EP0734567B1 - Signalanalyseeinrichtung mit mindestens einer gespannten saite und einem aufnehmer - Google Patents

Signalanalyseeinrichtung mit mindestens einer gespannten saite und einem aufnehmer Download PDF

Info

Publication number
EP0734567B1
EP0734567B1 EP95901439A EP95901439A EP0734567B1 EP 0734567 B1 EP0734567 B1 EP 0734567B1 EP 95901439 A EP95901439 A EP 95901439A EP 95901439 A EP95901439 A EP 95901439A EP 0734567 B1 EP0734567 B1 EP 0734567B1
Authority
EP
European Patent Office
Prior art keywords
string
pulses
groups
neural network
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95901439A
Other languages
English (en)
French (fr)
Other versions
EP0734567A1 (de
Inventor
Andreas Szalay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TERRA TEC ELECTRONIC GmbH
Yamaha Corp
Original Assignee
Blue Chip Music GmbH
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Chip Music GmbH, Yamaha Corp filed Critical Blue Chip Music GmbH
Publication of EP0734567A1 publication Critical patent/EP0734567A1/de
Application granted granted Critical
Publication of EP0734567B1 publication Critical patent/EP0734567B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar
    • G10H3/186Means for processing the signal picked up from the strings
    • G10H3/188Means for processing the signal picked up from the strings for converting the signal to digital format
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/125Extracting or recognising the pitch or fundamental frequency of the picked up signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/066Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for pitch analysis as part of wider processing for musical purposes, e.g. transcription, musical performance evaluation; Pitch recognition, e.g. in polyphonic sounds; Estimation or use of missing fundamental
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/311Neural networks for electrophonic musical instruments or musical processing, e.g. for musical recognition or control, automatic composition or improvisation

Definitions

  • the invention relates to a signal analysis device with at least one string that is vibrating Length by contact with at least one bundle is changeable, with a transducer and with a evaluation device connected to the transducer.
  • Such a signal analysis device can also be used shortly called “guitar synthesizer”.
  • US-A-4 823 667 therefore shows a signal analysis device as an electronic musical instrument, the kind of Guitar is operated using a frequency analyzer the frequency of the excited string is provided determined.
  • a frequency analyzer the frequency of the excited string is provided determined.
  • timing problems With a normal guitar the lowest tone has a frequency of around 80 Hz (exactly: 82 Hz), so that a full oscillation takes about 12.5 ms claimed. Since one is usually used for security reasons want to measure two vibrations to be reliable To come up with statements adds up the necessary Time already to 25 ms. This does not take into account that after stringing, e.g. by Plucking or beating, still needs some time, to get into the steady state.
  • Time period to be set which is quite double can be a period length, so that the desired Pitch information only available after 50 ms stands.
  • a time delay of 50 ms is for but a musician is already clearly noticeable. It corresponds the installation of the loudspeaker in one Distance of about 15 m.
  • EP-A-0 227 906 shows an electronic string instrument like a guitar with an evaluation device to determine the pitch that occurs when playing through the guitar strings are created.
  • the evaluation device is connected to two transducers.
  • the one pickup serves to determine the vibration the string itself. As long as the string is swinging, is a Sound made.
  • the other pickup has at the same time the function of a transmitter with which ultrasound pulses to be put on the string. The transit time of the ultrasonic pulses can be evaluated to provide information to win over the string length and thus the pitch.
  • EP-A-0 288 062 shows a similar musical instrument a signal analysis device in which the transducer arrangement also has an acoustic pickup, which determines the vibration of the string itself and an ultrasound arrangement, the ultrasound pulses couples onto the string and receives from there.
  • the Time difference between sending and receiving the ultrasonic pulses provides information about the active string length.
  • the invention is based, with one Guitar synthesizers get the pitch information faster to be able to win.
  • This task is performed with a signal analysis device of the type mentioned at the outset in that the evaluation device Impulses or groups of impulses recorded after picking up the string by striking the String by a player on the string on the pickup walk past, and due to the chronological order of the Pulse or the pulse groups generates a signal that represents a pitch.
  • the evaluation device preferably also detects the Polarity of the pulses or pulse groups and determined from the temporal sequence of the impulses or impulse groups a signal that represents the excitation position of the string.
  • the string's excitation position i.e. the spot, on the string plucked or struck or on other way of moving is playing the guitar one of the outstanding design options for the player. Because you have two pulses or groups of pulses has available that is different from the stimulus position from in opposite directions on the Moving the string and with corresponding time delays at the respective clamping points of the strings can be reflected due to the different
  • the duration of the impulses is also information win over where the suggestion was located. You get this information practically the same way quickly like the information about the pitch so that the determination of the excitation position is no further Delay means.
  • the evaluation device preferably has a neural one Network on that any sequence of pulses or pulse groups classified into one of a variety of classes.
  • the consequences of impulses or impulse groups, that can be assigned to a certain pitch have essential similarities that a neural Network can be found relatively easily. You can here with similarities between the individual pulse sequences or satisfy sequences of impulse groups, without having to evaluate each pulse train exactly in time got to.
  • the timely evaluation can occasionally to be difficult if the impulses not in the desired purity, but instead are surrounded by noise. In this case it can sometimes be difficult to get accurate start and finish End times for the measurement of the distances from individual Define impulses or impulse groups.
  • a neural network can be programmed that it is the decision which pitch is present and at what position the string has been excited, simply due to similarities.
  • a neural network has the advantage that it is not necessarily explicit predetermined rules, according to which there are similarities judged. Rather, a neural network can be trained, i.e. by presenting a Plenty of examples with the right results it forms algorithms or control behavior itself from which it enables the following examples to be correct to classify.
  • a neural network can also be used in to some extent also make generalizations, whereby it forms the rules for the generalizations themselves.
  • the neural network is therefore capable of pulse trains or sequences of impulse groups even then relative to recognize exactly when the given pulse train not exactly with an already trained pulse train matches. Because neural networks usually use one Large number of processors working in parallel are fast enough to signal the pitch available in the required short period of time to deliver.
  • the evaluation device has a Comparison device having a string Pitch signal obtained in the steady state with the signal obtained from the pulse sequence and in the event of a deviation that is a predetermined one Dimension exceeds a learning algorithm of the neural Triggers the network.
  • the evaluation device limits the Pitch detection is therefore not based on the evaluation of the "Plucking transients". Rather, this evaluation is only the beginning, however, which enables the pitch signal to be made available within a very short time.
  • the evaluation device also monitors whether that recognized signal with the later in the swinging String forming pitch matches. Is this the Case the "prediction" was correct and there are none further measures necessary.
  • the result of the comparison can be used be another training example to the neural network to provide. Using this training example can learn the neural network again and improve its detection algorithm.
  • the neural network is preferably a selection device upstream, the individual from a pulse group Selects impulses. This is especially true of Advantage if the neural network is limited Provides work capacity. In this case the amount of information, that the neural network has to process, keep smaller.
  • a signal analysis or generation device 1 has six strings E1, H2, G3, D4, A5 and E6 on the after Kind of a guitar.
  • a sensor 2 is provided, for example as electromagnetic or piezoelectric pickups can be trained.
  • the transducers 2 are with one Analog / digital converter 3 connected in the illustrated Embodiment for each transducer 2 one Has channel, that is six channels.
  • the analog / digital converter 3 is with a microprocessor 4 connected to the input and output management accomplished for a neural network 5. Between the microprocessor 4 and the neural network 5 can a selection device 6 may also be provided, whose function will be described later.
  • the analog / digital converter 3 with a frequency meter 7 connected.
  • the frequency meter 7 and the Microprocessor 4 are with a comparison device 8 connected.
  • the comparison device 8 is with a MIDI interface 9 connected.
  • the comparison facility 8 is also connected to the neural network 5 with a learning input 10.
  • the neural network 5 receives, managed by the microprocessor 4 and possibly prepared by the Selector 6, a sequence of pulses or groups of pulses and classifies these episodes into one of a variety of specific classes. Every class allows a statement about the pitch and if necessary also about the excitation position of the string, as explained below.
  • Fig. 2 shows schematically a string 11 which between a fixed clamping point 12 and a clamping point 13, on which the voltage is adjustable, clamped is.
  • the string 11 spans a guitar neck 14 the different frets 15 are arranged.
  • Through a Arrow 16 shows a fret on which the string 11 is depressed. This bundle 16 determines together with the clamping point 12 the effective length of the string 11.
  • the responsible pickup 2 is arranged under the string.
  • a triangle 17 which is a guitar pick or the like Plucking tool should symbolize is an excitation position shown for string 11. If so the string 11 plucked at this stimulation position or is struck, does not immediately arise standing wave at the frequency required for the pitch is characteristic. Rather, a settling process begins, which describes itself in a simplified way leaves that from the excitation position two pulses 18, 19 run left and right. These impulses or traveling waves are indicated by a 1 and drawn 2 different from each other. Of the Pulse 18 now runs to the left up to collar 16 the string is held down. There he is under Phase rotation reflects and runs back again. In in the same way, pulse 19 runs to the right to the clamping point 12 where it reflects with phase shift and runs back again. The back and forth Impulses or waves overlap and reproduce the known standing wave with which the string 11 vibrates.
  • the movement or walking speed of the pulses 18 or 19 on the string 11 is known. You can now determine the active length of the string 11 from the time difference T1, which is the distance between the times t5 and t1, with the aid of this traveling speed. But this is also the length that is responsible for the pitch of the string 11. If the distance between the transducer 2 and the collar 16 or the collars 15 is known, the distance T 2 would in principle also be sufficient, that is the distance between the times t2 and t1. This gives you the option of fine-tuning because the guitarist can slightly vary the pitch by slightly shifting his finger on frets 15, 16. In addition, in many cases the pulses cannot be distinguished as clearly as is shown in FIG. 3 for the sake of simplicity. Rather, the individual impulses may become blurred and smeared, in particular if, when plucking or striking the string 11, it is not individual impulses, as shown, but entire groups of impulses.
  • the position of the excitation can be deduced from the time difference T 3 , namely from the difference between the times t3 and t1. If the string length is known from the difference T1, the difference T3 can be used to calculate backwards at which fraction of the string the excitation took place.
  • the time measurement is used to determine the distance the impulses shown occasionally with uncertainties charged.
  • the Sequence of pulse groups which is detected by the transducer 2 with the help of the selection device 6 individual Selected pulses that are fed to the neural network 5 will.
  • the neural network can have similarities recognize between individual sequences of impulse groups and the "plucking transients" caused by these pulse trains are represented, so classify their assignment to individual classes, each a pitch and reproduce an excitation position with great certainty is possible.
  • the recognition process is carried out by triggered pulses.
  • the successive positive and negative impulses or impulse groups are forwarded to the neural network, that tries every time to record the pattern or the recorded sequence of a previously learned sequence assign.
  • the neural network produces a positive result or the frequency meter 7 has the corresponding Has provided information.
  • the neural Network which the rules for detection when appropriate Programming can form itself, but sufficient Information saved to the classification to be able to make it extremely effectively.
  • the neural network 5 also forms certain rules for generalizations, so that patterns not actually learned can be recognized if these have certain similarities to the already learned examples.
  • the Comparison device 8 compares that by the neural Network 5 determined pitch with a later determined the frequency meter 7.
  • the comparison facility 8 namely couples the determined Error back into the neural network 5 and triggers one new learning algorithm so that the same error not because of the improved recognition option can occur once. If there is no difference, gives the comparison device 8 or the signals continue unchanged to the MIDI interface 9.
  • the output results of the neural network are like this further processed that the MIDI interface 9 MIDI signals which can provide a MIDI synthesizer or control an expander module.
  • the pitch coded in the MIDI signal corresponds to the Pitch of the guitar string.
  • the plucking position as coded Sound character may be included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Sorting Of Articles (AREA)

Abstract

Es wird eine Signalanalyseeinrichtung (1) angegeben mit mindestens einer gespannten Saite (E1, H2, G3, D4, A6, E6), deren schwingungsfähige Länge durch Anlage an mindestens einem Bund veränderbar ist, mit einem Aufnehmer (2) und mit einer mit dem Aufnehmer verbundenen Auswerteeinrichtung (3-9). Hiermit soll ein Gitarren-Synthesizer realisiert werden, der relativ schnell nach dem Anregen der Saite die gewünschte Tonhöheninformationen zur Verfügung stellen kann. Hierzu erfaßt die Auswerteeinrichtung (3-9) Impulse oder Impulsgruppen, die nach einer Anregung der Saite (E1, H2, G3, D4, A5, E6) auf der Saite an dem Aufnehmer (2) vorbeilaufen, und erzeugt aufgrund der zeitlichen Folge der Impulse oder der Impulsgruppen ein Signal, das eine Tonhöhe darstellt.

Description

Die Erfindung betrifft eine Signalanalyseeinrichtung mit mindestens einer gespannten Saite, deren schwingungsfähige Länge durch Anlage an mindestens einen Bund veränderbar ist, mit einem Aufnehmer und mit einer mit dem Aufnehmer verbundenen Auswerteeinrichtung.
Eine derartige Signalanalyseeinrichtung kann man auch kurz als "Gitarren-Synthesizer" bezeichnen.
In der modernen Pop- und Rockmusik gibt es eine zunehmende Tendenz dahin, die Musikinstrumente nicht mehr direkt zur Ton- oder Klangerzeugung einzusetzen, sondern lediglich elektrische Signale zu produzieren oder zu analysieren und umzusetzen, die durch Computer oder andere Schaltungen weiter verarbeitet werden. Zu diesem Zweck gibt es standardisierte Schnittstellen, von denen die MIDI-Schnittstelle relativ bekannt geworden ist.
Während eine derartige Signalerzeugung oder -analyse bei Tasten-Musikinstrumenten mit relativ wenig Schwierigkeiten verbunden ist, weil hier einer Taste genau eine Tonhöhe zugeordnet ist und die Lautstärke gegebenenfalls über die Anschlaggeschwindigkeit der Taste ermittelt werden kann, bereitet die Signalanalyse bei Saiten-Instrumenten, beispielsweise Gitarren, erhebliche Schwierigkeiten. Bei derartigen Saiten-Instrumenten ist zwar jeder Saite ein Grundton zugeordnet. Durch Niederdrücken der Saite an verschiedenen Abgriffen oder Bünden läßt sich die Tonhöhe einer gezupften, geschlagenen oder anders angeregten Saite jedoch variieren. Um die richtige Tonhöhe zu ermitteln, muß man daher zunächst die Ausbildung eines derartigen Tones abwarten und dann die Frequenz oder Dauer mindestens einer, vorzugsweise aber mehrerer Perioden ausmessen, um die Tonhöhe mit der nötigen Zuverlässigkeit herausfinden zu können.
US-A-4 823 667 zeigt daher eine Signalanalyseeinrichtung als elektronisches Musikinstrument, das nach Art einer Gitarre betätigt wird, bei dem ein Frequenz-Analysierer vorgesehen ist, der die Frequenz der angeregten Saite ermittelt. Eine derartige Vorgehensweise führt jedoch zu zeitlichen Problemen. Bei einer normalen Gitarre hat der tiefste Ton eine Frequenz von etwa 80 Hz (genau: 82 Hz), so daß eine volle Schwingung etwa 12,5 ms Zeit beansprucht. Da man aus Sicherheitsgründen üblicherweise zwei Schwingungen ausmessen möchte, um zu zuverlässigen Aussagen zu kommen, summiert sich die notwendige Zeit bereits zu 25 ms. Hierbei ist noch nicht berücksichtigt, daß die Saite nach dem Anregen, z.B. durch Zupfen oder Schlagen, noch eine gewisse Zeit benötigt, um in den eingeschwungenen Zustand zu gelangen. Hierfür ist in der Regel ebenfalls ein nicht zu vernachlässigender Zeitraum anzusetzen, der durchaus das Doppelte einer Periodenlänge betragen kann, so daß die gewünschte Tonhöheninformation erst nach 50 ms zur Verfügung steht. Eine zeitliche Verzögerung von 50 ms ist für einen Musiker aber bereits deutlich merkbar. Sie entspricht der Aufstellung der Lautsprecherbox in einer Entfernung von etwa 15 m.
Als alternative Lösungsmöglichkeit für dieses Problem hat man daher in US-A-5 085 119 Schalter auf dem Gitarrenhals vorgesehen, die beim Niederdrücken der entsprechenden Saite an den gewünschten Bund betätigt werden. Die Tonhöheninformation wird dann aber, genau wie bei einem Tasteninstrument, nicht mehr durch die Saitenschwingung, sondern durch das Niederdrücken eines Schalters gewonnen. Dies erschwert das Spielen beträchtlich.
EP-A-0 227 906 zeigt ein elektronisches Saiteninstrument nach Art einer Gitarre mit einer Auswerteeinrichtung zur Ermittlung der Tonhöhe, die beim Spielen durch die Gitarrensaiten erzeugt werden. Die Auswerteeinrichtung ist mit zwei Aufnehmern verbunden. Der eine Aufnehmer dient hierbei zur Feststellung der Schwingung der Saite an sich. Solange die Saite schwingt, wird ein Ton abgegeben. Der andere Aufnehmer hat gleichzeitig die Funktion eines Senders, mit dem Ultraschallimpulse auf die Saite gegeben werden. Die Laufzeit der Ultraschallimpulse kann ausgewertet werden, um eine Information über die Saitenlänge und damit die Tonhöhe zu gewinnen.
EP-A-0 288 062 zeigt ein ähnliches Musikinstrument mit einer Signalanalyseeinrichtung, bei der die Aufnehmeranordnung ebenfalls einen akustischen Aufnehmer aufweist, der die Schwingung der Saite an sich ermittelt und eine Ultraschall-Anordnung, die Ultraschall-Impulse auf die Saite einkoppelt und von dort empfängt. Die Zeitdifferenz zwischen Senden und Empfangen der Ultraschallimpulse gibt Aufschluß über die aktive Saitenlänge.
Der Erfindung liegt die Aufgabe zugrunde, bei einem Gitarren-Synthesizer die Tonhöheninformation schneller gewinnen zu können.
Diese Aufgabe wird bei einer Signalanalyseeinrichtung der eingangs genannten Art dadurch gelöst, daß die Auswerteeinrichtung Impulse oder Impulsgruppen erfaßt, die nach einer Anregung der Saite durch das Anschlagen der Saite durch einen Spieler auf der Saite an dem Aufnehmer vorbeilaufen, und aufgrund der zeitlichen Folge der Impulse oder der Impulsgruppen ein Signal erzeugt, das eine Tonhöhe darstellt.
Man wartet also nicht mehr ab, bis sich auf der Saite eine Schwingung ausgebildet hat, die dann ausgemessen wird, man wertet vielmehr sogenannte "Zupftransienten" aus, also Impulse oder Impulsfolgen, die sich beim Anregen der Gitarrensaite ergeben. Wird eine Gitarrensaite gezupft oder geschlagen, entstehen im einfachsten Fall zwei Impulse oder Wanderwellen, die sich von der Anregungsstelle her in Richtung auf die Einspannstellen der Saite bzw. auf die Stelle zu bewegen, wo die Saite an den Bund niedergedrückt ist. Dort werden sie reflektiert und laufen wieder aufeinander zu. Nach einigen Hin- und Herläufen bildet sich dann die bekannte stehende Welle aus, die für die Tonerzeugung normalerweise verantwortlich ist. Man kann nun aber die Laufzeit dieser Impulse auf der Saite ausmessen oder auswerten und aus der Laufzeit bzw. der Laufzeitdifferenz zwischen einzelnen Impulsen die notwendige Information über die Saitenlänge und -spannung und damit über die Tonhöhe gewinnen. Natürlich werden sich in Wirklichkeit nicht einzelne Impulse bilden, sondern Impulsgruppen. Dies ändert jedoch nichts am der Erfindung zugrunde liegenden Prinzip.
Vorzugsweise erfaßt die Auswerteeinrichtung auch die Polarität der Impulse oder Impulsgruppen und ermittelt aus der zeitlichen Folge der Impulse oder Impulsgruppen ein Signal, das die Anregungsposition der Saite darstellt. Die Anregungsposition der Saite, d.h. die Stelle, an der die Saite gezupft oder geschlagen oder auf andere Weise in Bewegung gesetzt wird, ist beim Gitarrenspiel eine der herausragenden Gestaltungsmöglichkeiten für den Spieler. Da man zwei Impulse oder Impulsgruppen zur Verfügung hat, die sich von der Anregungsposition aus in entgegengesetzte Richtungen auf der Saite fortbewegen und mit entsprechenden Zeitverzögerungen an den jeweiligen Einspannstellen der Saiten reflektiert werden, kann man aufgrund der unterschiedlichen Laufzeiten der Impulse auch eine Information darüber gewinnen, wo die Anregungsstelle gelegen hat. Diese Information gewinnt man praktisch genauso schnell, wie die Information über die Tonhöhe, so daß die Ermittlung der Anregungsposition keine weitere Zeitverzögerung bedeutet.
Vorzugsweise weist die Auswerteeinrichtung ein neuronales Netz auf, das jede Folge von Impulsen oder Impulsgruppen in eine aus einer Vielzahl von Klassen klassifiziert. Die Folgen von Impulsen oder Impulsgruppen, die einer bestimmten Tonhöhe zuzuordnen sind, haben jeweils wesentliche Gemeinsamkeiten, die ein neuronales Netz relativ leicht herausfinden kann. Man kann sich hier mit Ähnlichkeiten zwischen den einzelnen Impulsfolgen oder Folgen von Impulsgruppen zufrieden geben, ohne daß man jede Impulsfolge zeitlich genau auswerten muß. Die zeitlich genaue Auswertung kann gelegentlich mit Schwierigkeiten verbunden sein, wenn die Impulse nicht in der gewünschten Reinheit vorliegen, sondern von Störgeräuschen umlagert sind. In diesem Fall kann es gelegentlich schwierig werden, genaue Start- und Endzeitpunkte für die Bemessung der Abstände von einzelnen Impulsen oder Impulsgruppen zu definieren. Ein neuronales Netz hingegen kann so programmiert werden, daß es die Entscheidung, welche Tonhöhe vorliegt und an welcher Position die Saite angeregt worden ist, einfach aufgrund von Ähnlichkeiten trifft. Ein neuronales Netz hat hierbei den Vorteil, daß es nicht unbedingt explizit vorgegebene Regeln braucht, nach denen es die Ähnlichkeiten beurteilt. Ein neuronales Netz kann vielmehr trainiert werden, d.h. durch die Präsentation einer Vielzahl von Beispielen mit den richtigen Ergebnissen bildet es sich selber Algorithmen oder Steuerverhalten aus, die es befähigt, nachfolgende Beispiele richtig einzuordnen. Ein neuronales Netz kann darüber hinaus in gewissem Umfang auch Verallgemeinerungen treffen, wobei es die Regeln für die Verallgemeinerungen selbst bildet. Das neuronale Netz ist daher in der Lage, Impulsfolgen oder Folgen von Impulsgruppen auch dann relativ genau zu erkennen, wenn die ihm vorgegebene Impulsfolge nicht genau mit einer bereits trainierten Impulsfolge übereinstimmt. Da neuronale Netze in der Regel mit einer Vielzahl von parallel arbeitenden Prozessoren aufgebaut sind, sind sie schnell genug, um das Tonhöhen-Signal in der erforderlichen kurzen Zeitspanne zur Verfügung zu stellen.
Auch ist bevorzugt, daß die Auswerteeinrichtung eine Vergleichseinrichtung aufweist, die ein von der Saite im eingeschwungenen Zustand gewonnenes Tonhöhen-Signal mit dem aus der Impuls-Folge gewonnenen Signal vergleicht und bei einer Abweichung, die ein vorbestimmtes Maß übersteigt, einen Lernalgorithmus des neuronalen Netzes auslöst. Die Auswerteeinrichtung beschränkt die Tonhöhenerkennung also nicht auf die Auswertung der "Zupftransienten". Diese Auswertung ist vielmehr nur der Anfang, der es allerdings ermöglicht, das Tonhöhen-Signal innerhalb kürzester Zeit zur Verfügung zu stellen. Die Auswerteeinrichtung überwacht auch, ob das erkannte Signal mit der sich später in der schwingenden Saite ausbildenden Tonhöhe übereinstimmt. Ist dies der Fall war die "Vorhersage" richtig und es sind keine weiteren Maßnahmen notwendig. War die "Vorhersage" jedoch falsch, liegt eine gewisse Wahrscheinlichkeit dafür vor, daß der Algorithmus, nach dem das neuronale Netz die Ähnlichkeit beurteilt hat, fehlerhaft war. In diesem Fall kann das Ergebnis des Vergleichs verwendet werden, um dem neuronalen Netz ein weiteres Trainingsbeispiel zur Verfügung zu stellen. Anhand dieses Trainingsbeispiels kann das neuronale Netz erneut lernen und seinen Erkennungsalgorithmus verbessern.
Vorzugsweise ist dem neuronalen Netz eine Auswahleinrichtung vorgeschaltet, die aus einer Impulsgruppe einzelne Impulse auswählt. Dies ist insbesondere dann von Vorteil, wenn das neuronale Netz nur eine beschränkte Arbeitskapazität zur Verfügung stellt. In diesem Fall kann man durch eine entsprechende Vorauswahl die Informationsmenge, die das neuronale Netz verarbeiten muß, kleiner halten.
Bevorzugterweise ist für jede Saite ein eigener Aufnehmer vorgesehen. Hierdurch läßt sich eine parallele Tonsignal-Erzeugung für jede Saite realisieren, ohne daß es aufgrund der für alle Saiten unterschiedlichen Zupftransienten, also der hin- und herlaufenden Impulse, zu Irritationen der Auswerteeinrichtung kommen kann.
Die Erfindung wird im folgenden anhand eines bevorzugten Ausführungsbeispiels in Verbindung mit der Zeichnung beschrieben. Hierin zeigen:
Fig. 1
eine schematische Darstellung einer Signalanalyseeinrichtung,
Fig. 2
einen schematischen Aufbau einer Saite und
Fig. 3
eine schematische Darstellung eines Signalverlaufes.
Eine Signalanalyse- oder -erzeugungseinrichtung 1 weist sechs Saiten E1, H2, G3, D4, A5 und E6 auf, die nach Art einer Gitarre aufgespannt sind. Für jede Saite ist ein Aufnehmer 2 vorgesehen, der beispielsweise als elektromagnetischer oder piezoelektrischer Tonabnehmer ausgebildet sein kann. Die Aufnehmer 2 sind mit einem Analog/Digital-Wandler 3 verbunden, der im dargestellten Ausführungsbeispiel für jeden Aufnehmer 2 einen Kanal aufweist, also sechskanalig ausgebildet ist.
Der Analog/Digital-Wandler 3 ist mit einem Mikroprozessor 4 verbunden, der die Eingangs- und Ausgangsverwaltung für ein neuronales Netz 5 bewerkstelligt. Zwischen dem Mikroprozessor 4 und dem neuronalen Netz 5 kann auch noch eine Auswahleinrichtung 6 vorgesehen sein, deren Funktion später beschrieben wird.
Ferner ist der Analog/Digital-Wandler 3 mit einem Frequenzmesser 7 verbunden. Der Frequenzmesser 7 und der Mikroprozessor 4 sind mit einer Vergleichseinrichtung 8 verbunden. Die Vergleichseinrichtung 8 ist mit einer MIDI-Schnittstelle 9 verbunden. Die Vergleichseinrichtung 8 ist ebenfalls mit dem neuronalen Netz 5 verbunden und zwar mit einem Lerneingang 10.
Das neuronale Netz 5 empfängt, verwaltet durch den Mikroprozessor 4 und gegebenenfalls aufbereitet durch die Auswahleinrichtung 6, eine Folge von Impulsen oder Impulsgruppen und klassifiziert diese Folgen jeweils in einer aus Vielzahl von bestimmten Klassen. Jede Klasse erlaubt hierbei eine Aussage über die Tonhöhe und gegebenenfalls auch über die Anregungsposition der Saite, wie dies im folgenden erläutert wird.
Fig. 2 zeigt schematisch eine Saite 11, die zwischen einer festen Einspannstelle 12 und einer Einspannstelle 13, an der die Spannung einstellbar ist, aufgespannt ist. Die Saite 11 überspannt einen Gitarrenhals 14, an dem verschiedene Bünde 15 angeordnet sind. Durch einen Pfeil 16 ist ein Bund dargestellt, auf dem die Saite 11 heruntergedrückt ist. Dieser Bund 16 bestimmt zusammen mit der Einspannstelle 12 die wirksame Länge der Saite 11. Unter der Saite ist der zuständige Aufnehmer 2 angeordnet.
Durch ein Dreieck 17, das ein Plektrum oder ein ähnliches Zupf-Werkzeug symbolisieren soll, ist eine Anregungsposition für die Saite 11 dargestellt. Wenn nun die Saite 11 an dieser Anregungsposition gezupft oder geschlagen wird, stellt sich nicht unmittelbar eine stehende Welle mit der Frequenz ein, die für die Tonhöhe charakteristisch ist. Vielmehr beginnt ein Einschwingvorgang, der sich vereinfacht dadurch beschreiben läßt, daß von der Anregungsposition aus zwei Impulse 18, 19 nach links und nach rechts laufen. Diese Impulse oder Wanderwellen sind durch eine eingezeichnete 1 und eingezeichnete 2 voneinander unterschieden. Der Impuls 18 läuft nun nach links bis zu dem Bund 16, an dem die Saite niedergehalten ist. Dort wird er unter Phasendrehung reflektiert und läuft wieder zurück. In gleicher Weise läuft der Impuls 19 nach rechts zur Einspannstelle 12, wo er unter Phasendrehung reflektiert wird und wieder zurückläuft. Die hin- und herlaufenden Impulse oder Wellen überlagern sich und bilden nach kurzer Zeit die bekannte stehende Welle aus, mit der die Saite 11 schwingt.
Allerdings laufen die Impulse 18, 19 an dem Aufnehmer 2 vorbei. Ein entsprechendes zeitliches Diagramm ist in Fig. 3 dargestellt. Hier ist zu erkennen, daß der erste Impuls, der eine positive Amplitude aufweisen soll, zu einem Zeitpunkt t1 den Aufnehmer überquert, während seine Reflektion, nun mit einer negativen Amplitude, zu einem Zeitpunkt t2 den Aufnehmer überquert. Zu einem Zeitpunkt t3 erreicht der an der Einspannstelle 12 reflektierte zweite Impuls den Aufnehmer, während er zu einem Zeitpunkt t4 erneut den Aufnehmer 2 überläuft. Dies ist dann der zum zweiten Mal, nämlich am Bund 16 reflektierte zweite Impuls. Zu den Zeitpunkten t5 und t6 läuft wieder der erste Impuls, der dann an der Einspannstelle 12 bzw. dem Bund 16 reflektiert worden ist, über den Aufnehmer 2 und zu den Zeitpunkten t7 und t8 der zweite Impuls, der dann erneut an der Einspannstelle 12 bzw. dem Bund 16 reflektiert worden ist.
Die Bewegungs- oder Wandergeschwindigkeit der Impulse 18 oder 19 auf der Saite 11 ist bekannt. Man kann nun aus der zeitlichen Differenz T1, die der Abstand zwischen den Zeitpunkten t5 und t1 ist, mit Hilfe dieser Wandergeschwindigkeit die aktive Länge der Saite 11 ermitteln. Dies ist aber auch die Länge, die für die Tonhöhe der Saite 11 verantwortlich ist. Sofern der Abstand des Aufnehmers 2 von dem Bund 16 bzw. den Bünden 15 bekannt ist, würde im Prinzip auch der Abstand T2 ausreichen, das ist der Abstand zwischen den Zeitpunkten t2 und t1. Hierbei begibt man sich aber der Möglichkeit einer Feinabstimmung, weil der Gitarrist durch geringfügige Verschiebungen seines Fingers auf den Bünden 15, 16 die Möglichkeit hat, die Tonhöhe zu variieren. Außerdem sind die Impulse in vielen Fällen nicht so klar zu unterscheiden, wie dies aus Gründen der Einfachheit halber in Fig. 3 dargestellt ist. Es kann vielmehr auch zu einem Verschwimmen und Verschmieren der einzelnen Impulse kommen, insbesondere dann, wenn beim Anzupfen oder Anschlagen der Saite 11 nicht einzelne Impulse, wie dargestellt, sondern ganze Impulsgruppen entstehen.
In fast allen Fällen läßt sich aber aus der Zeitdifferenz T3, nämlich aus der Differenz der Zeitpunkte t3 und t1, auf die Position der Anregung schließen. Wenn aus der Differenz T1 die Saitenlänge bekannt ist, läßt sich aus der Differenz T3 rückwärts ausrechnen, an welchem Bruchteil der Saite die Anregung stattgefunden hat.
Allerdings ist die Zeitmessung zur Bestimmung des Abstandes der dargestellten Impulse gelegentlich mit Unsicherheiten belastet. Aus diesem Grund werden aus der Folge von Impulsgruppen, die über die Aufnehmer 2 erfaßt werden, mit Hilfe der Auswahleinrichtung 6 einzelne Impulse ausgewählt, die dem neuronalen Netz 5 zugeführt werden. Das neuronale Netz kann Ähnlichkeiten zwischen einzelnen Folgen von Impulsgruppen erkennen und die "Zupftransienten", die durch diese Impulsfolgen dargestellt werden, so klassifizieren, daß ihre Zuordnung zu einzelnen Klassen, die jeweils eine Tonhöhe und eine Anregungsposition wiedergeben, mit großer Sicherheit möglich ist. Der Erkennungsablauf wird hierbei von den auftretenden Impulsen getriggert. Die aufeinanderfolgenden positiven und negativen Impulse oder Impulsgruppen werden an das neuronale Netz weitergeleitet, das jedes Mal versucht, das aufgenommene Muster bzw. die aufgenommene Folge einer vorher gelernten Folge zuzuordnen. Dieser Ablauf wird so oft wiederholt, bis entweder das neuronale Netz ein positives Ergebnis erzeugt hat oder der Frequenzmesser 7 die entsprechende Information bereitgestellt hat. Solange das neuronale Netz noch in der Lern- oder Trainings-Phase ist, wird in vielen Fällen der Frequenzmesser 7 schneller sein. Nach einer gewissen Trainingsphase hat das neuronale Netz 5, das die Regeln für die Erkennung bei entsprechender Programmierung selber bilden kann, aber genügend Information gespeichert, um die Klassifizierung außerordentlich wirksam selbst vornehmen zu können. Das neuronale Netz 5 bildet auch gewisse Regeln für Verallgemeinerungen, so daß auch nicht konkret gelernte Muster erkannt werden können, wenn diese bestimmte Ähnlichkeiten zu den schon gelernten Beispielen zeigen.
Da der Frequenzmesser 7 parallel eine Tonhöhenerkennung abwickelt, ist auch während des Betriebs der Signalanalyseeinrichtung 1 ein weiteres Lernen möglich. Die Vergleichseinrichtung 8 vergleicht die durch das neuronale Netz 5 ermittelte Tonhöhe mit einer später durch den Frequenzmesser 7 ermittelten. Hierbei können einerseits die feinen Tonhöhenveränderungen nachvollzogen werden, die ein Ausdrucksmittel des Spielers sind, andererseits lassen sich mit dieser Vorgehensweise Fehler oder Ungenauigkeiten im Algorithmus entdecken und beseitigen, den das neuronale Netz 5 anwendet. Die Vergleichseinrichtung 8 koppelt nämlich den ermittelten Fehler zurück in das neuronale Netz 5 und löst einen neuen Lernalgorithmus auf, so daß der selbe Fehler durch die verbesserte Erkennungsmöglichkeit nicht noch einmal auftreten kann. Falls keine Differenz auftritt, gibt die Vergleichseinrichtung 8 das oder die Signale unverändert an die MIDI-Schnittstelle 9 weiter.
Die Ausgangsergebnisse des neuronalen Netzes werden so weiter verarbeitet, daß die MIDI-Schnittstelle 9 MIDI-Signale zur Verfügung stellen kann, die einen MIDI-Synthesizer oder ein Expander-Modul ansteuern können. Die im MIDI-Signal codierte Tonhöhe entspricht hierbei der Tonhöhe der Gitarrensaite. Ferner kann im MIDI-Signal als Kontroll-Information noch die Zupfposition als codierter Klangcharakter enthalten sein.

Claims (6)

  1. Signalanalyseeinrichtung (1) mit mindestens einer gespannten Saite (11), deren schwingungsfähige Länge durch Anlage an mindestens einen Bund (15) veränderbar ist, mit einem Aufnehmer (2) und mit einer mit dem Aufnehmer (2) verbundenen Auswerteeinrichtung, dadurch gekennzeichnet, daß die Auswerteeinrichtung als Zupftransienten ausgebildete Impulse oder Impulsgruppen, die nach einer Anregung der Saite (11) durch das Anschlagen der Saite durch einen Spieler auf der Saite (11) an dem Aufnehmer (2) vorbeilaufen, erfaßt, deren Laufzeit auf der Saite auswertet und aufgrund der Laufzeit bzw. der Laufzeitdifferenzen zwischen einzelnen Impulsen oder der Impulsgruppen (Fig. 3) ein Signal erzeugt, das eine Tonhöhe darstellt.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Auswerteeinrichtung auch die Polarität der Impulse oder Impulsgruppen erfaßt und aus der zeitlichen Folge der Impulse oder Impulsgruppen ein Signal ermittelt, das die Anregungsposition (17) der Saite (11) darstellt.
  3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Auswerteeinrichtung ein neuronales Netz (5) aufweist, das jede Folge von Impulsen oder Impulsgruppen in eine aus einer Vielzahl von Klassen klassifiziert.
  4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Auswerteeinrichtung eine Vergleichseinrichtung (8) aufweist, die ein von der Saite (11) im eingeschwungenen Zustand gewonnenes Tonhöhen-Signal mit dem aus der Impuls-Folge gewonnenen Signal vergleicht und bei einer Abweichung, die ein vorbestimmtes Maß übersteigt, einen Lernalgorithmus des neuronalen Netzes (5) auslöst.
  5. Einrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß dem neuronalen Netz (5) eine Auswahleinrichtung (6) vorgeschaltet ist, die aus einer Impulsgruppe einzelne Impulse auswählt.
  6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß für jede Saite (11) ein eigener Aufnehmer (2) vorgesehen ist.
EP95901439A 1993-12-18 1994-11-26 Signalanalyseeinrichtung mit mindestens einer gespannten saite und einem aufnehmer Expired - Lifetime EP0734567B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4343411A DE4343411C2 (de) 1993-12-18 1993-12-18 Gitarren-Signalanalyseeinrichtung
DE4343411 1993-12-18
PCT/EP1994/003917 WO1995016984A1 (de) 1993-12-18 1994-11-26 Signalanalyseeinrichtung mit mindestens einer gespannten saite und einem aufnehmer

Publications (2)

Publication Number Publication Date
EP0734567A1 EP0734567A1 (de) 1996-10-02
EP0734567B1 true EP0734567B1 (de) 1998-10-07

Family

ID=6505487

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95901439A Expired - Lifetime EP0734567B1 (de) 1993-12-18 1994-11-26 Signalanalyseeinrichtung mit mindestens einer gespannten saite und einem aufnehmer

Country Status (8)

Country Link
US (1) US5824937A (de)
EP (1) EP0734567B1 (de)
JP (1) JP3020608B2 (de)
KR (1) KR100189795B1 (de)
AU (1) AU1067495A (de)
CA (1) CA2174223C (de)
DE (1) DE4343411C2 (de)
WO (1) WO1995016984A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460408B2 (ja) * 1995-09-22 2003-10-27 ヤマハ株式会社 楽音制御装置
JP3653854B2 (ja) * 1996-03-08 2005-06-02 ヤマハ株式会社 弦楽器型電子楽器
JP3424787B2 (ja) * 1996-03-12 2003-07-07 ヤマハ株式会社 演奏情報検出装置
US6034689A (en) * 1996-06-03 2000-03-07 Webtv Networks, Inc. Web browser allowing navigation between hypertext objects using remote control
DE19649296C2 (de) * 1996-11-28 2002-01-17 Blue Chip Music Gmbh Verfahren zur Tonhöhenerkennung bei zupf- oder schlagerregten Saiteninstrumenten
US6610917B2 (en) * 1998-05-15 2003-08-26 Lester F. Ludwig Activity indication, external source, and processing loop provisions for driven vibrating-element environments
US6766288B1 (en) 1998-10-29 2004-07-20 Paul Reed Smith Guitars Fast find fundamental method
US6836056B2 (en) 2000-02-04 2004-12-28 Viking Technologies, L.C. Linear motor having piezo actuators
AU2001243481A1 (en) 2000-03-07 2001-09-17 Viking Technologies, Inc. Method and system for automatically tuning a stringed instrument
US6548938B2 (en) 2000-04-18 2003-04-15 Viking Technologies, L.C. Apparatus having a pair of opposing surfaces driven by a piezoelectric actuator
US6717332B2 (en) 2000-04-18 2004-04-06 Viking Technologies, L.C. Apparatus having a support structure and actuator
US6759790B1 (en) 2001-01-29 2004-07-06 Viking Technologies, L.C. Apparatus for moving folded-back arms having a pair of opposing surfaces in response to an electrical activation
EP1363234B1 (de) * 2001-02-21 2009-03-11 Sony Corporation Signalverarbeitungseinrichtung
WO2008095190A2 (en) * 2007-02-01 2008-08-07 Museami, Inc. Music transcription
US20090288547A1 (en) * 2007-02-05 2009-11-26 U.S. Music Corporation Method and Apparatus for Tuning a Stringed Instrument
WO2008101130A2 (en) * 2007-02-14 2008-08-21 Museami, Inc. Music-based search engine
US8494257B2 (en) 2008-02-13 2013-07-23 Museami, Inc. Music score deconstruction
DE102008044933B3 (de) * 2008-08-29 2010-04-22 Uli Gobbers Laser PickUp
US9633637B1 (en) 2015-01-19 2017-04-25 Hood World Productions, LLC Magnetic resonance tuning device for stringed instruments
WO2017182533A1 (en) * 2016-04-19 2017-10-26 Universiteit Gent Method and system for playing musical instruments

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151775A (en) * 1977-08-31 1979-05-01 Merriman George W Electrical apparatus for determining the pitch or fundamental frequency of a musical note
US4351216A (en) * 1979-08-22 1982-09-28 Hamm Russell O Electronic pitch detection for musical instruments
US4723468A (en) * 1985-10-26 1988-02-09 Nippon Gakki Seizo Kabushiki Kaisha Electronic stringed instrument
US4873904A (en) * 1987-04-22 1989-10-17 Yamaha Corporation Electronic musical instrument having playing and parameter adjustment modes
US4823667A (en) * 1987-06-22 1989-04-25 Kawai Musical Instruments Mfg. Co., Ltd. Guitar controlled electronic musical instrument
JPH0196700A (ja) * 1987-10-08 1989-04-14 Casio Comput Co Ltd 電子楽器の入力制御装置
JPH027096A (ja) * 1988-06-27 1990-01-11 Casio Comput Co Ltd 電子楽器
US4991488A (en) * 1988-08-12 1991-02-12 Fala Joseph M Acoustic detection of note bending in stringed M.I.D.I. compatible musical instruments
US5138924A (en) * 1989-08-10 1992-08-18 Yamaha Corporation Electronic musical instrument utilizing a neural network
US5308915A (en) * 1990-10-19 1994-05-03 Yamaha Corporation Electronic musical instrument utilizing neural net

Also Published As

Publication number Publication date
AU1067495A (en) 1995-07-03
KR100189795B1 (ko) 1999-06-01
CA2174223C (en) 2000-08-22
EP0734567A1 (de) 1996-10-02
DE4343411C2 (de) 2001-05-17
JPH09510794A (ja) 1997-10-28
DE4343411A1 (de) 1995-06-22
US5824937A (en) 1998-10-20
JP3020608B2 (ja) 2000-03-15
CA2174223A1 (en) 1995-06-22
KR960704298A (ko) 1996-08-31
WO1995016984A1 (de) 1995-06-22

Similar Documents

Publication Publication Date Title
EP0734567B1 (de) Signalanalyseeinrichtung mit mindestens einer gespannten saite und einem aufnehmer
DE69607223T2 (de) Verfahren zur Tonhöhenerkennung, insbesondere für Zupf- oder Perkussionsinstrumente
DE68904106T2 (de) Steuergeraet fuer ein elektronisches saiteninstrument.
DE102008044933B3 (de) Laser PickUp
DE69907498T2 (de) Verfahren zur schnellen erfassung der tonhöhe
DE19709930B4 (de) Tonprozessor, der die Tonhöhe und die Hüllkurve eines akustischen Signals frequenzangepaßt nachweist
DE69615716T2 (de) Synthesierer mit Erkennung der Tonhöhe und des Tonausgangspunkts eines Saiteninstruments zur Tonerzeugung
DE3415792C2 (de)
DE3877246T2 (de) Elektronisches musikinstrument.
EP2180463A1 (de) Verfahren zur Erkennung von Notenmustern in Musikstücken
DE19649296C2 (de) Verfahren zur Tonhöhenerkennung bei zupf- oder schlagerregten Saiteninstrumenten
DE3541683C2 (de)
DE69430078T2 (de) Elektronische Vorrichtung zum Musikvortrag
DE19500751C2 (de) Verfahren zum Erkennen eines Tonbeginns bei geschlagenen oder gezupften Musikinstrumenten
DE2641432A1 (de) Digital arbeitendes elektronisches musikinstrument
DE2228053C2 (de) Einrichtung zur automatischen Baßbegleitung in einem elektronischen Musikinstrument
DE102004033867B4 (de) Verfahren und Vorrichtung zur rhythmischen Aufbereitung von Audiosignalen
DE3540314C2 (de)
EP2420998B1 (de) Spielanalysevorrichtung für ein Tasteninstrument
WO2005114650A1 (de) Vorrichtung und verfahren zum charakterisieren eines tonsignals
DE2156279A1 (de) Vorrichtung zur Erzeugung musikalischer Tonmuster
DE10049279B4 (de) Zither
DE4038318C2 (de) Elektronisches Tasteninstrument mit einem Speicher, in dem die dargebotene Musik aufgenommen werden kann
DE2823254B2 (de) Einrichtung zum Verändern der Dämpfung von Tonsignalen in einem elektronischen Musikinstrument
DE260256C (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT NL SE

17Q First examination report despatched

Effective date: 19970919

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981008

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: YAMAHA CORPORATION

Effective date: 20050829

Owner name: TERRA TEC ELECTRONIC GMBH

Effective date: 20050829

REG Reference to a national code

Ref country code: FR

Ref legal event code: TQ

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20131112

Year of fee payment: 20

Ref country code: FR

Payment date: 20131108

Year of fee payment: 20

Ref country code: GB

Payment date: 20131120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131109

Year of fee payment: 20

Ref country code: IT

Payment date: 20131118

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20141126

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141125

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG