2013-08-15 株式会社 愛康 Dispositif d'alimentation d'un fluide de travail et système d'alimentation de fluide
FI124350B (en) * 2012-03-09 2014-07-15 Wärtsilä Finland Oy Hydraulic actuator
CN107002713B (zh) * 2014-11-21 2019-11-12 Des公司 流体流量倍增器
CN105715610B (zh) * 2016-03-23 2017-12-19 浙江工业大学 一种利用拉压一体机专用气缸进行检测的方法
CN106370519B (zh) * 2016-10-13 2018-06-12 苏州大学 生物软组织微观力学特性测试仪
CN106553378B (zh) * 2016-11-22 2018-07-27 广东三合液压有限公司 提供稳定压力的电液控制压力机械
EP3743602B1 (fr) * 2018-01-26 2021-12-01 Wärtsilä Finland Oy Ensemble actionneur de sécurité et moteur à piston alternatif à combustion interne comportant un tel ensemble actionneur de sécurité
MX2021002864A (es) * 2018-09-13 2021-05-28 Smc Corp Cilindro hidraulico.
CN110907290A (zh) * 2019-12-06 2020-03-24 中国科学院武汉岩土力学研究所 偏心载荷作用下单一方向均布力施加装置及剪切试验机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1321539A (fr) * 1962-02-07 1963-03-22 Soc Es Energie Sa Perfectionnements apportés aux moteurs à combustion interne, notamment aux machines à pistons libres, à injection de combustible gazeux
FR1361178A (fr) * 1963-06-27 1964-05-15 Mitsubishi Shipbuilding & Eng Dispositif de commande rapide des soupapes dans un moteur à combustion interne
DK148757C (da) * 1981-09-22 1986-02-17 B & W Diesel As Udstoedsventil til en stempelforbraendingsmotor
JPS58170809A (ja) * 1982-03-31 1983-10-07 Toyota Motor Corp 吸排気弁駆動装置
JPS6040711A (ja) * 1983-08-12 1985-03-04 Yanmar Diesel Engine Co Ltd 動弁装置
JPS6085209A (ja) * 1983-10-17 1985-05-14 Kawasaki Heavy Ind Ltd デイ−ゼル機関の弁駆動装置
JPH0640711A (ja) * 1992-07-21 1994-02-15 Mitsui Toatsu Chem Inc 含炭素組成物の製造方法
JPH0685209A (ja) * 1992-08-31 1994-03-25 Fujitsu Ltd 半導体記憶装置

Also Published As

Publication number Publication date
JPH08284905A (ja) 1996-11-01
KR100380568B1 (ko) 2003-07-18
CN1144299A (zh) 1997-03-05
DE59508878D1 (de) 2001-01-04
DK0738826T3 (da) 2000-12-27
JP4164132B2 (ja) 2008-10-08
EP0738826A1 (fr) 1996-10-23
CN1088150C (zh) 2002-07-24

Similar Documents

Publication Publication Date Title
DE69814295T2 (de) Hydraulisches Regelventilsystem mit Druckwaage ohne Wechselventil
DE60126380T2 (de) Kraftstoffeinspritzventil
DE4311627B4 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19616812B4 (de) Kraftstoffeinspritzvorrichtung
EP0939857B1 (fr) Soupape d'injection de carburant
EP1654455B1 (fr) Soupape de commande pour un injecteur de carburant contenant un multiplicateur de pression
EP0738826B1 (fr) Dispositif hydraulique à pistons différentiels et son application à une commande à poussée variable
DE69628805T2 (de) Elektromagnetventil und Kraftstoffeienspritzventil für Brennkraftmaschinen
DE102010016971A1 (de) Dualstufen-Regelventilvorrichtung
DE102017220836A1 (de) Hydraulische Steuerung für eine Gießeinheit einer Spritzgießmaschine und Verfahren zu Steuerung einer Gießeinheit einer Spritzgießmaschine
WO2003027450A1 (fr) Actionneur a commande hydraulique pour l'actionnement d'une soupape
DE102006000278A1 (de) Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
DE19813983A1 (de) Ventil zum Steuern von Flüssigkeiten
DE102005043571A1 (de) Antriebsvorrichtung
EP1440225B1 (fr) Actionneur hydraulique pour soupape de moteur
DE69803100T2 (de) Druckbegrenzungsmechanismus und hydraulischer Schaltkreis mit Druckbegrenzungsmechanismus
DE10222411B4 (de) Brennstoffeinspritzventil mit variablem Hub
DE19939452C2 (de) Vorrichtung zur Einspritzung von Kraftstoff
EP1537300B1 (fr) Actionneur hydraulique de soupape servant a actionner une soupape d'echange de gaz
DE2223292C3 (de) Hydraulisch betätigbares Schlaggerät
EP3464908B1 (fr) Système de vannes
DE10157886B4 (de) Kraftstoffeinspritzeinheit eines Verbrennungsmotors
AT411090B (de) Vollvariabler hydraulischer ventilantrieb
WO2001029409A1 (fr) Systeme et procede d'injection de fluide
WO2012113582A2 (fr) Dispositif d'injection d'un carburant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR IT NL

AX Request for extension of the european patent

Free format text: SI

RAX Requested extension states of the european patent have changed

Free format text: SI

RBV Designated contracting states (corrected)

Designated state(s): DE DK FR IT NL

17P Request for examination filed

Effective date: 19970318

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WAERTSILAE NSD SCHWEIZ AG

17Q First examination report despatched

Effective date: 19980629

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980629

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR IT NL

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 59508878

Country of ref document: DE

Date of ref document: 20010104

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090415

Year of fee payment: 15

Ref country code: IT

Payment date: 20090422

Year of fee payment: 15

Ref country code: FR

Payment date: 20090414

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140422

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59508878

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59508878

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20150418